首页> 中国专利> 一种类芬顿铜单原子/氮杂碳纳米材料及其制备方法与应用

一种类芬顿铜单原子/氮杂碳纳米材料及其制备方法与应用

摘要

本发明公开了一种类芬顿铜单原子/氮杂碳纳米材料及其制备方法与应用,其是首先通过常温搅拌得到ZIF‑8,然后通过第一次高温煅烧得到氮掺杂的多孔碳,再引入含铜化合物后进行第二次高温煅烧,即得到铜单原子/氮掺杂多孔碳Cu‑N4。本发明制备得到的Cu‑N4纳米材料具有很强的近红外光吸收,能有效地将近红外光能转化为热能,在近红外光的照射下可用于细菌的光热治疗;此外,该纳米材料还具有类辣根过氧化物酶性质,能与过氧化氢反应得到羟基自由基(·OH),因此该材料能够实现光热治疗与纳米酶治疗联合的抗菌治疗。

著录项

  • 公开/公告号CN112850686A

    专利类型发明专利

  • 公开/公告日2021-05-28

    原文格式PDF

  • 申请/专利权人 合肥工业大学;

    申请/专利号CN202110083512.9

  • 发明设计人 查正宝;石倩倩;王咸文;吴孔林;

    申请日2021-01-21

  • 分类号C01B32/15(20170101);A61K33/34(20060101);A61K41/00(20200101);A61P17/02(20060101);A61P31/04(20060101);B82Y30/00(20110101);B22F9/24(20060101);

  • 代理机构34101 安徽省合肥新安专利代理有限责任公司;

  • 代理人卢敏

  • 地址 230009 安徽省合肥市包河区屯溪路193号

  • 入库时间 2023-06-19 11:09:54

说明书

技术领域

本发明属于纳米材料制备和生物医学领域,具体涉及一种类芬顿铜单原子/氮杂碳纳米材料及其制备方法与应用。

背景技术

细菌感染因其高发病率和高死亡率已成为人类健康的一大威胁。传统的抗菌手段主要包括在病灶施用抗生素、金属离子以及季铵盐离子等,但这些抗菌剂的使用通常会伴随着治疗成本高、毒性大、危害环境以及促使细菌耐药性产生之类的弊端。因此,开发更安全高效的新型抗菌策略则显得尤为重要。

随着纳米酶的快速发展,利用具有类辣根过氧化物酶(HRP)活性的无机芬顿/类芬顿制剂杀灭细菌的研究日益受到重视。在存在过氧化氢的条件下,芬顿/类芬顿制剂能催化过氧化氢产生羟基自由基(·OH),这种高毒性的活性氧物质能通过氧化破坏细菌蛋白质、脂质及核酸等物质达到杀灭细菌的效果。然而,由于机体环境限制,单纯依靠芬顿/类芬顿制剂产生的羟基自由基不足以完全杀灭病灶细菌,因此基于灭菌的联合治疗凭借其有效的协同抗菌作用而倍受研究者青睐。从升温能加快化学反应速率这一基本原理出发,通过提高细菌感染部位温度来提高芬顿/类芬顿制剂的反应速率无疑是一种有效的策略。在现今报道的所有热疗策略中,光热治疗(Photothermal Therapy,PTT)是一种利用光热制剂将近红外光转化为高温来破坏不同类型病原体和微生物的新型杀菌疗法,由于其具有低侵入性和高选择性而成为当前最具前景的抗菌策略之一。因此,开发具有优良光热性能的类HRP活性的纳米酶是提高抗菌效果的可行策略。

单原子催化剂作为一种均相催化剂,凭借高催化活性倍受研究者关注。有研究表明,其高催化活性源于内部单原子活性中心的存在。该类催化剂已广泛应用于化学催化反应,但是鲜有其在类HRP纳米酶方面的研究被报道,其在创口抗菌治疗方面的应用也有待进一步被研究。在众多芬顿/类芬顿催化案例中,铜(Cu)元素被认为是一种较高效的催化元素。同时,作为人体必须的微量元素,一定含量的Cu可被人体吸收而不会产生明显的毒副作用。因此,制备一种Cu单原子纳米酶并探究其在创口抗菌治疗方面的应用是相当有研究价值的。

发明内容

本发明的目的是提供一种类芬顿铜单原子/氮杂碳(Cu-N

为实现上述目的,本发明采用如下技术方案:

本发明首先公开了一种类芬顿铜单原子/氮杂碳纳米材料,其特点在于:所述纳米材料为氮掺杂的多孔碳,内部含铜单原子。其制备方法包括如下步骤:

步骤1、将六水合硝酸锌溶于甲醇,得到溶液A;将二甲基咪唑溶于甲醇,得到溶液B;将溶液B加入到溶液A中,室温搅拌18~36小时,得到ZIF-8;

步骤2、将ZIF-8放入管式炉中,升温至800~1000℃,保持4~6小时,得到氮掺杂的多孔碳NC;

步骤3、将所述氮掺杂的多孔碳NC放入到异丙醇和水的混合溶液中,超声分散1~3小时;接着加入铜盐、氰氨类化合物、氰氨类聚合物,再超声分散1~3小时,获得溶液C;最后在室温下搅拌18~36小时;所得产物经水和乙醇抽滤洗涤后,真空干燥,得到Cu-DCAD/MA-NC复合物;

步骤4、将所述Cu-DCAD/MA-NC复合物放入到带盖的瓷舟中,放入管式炉升温至500~600℃,保温1~3小时,即得铜单原子/氮杂碳纳米材料,记为Cu-N

作为优选,步骤1所述溶液A中六水合硝酸锌的浓度为17~24mg/mL,所述溶液B中二甲基咪唑的浓度为40~50mg/mL,溶液A与溶液B等体积混合。

作为优选,步骤3所述溶液C中,氮掺杂的多孔碳NC的浓度为2~5mg/mL,铜盐、氰氨类化合物、氰氨类聚合物的浓度分别为0.5~1mg/mL、5~10mg/mL和5~10mg/mL。

作为优选,所述铜盐为硫酸铜、氯化铜和硝酸铜中的至少一种,所述氰氨类化合物为氰胺钠、氰胺钾、二氰胺钠、二氰胺钾和氰胺化钙中的至少一种,所述氰氨类聚合物为三聚氰胺、三聚氰酸一酰胺和三聚氰酸二酰胺中的至少一种。

本发明还进一步公开了上述Cu-N

本发明的有益效果体现在:

1、本发明所制备的Cu-N

2、本发明所制备的Cu-N

附图说明

图1为实施例1所得Cu-N

图2为实施例1所得Cu-N

图3为实施例1所得Cu-N

图4为不同浓度Cu-N

图5为不同浓度Cu-N

图6为不同浓度Cu-N

图7为利用TMB检测Cu-N

图8为利用TMB检测Cu-N

图9为利用DTNB检测Cu-N

图10为利用DTNB检测不同浓度Cu-N

图11为不同浓度Cu-N

图12为不同浓度Cu-N

图13为Cu-N

图14为Cu-N

图15为Cu-N

图16为Cu-N

具体实施方式

下面对本发明的实施例作详细说明,下述实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。

实施例1、Cu-N

(1)3.4g六水合硝酸锌溶于160mL甲醇,得到溶液A;7.4g二甲基咪唑溶于160mL甲醇中,得到溶液B;将溶液B加到溶液A里室温搅拌24小时,得到ZIF-8。

(2)将ZIF-8放入管式炉中,5℃/min升温至920℃,保温5小时,得到氮掺杂的多孔碳(NC)。

(3)称取100mg NC放入到20mL异丙醇和10mL水的混合溶液中,超声分散2小时;接着将0.025g硝酸铜、0.25g二氰胺钠、0.25g三聚氰胺加入到上述溶液中,再超声分散2小时;最后在室温下搅拌12小时;产物经水和乙醇抽滤洗涤后,真空干燥,得到Cu-DCAD/MA-NC复合物。

(4)将Cu-DCAD/MA-NC复合物放入到带盖的瓷舟中,放入管式炉2℃/min升温至550℃,保温2小时,即得到铜单原子/氮杂碳纳米材料,记为Cu-N

1、形貌测试

图1为本实施例所得纳米材料的透射电镜图,可以看出产物大小比较均匀,平均粒径约为110nm。

图2为本实施例所得Cu-N

图3为本实施例所得Cu-N

将本实施例所得Cu-N

2、光热升温测试

取1mL不同浓度(0~200μg/mL)的Cu-N

3、类辣根过氧化物酶活性测试

由于·OH能氧化3,3',5,5'-四甲基联苯胺(TMB)并使得其在664nm处吸收增强,因此这里采用TMB检测·OH的产生,进而检测Cu-N

4、谷胱甘肽消耗性能测试

由于谷胱甘肽(GSH)能将无色的5,5'-二硫双(2-硝基苯甲酸)(DTNB)转化为在412nm处有特征吸收的黄色物质,因此GSH的消耗可采用DTNB进行检测。将不同浓度的Cu-N

5、体外抗菌性能测试

(1)Cu-N

培养耐甲氧西林的金黄色葡萄球菌(MRSA),过夜培养细菌至对数期。将不同浓度的Cu-N

(2)Cu-N

Cu-N

6、活体创口抗菌性能测试

将六周龄的小鼠随机分为以下七组(n=6):(I)PBS、(II)PBS+NIR、(III)H

以上所述仅为本发明的示例性实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号