首页> 中国专利> 基于改进遗传算法的航空发动机最低油耗控制优化方法

基于改进遗传算法的航空发动机最低油耗控制优化方法

摘要

本发明提出一种基于改进遗传算法的航空发动机最低油耗控制优化方法,根据航空发动机的特点,对遗传算法进行了改进,主要对遗传算法的初始种群的构造、适应度函数、交叉算子和变异算子等方面进行了改进,改进后的遗传算法可以发挥遗传算法的优势,并避开其不足,加快收敛速度、提高搜寻结果的质量。将改进遗传算法用于最低油耗控制寻优,输出最优控制变量给航空发动机。本发明可以在保证发动机安全工作的前提下,实现发动机推力保持不变并降低耗油率,提高飞机的飞行距离。

著录项

  • 公开/公告号CN112836427A

    专利类型发明专利

  • 公开/公告日2021-05-25

    原文格式PDF

  • 申请/专利权人 西北工业大学;

    申请/专利号CN202110046891.4

  • 发明设计人 刘志丹;缑林峰;杨江;吴贞;

    申请日2021-01-14

  • 分类号G06F30/27(20200101);G06N3/12(20060101);G06F111/04(20200101);G06F111/06(20200101);

  • 代理机构

  • 代理人

  • 地址 710072 陕西省西安市碑林区友谊西路127号

  • 入库时间 2023-06-19 11:05:16

说明书

技术领域

本发明涉及航空发动机控制技术领域,尤其涉及一种基于改进遗传算法的航空发动机最低油耗控制优化方法。

背景技术

航空发动机是飞机的心脏,是衡量一个国家航空事业发展水平的重要指标之一,因此对强化动力系统的研究对提升国家航空技术整体水平具有重要意义。由于航空发动机的工作过程复杂多变,且具有强非线性、多控制变量、时变、复杂的结构特点,因此,对发动机控制问题的研究比一般控制系统更为困难。

目前航空发动机控制的特点向精细化、模块化、综合化发展,现在的发动机控制已经不是控制模块基础上的简单综合,而是更加强调控制系统结构与功能的优化与提升。提高发动机性能的一个主要途径是发动机性能寻优控制。发动机性能寻优控制是指为了使发动机的性能指标达到最优,更进一步挖掘发动机的性能潜力,在发动机安全工作的前提下,在控制硬件可承受的范围内,对现有或新型发动机的性能进行优化。因此,提升我国航空发动机整体性能水平以及掌握世界先进航空发动机控制技术的关键在于研究先进的发动机性能寻优控制模式和控制方法。

同时,制空权在现代战争中扮演着至关重要的角色,掌握制空权就把握住了战争胜负的关键。随着科技的高速发展,现代空战对战斗机提出了更高的要求,这些要求主要体现在飞行包线的更加宽广、作战半径的扩大、机动性及灵活性的提高、推重比的增加、油耗的降低、短距离的起动、可靠性和可操作性的提升等方面。发动机的最低油耗控制模式的目的是在保证发动机安全工作的前提下,保证发动机推力不变,降低发动机的耗油率,提高飞机的作战半径。

国内外在发动机最低油耗寻优控制的研究虽然取得了一定成果,但也存在许多尚未解决的技术难题或待改进之处。难点在于寻找既有较强的全局收敛能力,又能较快收敛的优化算法。比如,遗传算法具有计算量大,耗时长,易早熟等缺点,不适宜应用于复杂的航空发动机性能寻优中。

发明内容

为解决现有技术存在的问题,本发明提出一种基于改进遗传算法的航空发动机最低油耗控制优化方法,对遗传算法进行改进,并将改进的遗传算法应用于发动机最低油耗寻优控制模式中,在保证发动机安全工作的前提下,保证发动机推力不变,降低发动机的耗油率,提高飞机的飞行距离。

本发明的技术方案为:

首先建立航空发动机的非线性数学模型,然后以改进遗传算法来进行发动机最低油耗寻优控制,以实现某型航空涡扇发动机在保持推力不变的情况下耗油率最低。

所述一种基于改进遗传算法的航空发动机最低油耗控制优化方法,其特征在于:第一步建立航空发动机的非线性数学模型;第二步确定最低油耗控制模式的目标函数和约束函数;第三步以改进遗传算法优化计算;第四步输出最优控制变量给航空发动机。

所述一种基于改进遗传算法的航空发动机最低油耗控制优化方法,其特征在于:所述改进遗传算法是对基本遗传算法进行了改进,主要对遗传算法的初始种群的构造、适应度函数、交叉算子和变异算子等方面进行了改进。

所述航空发动机的非线性数学模型为

y=f(x)

其中

所述最低油耗控制模式为在保证发动机安全工作的前提下,保证发动机推力不变,降低发动机的耗油率,其数学描述如下:

性能指标:

约束条件:g

其中,g

即对于最低油耗控制模式需要求解如下非线性约束问题:

其中控制变量x=[W

所述改进遗传算法的算法流程为

(1)初始化。给参数赋值,随机产生含M个个体的初始种群。

(2)适应度评价。计算群体中各个个体的目标函数值,由

(3)选择。采用选择算子中的最优保存策略,即当前群体中适应度最高的个体不参与交叉运算和变异运算,而是用该个体来替换掉本代群体中经过交叉、变异等操作后所产生的适应度最低的个体。

(4)交叉。采用改进的交叉算子,即由

可进行交叉操作,生成优秀个体的“后代”,用这些“后代”代替被移除的个体。

(5)变异。采用改进的变异算子,即由Ω={x

(6)计算子代群体中各个个体的适应度值。

(7)若算法已经达到所允许的最大进化代数或者连续几代群体最优个体都没有进化,则输出最终结果,结束迭代;否则转(3),继续搜索。

进一步的,所述控制变量为调节主燃油流量W

有益效果

与现有技术相比较,本发明的基于改进遗传算法的航空发动机最低油耗控制优化方法对遗传算法进行改进,并将改进的遗传算法应用于发动机最低油耗模式寻优控制,在保证发动机安全工作的前提下,实现发动机推力保持不变并降低耗油率,提高飞机的飞行距离。

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

本发明的上述和/或附加的方面和优点结合下面附图对实施例的描述中将变得明显和容易理解,其中:

图1是本发明发动机最低油耗寻优控制流程图;

图2是本发明最低油耗控制模式原理图;

图3是本发明随机方向法运算流程图;

图4是本发明改进遗传算法的基本运算流程图。

具体实施方式

本发明解决的问题是航空发动机的最低油耗寻优控制。发动机最低油耗寻优控制就是为了使发动机的推力保持不变,耗油率降到最低,选取最优控制方法寻找一组最优控制量(主燃油流量W

以某型航空涡扇发动机非线性数学模型为研究对象,建立最低油耗控制模式的目标函数,利用优化算法对发动机进行优化计算,即可得到满足最低油耗性能指标的最优控制变量。最低油耗控制模式是指在发动机安全和推力不变的前提下,降低发动机耗油率,该模式通常用于巡航状态,可增加巡航时间和作战半径。

控制算法是指控制系统实现控制规律或控制模式,达到系统性能要求所采用的计算方法。很多学者对线性和非线性优化算法在寻优控制中应用进行了大量研究,主要研究算法有:线性规划法,遗传算法,模型辅助模式搜索方法,及遗传算法等等。本发明在总结前人成果的基础上,根据航空发动机的特点,对遗传算法进行改进,并应用于发动机最低油耗寻优控制中。

1、由于航空发动机最低油耗寻优控制需要依据发动机当前工作状态参数做出控制决策,因此,进行最优控制方法研究时,通常以航空发动机数学模型取代真实的发动机。由于航空发动机的建模技术已经非常成熟,这里不再赘述,直接给出建立的发动机非线性模型

y=f(x)

其中

2、改进遗传算法的设计

航空发动机最低油耗寻优技术是飞行/推进系统综合控制的关键技术。随着航空科技投入的增加,全权限数字式电子控制技术在新一代发动机中得到广泛的应用。为了优化飞机和发动机的油耗性能,通常在发动机的巡航状态采取最低油耗控制模式。遗传算法具有计算量大,耗时长,易早熟等缺点,不适宜应用于复杂的航空发动机性能寻优中。因此本发明设计了一种改进的遗传算法对航空发动机进行最低油耗寻优控制,其基本思路如图1所示。

最低油耗控制模式指的是以发动机安全和推力恒定为前提,降低发动机耗油率,该模式用于巡航状态,可增加巡航时间和作战半径。

在不开加力,高压转子转速n

考虑约束条件后,最低油耗控制模式的数学描述如下:

性能指标:min sfc

约束条件:g

其中,g

本发明对基本遗传算法不加赘述。为了充分发挥遗传算法的优势,避开其不足,加快收敛速度、提高搜寻结果的质量。根据发动机模型的特点,本发明对遗传算法进行了改进,主要对遗传算法的初始种群的构造、适应度函数、交叉算子和变异算子等方面进行了改进,并将改进的遗传算法应用于航空发动机最低油耗寻优控制中。

由于初始群体是遗传算法搜索寻优的出发点,因此初始群体的构造关系着遗传算法的执行效率。在初始群体的构造过程中需要保证初始群体的多样性,避免遗传算法陷入局部收敛。由于群体是个体构成的,因而,如果产生的个体能够遍布整个搜索空间,就能在一定程度上保证初始群体的多样性。本发明采用随机方向法来构造初始群体,采用此方法可以在搜索空间内随机生成初始群体中的个体,且个体能遍布整个搜索空间。

初始点的选择:

随机方向法的初始点x

(1)输入变量的下限值和上限值,即

a

(2)在区间(0,1)内产生n个伪随机数q

(3)计算随机点x的各分量

x

(4)判断随机点x是否可行。若x为可行点,则去初始点x

可行搜索方向的产生:

产生可行搜索方向的方法是在k个随机方向中选取一个较好的方向。其计算步骤为:

(1)在(-1,1)区间内产生伪随机数r

(2)取一实验步长α

x

显然,k个随机点分布在以初始点x

(3)检验k个随机点x

(4)比较x

综上所述,当x

则可行搜索方向d为

d=x

搜索步长的确定:

可行搜索方向d确定后,初始点移至x

α=τα

式中τ——步长加速系数,可取τ=1.3;

α——步长,初始步长取α=α

随机方向法的计算步骤如图3所示。

不同的编码方式可能会对算法的优化质量和优化效率产生较大的影响。本发明采用十进制浮点数编码方法。由于发动机某些性能参数如推力,其值变化范围较大,且航空发动机优化控制问题涉及到的决策变量较多,且对于部分决策变量的精度要求较高,因此十进制浮点数编码非常适合。另外,本发明研究的是航空发动机在线性能寻优控制技术,对于所采用的优化算法的计算效率要求较高,采用该编码方法可以提高其运算效率。

适应度函数的设计和遗传算法中的选择操作直接相关,因此适应度函数的选取至关重要,其选取不仅直接影响到遗传算法的收敛速度,而且与遗传算法的迭代停止条件、问题的约束条件密切相关。一般而言,适应度函数是由目标函数变换而成的。常用的适应度函数尺度变换方法有:线性变换法、幂函数变换法和指数变换法。

本发明对适应度函数进行了一些改进,操作如下式所示:

其中

式中T为进化的最大代数,t为当前迭代代数,b为参数,本发明取值为3,r∈[0,1]。由上式可知,改进后的适应度函数是非负的,在进化过程中,局部最优点的个数逐渐减少,加大收敛于全局最优解的概率。同时,当t越来越接近T时,s(t)越接近于0,复制的强制越趋向于适应度值较大的个体。

遗传算子主要包括选择算子、交叉算子和变异算子。本发明主要对交叉算子和变异算子进行了改进。下面将对以上三种算子分别进行研究。

选择算子是在已有的群体中选择出优异的个体加以保留,淘汰劣势个体。选择算子反映了种子的生存能力,遗传算法中选择算子采用何种选择策略,从父本群体中选择等群体规模的个体形成下一代群体,这对算法的性能影响最大。

选择算子解决的问题是:制定一种选择规则,从上一代群体中选取若干个个体遗传到下一代群体。为了把适应度最好的个体要尽量保留到下一代群体中,本发明采用最优保存策略来进行优胜劣汰操作,即当前群体中适应度最高的个体不参与交叉运算和变异运算,而是用该个体来替换掉本代群体中经过交叉、变异等操作后所产生的适应度最低的个体。

最优保存策略的具体操作过程是:

①找出当前群体中适应度最高的个体和适应度最低的个体。

②若当前群体中最佳个体的适应度比总的迄今为止的最好个体的适应度还要高,则以当前群体中的最佳个体作为新的迄今为止的最好个体。

③用迄今为止的最好个体替换当前群体中的最差个体。

遗传算法中交叉操作的目的是产生新个体。交叉操作的基本过程是:相互配对的染色体通过某种方式交换其部分基因,从而形成新的个体。在针对具体问题设计交叉操作方法时,应遵循的原则是:在不过多破坏个体编码串中具有优良性状的模式的前提下,高效地产生具有较好性状的新的模式。

本发明在算数交叉的基础上,提出一种新的交叉算子,该算子不依赖所选取的适应度函数,而且还克服了子代个体限定于两个父代个体之间的缺陷,保持了群体基因库的多样性,起到了变异算子的作用。具体如下:

设父代为:

如果

当γ=0时,即为算术交叉。下面证明,当γ<α或γ<β时,交叉后得到的子代将不限定于两个父代之间:不妨设

可以看出,当γ<α或γ<β时,交叉后得到的子代个体将不限定于两个父代个体所确定的距体内。若

遗传算法中的变异运算是指将个体染色体编码串中的某些基因座上的基因值用该基因座的其他等位基因来替换,从而形成一个新的个体。变异运算决定了遗传算法的局部搜索能力。变异算子其实有两个作用,其主要作用是增强种群多样性,以跳出局部极小点,即全局搜索功能;另一个作用是对种子作扰动,以便产生一个合适的优化方向,其实质是增强种子交叉的方向多样性,即辅助交叉搜索功能。常用的变异算子有基本位变异,均匀变异,非均匀变异、边界变异、高斯变异等等。

本发明在常见的变异算子的基础上做些改进,改进后的变异算子不仅具有原有算子的优点,且操作上比原有算子简单方便,有效地加快遗传算法的收敛速度,具体如下:

设父代染色体为x=[x

Ω={x

其中

式中T为进化的最大代数,t为当前迭代代数,b为参数,本发明取值为3,r∈[0,1]。当T较小时,s(t)≈1,此时的变异空间相对较大,而T较大时,s(t)≈0,变异空间较小,从而加快搜索速度。

遗传算法中需要选择的运行参数主要有个体编码串长度l、群体大小M、选择概率p

改进的遗传算法的基本运算流程如图4所示。

(1)初始化。给参数赋值,随机产生含M个个体的初始种群。

(2)适应度评价。计算群体中各个个体的目标函数值,由

(3)选择。采用选择算子中的最优保存策略,即当前群体中适应度最高的个体不参与交叉运算和变异运算,而是用该个体来替换掉本代群体中经过交叉、变异等操作后所产生的适应度最低的个体。

(4)交叉。采用改进的交叉算子,即由

可进行交叉操作,生成优秀个体的“后代”,用这些“后代”代替被移除的个体。

(5)变异。采用改进的变异算子,即由Ω={x

(6)计算子代群体中各个个体的适应度值。

(7)若算法已经达到所允许的最大进化代数或者连续几代群体最优个体都没有进化,则输出最终结果,结束迭代;否则转(3),继续搜索。

3、基于改进的遗传算法的最低油耗寻优控制

最低油耗模式是在保持推力不变的情况下降低耗油率,该模式用于巡航状态。耗油率的降低将增加飞机的巡航时间和作战半径。

耗油率sfc与燃油流量W

在最低油耗模式下,优化目标如下式所示:

为了保证发动机工作状态的最优性、稳定性和结构强度,必须对发动机的使用进行特定的限制。由于受到飞行条件、机械负荷、热负荷以及气动负荷的限制,所有这些限制可分为两类:一类是动力装置部件工作过程中气动稳定性条件的限制,与压气机、燃烧室等一些发动机部件有关;第二类是强度限制。在发动机的所有使用条件下,应该保持必要的强度余量。对于发动机的稳定工作状态,要限制对涡轮叶片强度余量最有影响的转速极限值。在给定的飞行包线范围内,出于结构或气动考虑必须限制发动机的压力和温度。在正常工作条件下,要限制超温和超转。

综上所述,本发明选取的发动机的约束条件有:涡轮前温度不超温、高压压气机不喘振、高压转子不超转、风扇不超转、燃烧室不富油熄火、主燃烧室供油量不超过其最大供油量、喷管喉部面积不小于其最小面积等等。

考虑到目标函数、约束条件以及控制变量的影响后,需要寻找一组合适的W

其中控制变量x=[W

在最低油耗模式下,发动机推力F保持恒定。故使sfc最小化问题可转化为使变循环发动机主燃油流量W

式中,JF表示保持发动机推力F不变的目标函数,F

因此,可将目标函数转化为:

上式中,ω

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号