首页> 中国专利> 欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法及装置

欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法及装置

摘要

本发明公开了一种欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法及装置。该控制方法包括:建立物理模型;获得参考位移和实际位移;将实际位移和参考位移作为输入量,中层位置跟踪控制器的输出为虚拟的期望关节驱动力矩;将期望关节力矩转化为期望液压缸输出力,将期望液压缸输出力和实际液压缸输出力作为输入量,将流量转化为电液伺服阀的驱动电压,驱动电压控制液压缸的输出力,带动欠驱动单腿助力外骨骼的各个关节旋转。本发明在液压缸数目少于外骨骼运动自由度数目的情况下,有效克服了欠驱动液压单腿助力外骨骼的多关节强耦合、液压驱动器的高阶非线性和模型不确定性的影响,实现了液压助力外骨骼对人运动的良好跟随和助力效果。

著录项

  • 公开/公告号CN112775937A

    专利类型发明专利

  • 公开/公告日2021-05-11

    原文格式PDF

  • 申请/专利权人 合肥工业大学;

    申请/专利号CN202110017441.2

  • 申请日2021-01-07

  • 分类号B25J9/00(20060101);B25J9/16(20060101);

  • 代理机构34144 合肥市泽信专利代理事务所(普通合伙);

  • 代理人方荣肖

  • 地址 230009 安徽省合肥市包河区屯溪路193号

  • 入库时间 2023-06-19 10:57:17

说明书

技术领域

本发明涉及可穿戴技术领域的一种外骨骼的控制方法,尤其涉及一种欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,还涉及一种欠驱动液压单腿助力外骨骼的自适应鲁棒控制装置。

背景技术

可穿戴下肢助力外骨骼机器人是一种模仿人体下肢结构,增强穿戴者行走耐久性、行走速度、负重能力等体能的智能人机一体化装置,在抢险救灾,建筑作业、提高单兵作战能力等方面具有重要作用。外骨骼与人的组合能适应非结构化的环境,拥有极好的灵活性,可以完成一些复杂的工作,这是其他完全机械设备所无法比拟的。液压驱动器由于功率重量比大,且能输出足够大的力,因而非常适用于下肢助力外骨骼这种结构紧凑且重载的系统中。

全驱外骨骼系统由于包含多个驱动器,因而存在自重过大和能耗过高的问题,这会限制系统的负重能力和便携式能源供应系统的续航能力。为进一步降低助力外骨骼机器人的重量和能耗,增强人体运动的灵活性,欠驱液压助力外骨骼机器人逐渐被提出。与全驱外骨骼相比,欠驱外骨骼由于缺少控制输入,导致全驱外骨骼的控制方法不能直接用于欠驱外骨骼系统中。另外,由于液压驱动外骨骼系统的动力学阶数高于电机驱动外骨骼,其控制算法设计会更具挑战性。且多关节欠驱液压外骨骼系统本身具有强耦合高阶非线性以及各种模型不确定性,因此对控制算法的鲁棒性能要求较高。而现有的欠驱外骨骼控制方法主要针对的是电机驱动外骨骼系统,且都只涉及欠驱动外骨骼的初步控制,其动力学模型或控制算法都进行了简化处理,导致系统的鲁棒性能不强。

发明内容

为解决现有的欠驱动液压外骨骼的控制方法的系统鲁棒性能不强的技术问题,本发明提供一种欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法及装置。

本发明采用以下技术方案实现:一种欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,所述欠驱动液压单腿助力外骨骼包括:

脚部;

第一杆件,其底端与所述脚部连接;

第二杆件,其底端与所述第一杆件的顶端转动连接;

膝关节液压缸,其用于驱使所述第一连杆与所述第二杆件产生相对转动;

膝关节液压缸上腔压力传感器,其安装在所述膝关节液压缸的上腔;

膝关节液压缸下腔压力传感器,其安装在所述膝关节液压缸的下腔;

膝关节编码器,其安装在所述膝关节液压缸上,并用于驱动所述膝关节液压缸;

背板,其与所述第二杆件的顶端转动连接;

髋关节液压缸,其用于驱使所述背板与所述第二杆件产生相对转动;

髋关节液压缸上腔压力传感器,其安装在所述髋关节液压缸的上腔;

髋关节液压缸下腔压力传感器,其安装在所述髋关节液压缸的下腔;

髋关节编码器,其安装在所述髋关节液压缸上,并用于驱动所述髋关节液压缸;

力传感器,其安装在所述背板上;

背部绑带,其两端连接在所述背板上端;

腰部绑带,其两端连接在所述背板下端;以及

实时控制器,其与所述膝关节液压缸、所述髋关节液压缸、所述膝关节编码器、所述髋关节编码器以及所述力传感器电性连接;所述膝关节液压缸、所述髋关节液压缸均通过一个液压驱动器进行驱动;

其中,所述自适应鲁棒控制方法包括以下步骤:

(1)初始化所述实时控制器的采样周期;

(2)将所述脚部旋转至水平,将所述第一杆件、所述第二杆件以及所述背板旋转至竖直位置,并初始化所述膝关节编码器和所述髋关节编码器且将驱动器数值调零;

(3)初始化所述力传感器,将所述力传感器的数值调零;

(4)建立所述欠驱动液压单腿助力外骨骼的物理模型,并将所述物理模型转化为状态方程;其中,所述物理模型包括人机接口模型、外骨骼机械本体的运动模型、所述液压驱动器的动力学模型、穿戴者提供的完整约束模型;

(5)通过所述背部绑带将所述力传感器与穿戴者相连,并测定所述力传感器上的作用力,通过上层控制器获得所述欠驱动液压单腿助力外骨骼的参考位移;

(6)通过所述膝关节编码器和所述髋关节编码器获得所述欠驱动液压单腿助力外骨骼的实际角度值,根据外骨骼系统的正运动学模型得到所述背板接触处的实际位移;根据步骤(5)得到的参考位移,将所述实际位移和所述参考位移作为中层位置跟踪控制器的输入量,所述中层位置跟踪控制器的输出为所述欠驱动液压单腿助力外骨骼中膝关节和髋关节处的期望驱动力矩;

(7)通过所述膝关节液压缸上腔压力传感器、膝关节液压缸下腔压力传感器获得所述膝关节液压缸两腔的实际压力,进而得到所述膝关节液压缸的实际输出力;通过所述髋关节液压缸上腔压力传感器、髋关节液压缸下腔压力传感器获得所述髋关节液压缸两腔的实际压力,进而得到所述髋关节液压缸的实际输出力;将步骤(6)得到的期望驱动力矩与液压缸输出力臂相除得到液压缸的期望输出力,再将所述期望输出力和液压缸实际输出力作为下层控制器的输入量,所述下层控制器的输出为所述液压驱动器的流量,并将所述流量转化为各个液压缸的电液伺服阀的控制电压;

(8)通过膝关节电液伺服阀的放大板和髋关节电液伺服阀的放大板将步骤(7)中得到的电液伺服阀的控制电压转化为相应伺服阀的控制电流;以及

(9)通过各个控制电流控制对应的所述膝关节电液伺服阀和所述髋关节电液伺服阀的阀芯开口位移,以控制液压缸两端的压力,推动各个液压缸运动,进而带动所述欠驱动液压单腿助力外骨骼的各个关节旋转,实现所述欠驱动液压单腿助力外骨骼的跟随运动。

本发明通过将外骨骼系统中踝关节为被动驱动,从而具有更轻的质量、更好的便携式能源供应系统续航能力和更高的负载性能。其动力系统采用具有体积小、质量轻、布局灵活、机构紧凑,而且能够输出较大力或扭矩、动作响应灵敏,易于控制等特点的液压驱动方式。而且,针对欠驱动单腿助力外骨骼增力和跟随问题,考虑穿戴者提供的完整约束,将三自由度欠驱动液压外骨骼系统转化为二自由度全驱动系统。该控制方法采用了力控制方法,利用了多输入多输出自适应鲁棒控制算法(ARC)来设计上下层控制器,有效克服了欠驱动液压单腿助力外骨骼的多关节强耦合和模型不确定性的影响,解决了现有的外骨骼的控制方法系统鲁棒性能不强的技术问题,实现了助力外骨骼对人运动的良好跟随和助力效果,具有较强的应用价值。

作为上述方案的进一步改进,所述人机接口模型为:

其中,F

在转化所述物理模型时,通过人机作用力的积分

所述运动模型为:

式中,F

所述运动模型进一步转化为:

式中,

进一步地,所述完整约束模型为:

x

对所述完整约束模型求二阶导数:

求出

式中,x

再进一步地,所述液压驱动器的动力学模型为:

x

式中,x

再进一步地,将所述物理模型转化为所述状态方程的方法包括以下步骤:

(4.1)令状态变量

(4.2)将所述集中模型不确定性分为常数和时变函数两部分,得到

(4.3)设

K

再进一步地,所述欠驱动液压单腿助力外骨骼的物理模型的状态方程为:

τ

Q

其中:K

A

A

F

K

再进一步地,所述上层控制器的控制方法包括以下步骤:

根据步骤(4)中的物理模型的状态方程,设第一跟踪误差为z

设x

式中,·

式中,

根据第一虚拟控制输入x

令y

通过所述传递函数,获得x

再进一步地,所述中层位置跟踪控制器的设计方法包括以下步骤:

设第二跟踪误差

其中,K

令B

式中,·

式中,

再进一步地,所述下层控制器的设计方法包括以下步骤:

定义此阶段的跟踪误差:z

式中,·

z

式中,

根据虚拟控制输入Q

本发明还提供一种欠驱动液压单腿助力外骨骼的自适应鲁棒控制装置,其应用上述任意所述的欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,其包括:

初始化模块一,其用于初始化所述实时控制器的采样周期;

初始化模块二,其用于将所述脚部旋转至水平,将所述第一杆件、所述第二杆件以及所述背板旋转至竖直位置,并初始化所述膝关节编码器和所述髋关节编码器且将驱动器数值调零;

初始化模块三,其用于初始化所述力传感器,将所述力传感器的数值调零;

模型建立模块,其用于建立所述欠驱动液压单腿助力外骨骼的物理模型,并将所述物理模型转化为状态方程;其中,所述物理模型包括人机接口模型、外骨骼机械本体的运动模型、所述液压驱动器的动力学模型、穿戴者提供的完整约束模型;

参考位移获取模块,其用于通过所述背部绑带将所述力传感器与穿戴者相连,并测定所述力传感器上的作用力,通过上层控制器获得所述欠驱动液压单腿助力外骨骼的参考位移;

实际位移获取模块,其用于通过所述膝关节编码器和所述髋关节编码器获得所述欠驱动液压单腿助力外骨骼的实际角度值,根据外骨骼系统的正运动学模型得到所述背板接触处的实际位移;所述实际位移获取模块根据所述参考位移获取模块得到的参考位移,将所述实际位移和所述参考位移作为中层位置跟踪控制器的输入量,所述中层位置跟踪控制器的输出为所述欠驱动液压单腿助力外骨骼中膝关节和髋关节处的期望驱动力矩;

伺服阀控制电压获取模块,其用于通过所述膝关节液压缸上腔压力传感器、膝关节液压缸下腔压力传感器获得所述膝关节液压缸两腔的实际压力,进而得到所述膝关节液压缸的实际输出力;通过所述髋关节液压缸上腔压力传感器、髋关节液压缸下腔压力传感器获得所述髋关节液压缸两腔的实际压力,进而得到所述髋关节液压缸的实际输出力;所述伺服阀控制电压获取模块将所述实际位移获取模块得到的期望驱动力矩与液压缸输出力臂相除得到液压缸的期望输出力,再将所述期望输出力和液压缸实际输出力作为下层控制器的输入量,所述下层控制器的输出为所述液压驱动器的流量,并将所述流量转化为各个液压缸的电液伺服阀的控制电压;

转化模块,其用于通过膝关节电液伺服阀的放大板和髋关节电液伺服阀的放大板将所述伺服阀控制电压获取模块中得到的电液伺服阀的控制电压转化为相应伺服阀的控制电流;以及

跟随模块,其用于通过各个控制电流控制对应的所述膝关节电液伺服阀和所述髋关节电液伺服阀的阀芯开口位移,以控制液压缸两端的压力,推动各个液压缸运动,进而带动所述欠驱动液压单腿助力外骨骼的各个关节旋转,实现所述欠驱动液压单腿助力外骨骼的跟随运动。

相较于现有的外骨骼的控制方法,本发明的欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法及装置具有以下有益效果:

1、该欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,其外骨骼系统中踝关节为被动驱动,从而具有更轻的质量、更好的便携式能源供应系统续航能力和更高的负载性能。

2、该欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,其动力系统采用具有体积小、质量轻、布局灵活、机构紧凑,而且能够输出较大力或扭矩、动作响应灵敏,易于控制等特点的液压驱动方式。

3、该欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,其传感器系统主要由力传感器和旋转编码器来实现较有效、可靠的人-机交互,而且,针对欠驱动液压单腿助力外骨骼增力和跟随问题,考虑穿戴者提供的完整约束,将三自由度欠驱动液压外骨骼系统转化为二自由度全驱动系统。

4、该欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,其采用了力控制方法,利用了多输入多输出自适应鲁棒控制算法(ARC)来,采用级联力控制方法,设计上中下三层控制器,在控制输入数目少于外骨骼运动自由度数目的情况下,有效克服了欠驱动液压单腿助力外骨骼的多关节强耦合和模型不确定性的影响,对控制模型做前馈补偿来保证静态下的零跟踪误差,通过设计的鲁棒反馈来保证欠驱动液压助力外骨骼系统的动态特性和稳定性,解决了现有的外骨骼的控制方法系统鲁棒性能不强的技术问题,实现了助力外骨骼对人运动的良好跟随和助力效果,具有较强的应用价值。

5、该欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,其充分考虑穿戴者对外骨骼的控制作用,减少了液压缸的使用和能源的消耗,在人机间交互问题上有效、可靠,并具有对人体运动意图快速响应的特点。

6、该欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,其将外骨骼穿戴者作为系统控制的参与者,在行走平面内,穿戴者可以保证整个系统的前后行走平衡,避免外骨骼发生摔倒。同时,该方法利用级联控制策略,设计上下层控制器,实现对欠驱动助力外骨骼的轨迹规划和轨迹跟踪,控制方法实现简单,易于工程实现,且控制灵活。

7、该欠驱动液压单腿助力外骨骼的自适应鲁棒控制装置,其有益效果与上述欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法的有益效果相同。

附图说明

图1为本发明实施例1的欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法所应用的欠驱动液压单腿助力外骨骼的整体形状结构示意图。

图2为图1中的欠驱动液压单腿助力外骨骼的正视图。

图3为图1中的欠驱动液压单腿助力外骨骼的侧视图。

图4为本发明实施例1的欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法的控制框图。

图5为本发明实施例1的欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法的控制流程图。

符号说明:

1.脚部;

2.第一杆件;

3.膝关节编码器;

4.膝关节液压缸;

5.膝关节液压缸下腔压力传感器;

6.第二杆件;

7.膝关节液压缸上腔压力传感器;

8.髋关节编码器;

9.底板;

10.髋关节液压缸上腔压力传感器;

11.髋关节液压缸下腔压力传感器;

12.髋关节液压缸;

13.膝关节电液伺服阀;

14.髋关节电液伺服阀;

15.背板;

16.背部绑带;

17.腰部绑带;

18.力传感器。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。

实施例1

请参阅图1,本实施例提供了一种欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,该控制方法用于对一种欠驱动液压单腿助力外骨骼进行控制。该欠驱动液压单腿助力外骨骼包括欠驱动液压单腿助力外骨骼进行控制。该欠驱动液压单腿助力外骨骼包括脚部1、第一杆件2、膝关节编码器3、膝关节液压缸4、膝关节液压缸下腔压力传感器5、第二连杆6、膝关节液压缸上腔压力传感器7、髋关节编码器8、底板9、髋关节液压缸上腔压力传感器10、髋关节液压缸下腔压力传感器11、髋关节液压缸12、膝关节电液伺服阀13、髋关节电液伺服阀14、背板15、背部绑带16、腰部绑带17、力传感器18以及实时控制器(图中未示出)。其中,膝关节编码器3和髋关节减速器9均为关节旋转编码器,而背板10与底板9通过螺栓连接。

脚部1作为欠驱动液压单腿助力外骨骼与地面的接触部分,其能够支撑起整个外骨骼,作用类似于人体的脚。第一杆件2的底端与脚部1连接,可以为活动连接,也可以通过其他连接方式进行连接。第二杆件6的底端与第一杆件2的顶端转动连接(可以通过铰链连接),而膝关节液压缸4用于驱使第一连杆2与第二杆件6产生相对转动。膝关节编码器3安装在膝关节上(可以设置在通过铰链连接处),在本实施例中,膝关节液压缸4驱使第一连杆2与第二杆件6相对转动。底板9与第二杆件6的顶端转动连接(可以图示装置连接),髋关节液压缸12则用于驱使底板9与第二杆件6产生相对转动。髋关节编码器8安装在髋关节上,在本实施例中,髋关节液压缸12驱使底板9与第二杆件6相对转动。力传感器18安装在背板15和背部绑带16上,腰部绑带17的两端连接在背板15下端。

膝关节液压缸上腔压力传感器7则用于检测膝关节液压缸4的上腔的压力,而膝关节液压缸下腔压力传感器5则用于检测膝关节液压缸4的下腔的压力,髋关节液压缸上腔压力传感器10、髋关节液压缸下腔压力传感器11分别用于检测髋关节液压缸12的上下腔的压力值。膝关节电液伺服阀13用于对膝关节液压缸4进行控制,髋关节电液伺服阀14用于对髋关节液压缸12进行控制。实时控制器与膝关节电液伺服阀13、髋关节电液伺服阀14、髋关节液压缸12、膝关节液压缸4、膝关节编码器3、髋关节编码器8、膝关节液压缸上腔压力传感器7、膝关节液压缸下腔压力传感器5、髋关节液压缸上腔压力传感器10、髋关节下腔压力传感器11以及力传感器18电性连接。其中,实时控制器可采用的型号为NI cRIO-9031的产品,但不限于此。

请参阅图4以及图5,基于上述欠驱动液压单腿助力外骨骼,为了克服欠驱动液压助力外骨骼因驱动器数目少于系统自由度数目所导致的二阶非完整性,本实施例将外骨骼穿戴者作为系统控制的参与者,在行走平面内,穿戴者可以保证整个系统的前后行走平衡,避免外骨骼发生摔倒。因此,假设穿戴者能提供一个绕z轴旋转的平衡力矩,使得外骨骼背板的转角按照一个有界的轨迹运动。考虑穿戴者提供的完整约束,最终将一个关节角度空间的三自由度欠驱动系统变成了一个关于外骨骼背板笛卡尔位置的二自由度全驱动系统。为了克服欠驱动助力外骨骼在建模过程中存在的不确定性的影响,实现了助力外骨骼对人运动的良好跟随和助力效果,本实施例中欠驱动液压单腿助力外骨骼控制策略采用了可以很好克服模型不确定性的影响的自适应鲁棒控制(ARC)。自适应鲁棒控制(ARC)的原理是通过设计自适应率来不断调整模型参数,对控制模型做前馈补偿来保证静态下的零跟踪误差,通过设计的鲁棒反馈来保证欠驱动助力外骨骼系统的动态特性和稳定性。同时,利用级联控制策略,设计上下层控制器,实现对欠驱动助力外骨骼的轨迹规划和轨迹跟踪,控制算法实现简单,易于工程实现,且控制灵活。因此,具体实现时,本实施例中的自适应鲁棒力控制方法包括以下这些步骤。

(1)初始化实时控制器的采样周期。在本实施例中,采样周期T的值在10到20毫秒之间。

(2)将脚部1旋转至水平,并将第一杆件2、第二杆件6以及背板15旋转至竖直位置,并初始化膝关节编码器3和髋关节编码器8且将编码器数值调零。

(3)初始化膝关节液压缸下腔压力传感器5、膝关节液压缸上腔压力传感器7和力传感器18,将传感器的数值调零。

(4)建立欠驱动液压单腿助力外骨骼的物理模型,并将物理模型转化为状态方程。其中,物理模型包括人机接口模型、外骨骼机械本体的运动模型、液压驱动器的动力学模型、穿戴者提供的完整约束模型。

人机接口模型为:

其中,F

在转化物理模型时,人机接口模型是一个静态的方程,所以F

运动模型为:

式中,F

因为:

运动模型可以进一步转化为:

式中,

由于欠驱动液压助力外骨骼系统缺少控制输入,导致穿戴者需要提供一定的控制力矩以保证整个系统的稳定性。在行走平面内,穿戴者可以保证整个系统的前后行走平衡,避免外骨骼发生摔倒。因此,假设穿戴者能提供一个绕z轴旋转的平衡力矩τ

x

对其求二阶导数,可以得到

综合上述运动模型,完整约束模型可知,存在四个未知量

式中,x

液压驱动器的动力学模型为:

式中,x

将物理模型转化为状态方程的方法包括以下步骤:

(4.1)令状态变量

(4.2)将集中模型不确定性分为常数和时变函数两部分,得到

(4.3)设

K

本实施例进一步进行处理,欠驱动单腿助力外骨骼的物理模型的状态方程为:

τ

{Q_L}={K_q}u

其中,K

A

A

F

K

(5)通过背板15和背部绑带16将力传感器18与穿戴者相连,并测定力传感器18上的作用力,通过上层控制器获得欠驱动单腿助力外骨骼的参考位移。

其中,上层控制器的控制方法包括以下步骤:

根据步骤(4)中的物理模型的状态方程,设第一跟踪误差为z

设x

式中,·

根据自适应鲁棒(ARC)控制算法,x

式中,

根据第一虚拟控制输入x

令y

通过传递函数,获得x

(6)通过膝关节编码器3和髋关节编码器8获得欠驱动单腿助力外骨骼的实际角度值,根据外骨骼系统的正运动学模型得到背板15接触处的实际位移。根据步骤(5)得到的参考位移,将实际位移和参考位移作为中层位置跟踪控制器的输入量,中层位置跟踪控制器的输出为欠驱动液压单腿助力外骨骼中膝关节和髋关节处的期望驱动力矩。

在本实施例中,中层位置跟踪控制器的设计方法包括以下步骤:

设第二跟踪误差

其中,K

令B

式中,·

式中,

(7)通过所述膝关节液压缸上腔压力传感器7、膝关节液压缸下腔压力传感器5获得所述膝关节液压缸两腔的实际压力,进而得到所述膝关节液压缸的实际输出力;通过所述髋关节液压缸上腔压力传感器10、髋关节液压缸下腔压力传感器11获得所述髋关节液压缸两腔的实际压力,进而得到所述髋关节液压缸的实际输出力;将步骤(6)得到的期望驱动力矩与液压缸输出力臂相除得到液压缸期望输出力;将期望输出力和液压缸实际输出力作为下层控制器的输入量,下层液压缸输出力跟踪控制器的输出为电液伺服阀的控制电压;在本实施例中,下层位置跟踪控制器的设计方法包括以下步骤:

设第四跟踪误差z

控制Q

式中,·

z

式中,

根据虚拟控制输入Q

(8)通过膝关节电液伺服阀放大板和髋关节电液伺服阀放大板将步骤(7)中得到的电液伺服阀的控制电压转化为相应伺服阀的控制电流。

(9)通过控制电流控制伺服阀的阀芯位移来控制膝关节液压缸4和髋关节液压缸12两端的压力,推动液压缸运动,实现膝关节液压缸4和髋关节液压缸12的输出力控制,带动欠驱动液压单腿助力外骨骼的各个关节旋转,实现欠驱动液压单腿助力外骨骼的跟随运动。

综上所述,相较于现有的外骨骼的控制方法,本实施例的欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法具有以下优点:

1、该欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,其外骨骼系统中踝关节为被动驱动,从而具有更轻的质量、更好的便携式能源供应系统续航能力和更高的负载性能。

2、该欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,其动力系统采用具有体积小、质量轻、布局灵活、机构紧凑,而且能够输出较大力或扭矩、动作响应灵敏,易于控制等特点的液压驱动方式。

3、该欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,其传感器系统主要由力传感器和旋转编码器来实现较有效、可靠的人-机交互,而且,针对欠驱动液压单腿助力外骨骼增力和跟随问题,考虑穿戴者提供的完整约束,将三自由度欠驱动液压外骨骼系统转化为二自由度全驱动系统。

4、该欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,其采用了力控制方法,利用了多输入多输出自适应鲁棒控制算法(ARC)来,采用级联力控制方法,设计上中下三层控制器,在控制输入数目少于外骨骼运动自由度数目的情况下,有效克服了欠驱动液压单腿助力外骨骼的多关节强耦合和模型不确定性的影响,对控制模型做前馈补偿来保证静态下的零跟踪误差,通过设计的鲁棒反馈来保证欠驱动液压助力外骨骼系统的动态特性和稳定性,解决了现有的外骨骼的控制方法系统鲁棒性能不强的技术问题,实现了助力外骨骼对人运动的良好跟随和助力效果,具有较强的应用价值。

5、该欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,其充分考虑穿戴者对外骨骼的控制作用,减少了液压缸的使用和能源的消耗,在人机间交互问题上有效、可靠,并具有对人体运动意图快速响应的特点。

6、该欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法,其将外骨骼穿戴者作为系统控制的参与者,在行走平面内,穿戴者可以保证整个系统的前后行走平衡,避免外骨骼发生摔倒。同时,该方法利用级联控制策略,设计上下层控制器,实现对欠驱动助力外骨骼的轨迹规划和轨迹跟踪,控制方法实现简单,易于工程实现,且控制灵活。

实施例2

本实施例提供了一种欠驱动液压单腿助力外骨骼,该外骨骼与实施例1中的欠驱动液压单腿助力外骨骼相似,区别在于本实施例中的实时控制器直接执行实施例1中的自适应鲁棒力控制方法,使外骨骼的各部分实现对人运动的良好跟随和助力效果。

实施例3

本实施例提供了一种欠驱动液压单腿助力外骨骼的自适应鲁棒控制装置,该装置应用实施例1中的欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法。其中,该控制装置包括初始化模块一、初始化模块二、初始化模块三、模型建立模块、参考位移获取模块、实际位移获取模块、伺服阀控制电压获取模块、转化模块以及跟随模块。

初始化模块一用于初始化实时控制器的采样周期,而且采样周期在10到20毫秒之间。初始化模块二用于将脚部1旋转至水平,将第一杆件2、第二杆件6以及背板15旋转至竖直位置,并初始化膝关节编码器3和髋关节编码器8且将驱动器数值调零。初始化模块三用于初始化力传感器18,将力传感器18的数值调零。

模型建立模块用于建立欠驱动液压单腿助力外骨骼的物理模型,并将物理模型转化为状态方程。其中,物理模型包括人机接口模型、外骨骼机械本体的运动模型、液压驱动器的动力学模型、穿戴者提供的完整约束模型。参考位移获取模块用于通过背部绑带16将力传感器18与穿戴者相连,并测定力传感器18上的作用力,通过上层控制器获得欠驱动液压单腿助力外骨骼的参考位移。实际位移获取模块用于通过膝关节编码器3和髋关节编码器8获得欠驱动液压单腿助力外骨骼的实际角度值,根据外骨骼系统的正运动学模型得到背板15接触处的实际位移。实际位移获取模块根据参考位移获取模块得到的参考位移,将实际位移和参考位移作为中层位置跟踪控制器的输入量,中层位置跟踪控制器的输出为欠驱动液压单腿助力外骨骼中膝关节和髋关节处的期望驱动力矩。

伺服阀控制电压获取模块用于通过所述膝关节液压缸上腔压力传感器、膝关节液压缸下腔压力传感器获得所述膝关节液压缸两腔的实际压力,进而得到所述膝关节液压缸的实际输出力;通过所述髋关节液压缸上腔压力传感器、髋关节液压缸下腔压力传感器获得所述髋关节液压缸两腔的实际压力,进而得到所述髋关节液压缸的实际输出力。所述伺服阀控制电压获取模块将实际位移获取模块得到的期望驱动力矩与液压缸输出力臂相除得到液压缸的期望输出力,再将期望输出力和液压缸实际输出力作为下层控制器的输入量,下层控制器的输出为液压驱动器的流量,并将流量转化为各个液压缸的电液伺服阀的控制电压。转化模块用于通过膝关节电液伺服阀13的放大板和髋关节电液伺服阀14的放大板将伺服阀控制电压获取模块中得到的电液伺服阀的控制电压转化为相应伺服阀的控制电流。跟随模块用于通过各个控制电流控制对应的膝关节电液伺服阀13和髋关节电液伺服阀14的阀芯开口位移,以控制液压缸两端的压力,推动各个液压缸运动,进而带动欠驱动液压单腿助力外骨骼的各个关节旋转,实现欠驱动液压单腿助力外骨骼的跟随运动。

实施例4

本实施例提供一种计算机终端,其包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序。处理器执行程序时实现实施例1的欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法的步骤。

实施例1的方法在应用时,可以软件的形式进行应用,如设计成独立运行的程序,安装在计算机终端上,计算机终端可以是电脑、智能手机、控制系统以及其他物联网设备等。实施例1的方法也可以设计成嵌入式运行的程序,安装在计算机终端上,如安装在单片机上。

实施例5

本实施例提供一种计算机可读存储介质,其上存储有计算机程序。程序被处理器执行时,实现实施例1的欠驱动液压单腿助力外骨骼的自适应鲁棒控制方法的步骤。

实施例1的方法在应用时,可以软件的形式进行应用,如设计成计算机可读存储介质可独立运行的程序,计算机可读存储介质可以是U盘,设计成U盾,通过U盘设计成通过外在触发启动整个方法的程序。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号