首页> 中国专利> 一种微流道结构、微流控芯片以及非均相反应方法

一种微流道结构、微流控芯片以及非均相反应方法

摘要

本申请提供了一种微流道结构、微流控芯片和非均相反应方法,微流道结构包括:连续外三角扩张聚焦单元、主动阀定量均匀控制单元和同轴流非匀相反应单元;连续外三角扩张聚焦单元包括:连续液相进样口、连续外三角扩张聚焦流道和连续液相流道;主动阀定量均匀控制单元包括:流道内置阀塞、气相进样口、气相通道和气体缓冲室;连续液相流道内壁设有内置阀塞;同轴流非匀相反应单元包括:反应液相进样口、反应液相流道和混合液相流道。本申请解决了如何设计一种微流控装置和操作工艺,使其能够在生成高分散液滴、颗粒的基础上,实现快速准确的定量控制进行精确高效非均相反应的技术问题。

著录项

  • 公开/公告号CN112755934A

    专利类型发明专利

  • 公开/公告日2021-05-07

    原文格式PDF

  • 申请/专利权人 广东工业大学;

    申请/专利号CN202110044986.2

  • 发明设计人 王超;蒋志强;

    申请日2021-01-13

  • 分类号B01J19/00(20060101);B01J4/02(20060101);B01J4/00(20060101);B01L3/00(20060101);

  • 代理机构11227 北京集佳知识产权代理有限公司;

  • 代理人黄忠

  • 地址 510060 广东省广州市越秀区东风东路729号大院

  • 入库时间 2023-06-19 10:55:46

说明书

技术领域

本申请涉及微流控技术领域,尤其涉及一种微流道结构、微流控芯片以及非均相反应方法。

背景技术

随着科技的发展,越来越多个领域(能源、免疫、生化等)需要使用微型化反应手段进行高分散微量精准的操作,微流控技术由于可以实现很多难以完成的微加工和微操作受到了广泛的关注。微流控是利用微管道和装置对微量颗粒(或样品)进行一些常规方法所无法实现的操控。它可以将生物检测、一系列生物化学反应以及各类样品制备集成到微小的芯片上进行特殊操作,在多领域都具有广泛的应用前景。

目前,常规的液滴或微球颗粒制备过程,主要是通过大尺度下的机械搅拌法,这样并不能精准筛选特定粒径尺寸的微球颗粒,且颗粒分散性低,参与反应的液滴(或颗粒)数量过多过少都不能保证反应的高效进行。可以通过特殊结构的微流控系统对液滴(或颗粒)进行均匀分散,定量控制后再进行有效、充分的反应,能有效地提高效率和实验成功率。

使用微流控生成(或包裹颗粒的液滴)的方法有很多,主动式需外加磁场电场;被动式通常采用迪恩流,无需能量输入,装置简便易维护、体积小。被动迪恩流由于其操作简单方便且均匀高效成为目前微流控聚焦液滴(或包裹颗粒的液滴)最有效的方式之一。通过被动迪恩流聚焦,在微通道中可以将紊乱散布的微球、液滴聚焦形成特定位置等间距排布的微球、液滴队列。虽然在一定程度上实现液滴(或颗粒)的分散,但是需要一定长度螺旋形弯流道才能达到目的,而且很难进行精准的定量控制。

因此,如何设计一种微流控装置和操作工艺,使其能够在生成高分散液滴、颗粒的基础上,实现快速准确的定量控制进行精确高效非均相反应,成为本领域技术亟待解决的问题之一。

发明内容

本申请的目的是提供一种微流道结构、微流控芯片以及非均相反应方法,用于解决如何设计一种微流控装置和操作工艺,使其能够在生成高分散液滴、颗粒的基础上,实现快速准确的定量控制进行精确高效非均相反应的技术问题。

为解决上述问题,本申请提供了一种微流道结构,包括:连续外三角扩张聚焦单元、主动阀定量均匀控制单元和同轴流非匀相反应单元;

所述连续外三角扩张聚焦单元包括:连续液相进样口、连续外三角扩张聚焦流道和连续液相流道;

所述连续液相进样口和所述连续外三角扩张聚焦流道进液端连通,所述连续液相流道进液端和所述连续外三角扩张聚焦流道的出液端连通;

所述主动阀定量均匀控制单元包括:流道内置阀塞、气相进样口、气相通道和气体缓冲室;

所述连续液相流道内壁设有所述内置阀塞,所述气相通道出气端与所述气体缓冲室连通,进气端与所述气相进样口连通,所述气体缓冲室与所述内置塞阀相对应;

所述同轴流非匀相反应单元包括:反应液相进样口、反应液相流道和混合液相流道;

所述反应液相流道进液端端与所述反应液相进样口连通,出液端端与所述混合液相流道的进液端相连通,所述混合液相流道出液端与混合相出样口连通;所述混合液相流道的进液端与所述连续液相流道连通。

进一步的,所述连续外三角扩张聚焦流道呈螺旋状;

所述连续外三角扩张聚焦流道的进液端位于所述螺旋状的中心;

所述连续外三角扩张聚焦流道的出液端位于所述螺旋状的外侧。

进一步的,所述主动阀定量均匀控制单元至少有一个。

进一步的,所述内置阀塞呈块状;

所述内置阀塞设置于所述连续液相流道内壁远离所述气体缓冲室一侧。

进一步的,所述气体缓冲室和所述连续液相流道的材质均为可变形材质,所述气体缓冲室在非充气状态下不产生形变,所述气体缓冲室在充气状态下扩张并与所述连续液相流道的一侧相抵接,是所述连续液相流道的内壁与所述内置阀塞充分接触,从而实现所述连续液相流道的阻断。

进一步的,所述连续液相流道、所述气相通道和反应液相流道横截面均呈矩形,且各种流道高度统一,且高度均为100μm~200μm。

本申请还提供了一种微流控芯片,包括芯片本体和上述的微流道结构;

所述微流道结构设置于所述芯片本体内。

进一步的,所述芯片本体包括基板和盖板;

所述微流道结构设置于所述基板的上表面;

所述盖板覆盖于所述基板的上表面,且所述连续液相进样口、所述气相进样口、所述反应液相进样口和所述混合相出样口均贯通于所述盖板。

进一步的,还包括输送装置和提取装置;

所述输送装置包括与所述连续液相进样口连通的第一输送泵、与所述气相进样口连通的第二输送泵、与所述反应液相进样口连通的第三输送泵;

所述提取装置和所述混合相出样口连通。

本申请还提供了一种非均相反应方法,应用于上述的微流道结构,包括步骤:

将微球悬浮液通过连续外三角扩张聚焦流道均匀、稳定分散并流入至连续液相通道;

通过所述主动阀定量均匀控制单元的气相通道调节所述连续液相通道的开闭;

将反应液通过反应液相流道进入混合液相流道,并与所述混合液相流道中的微球悬浮液混合反应。

与现有技术相比,本申请实施例的优点在于:

本申请提供了一种微流道结构,包括:连续外三角扩张聚焦单元、主动阀定量均匀控制单元和同轴流非匀相反应单元;所述连续外三角扩张聚焦单元包括:连续液相进样口、连续外三角扩张聚焦流道和连续液相流道;所述连续液相进样口和所述连续外三角扩张聚焦流道进液端连通,所述连续液相流道进液端和所述连续外三角扩张聚焦流道的出液端连通;所述主动阀定量均匀控制单元包括:流道内置阀塞、气相进样口、气相通道和气体缓冲室;所述连续液相流道内壁设有所述内置阀塞,所述气相通道出气端与所述气体缓冲室连通,进气端与所述气相进样口连通,所述气体缓冲室与所述内置塞阀相对应;所述同轴流非匀相反应单元包括:反应液相进样口、反应液相流道和混合液相流道;所述反应液相流道进液端端与所述反应液相进样口连通,出液端端与所述混合液相流道的进液端相连通,所述混合液相流道出液端与混合相出样口连通;所述混合液相流道的进液端与所述连续液相流道连通。

本申请中所提供的微流道结构,包括连续外三角扩张聚焦单元、主动阀定量均匀控制单元和同轴流非匀相反应单元,连续外三角扩张聚焦单元包括连续液相进样口、连续外三角扩张聚焦流道和连续液相流道,连续液相进样口用于导入样品(液滴或颗粒),样品通过连续外三角扩张聚焦流道的连续外三角结构进行层层分离,使得样品形成大小相同且等距分散排布的微球并进入连续液相通道,通过主动阀定量均匀控制单元控制连续液相通道的开闭程度,从而控制微球的流量,实现定量控制,并最后进入混合液相流道,通过在反应液相进样口导入反应液,并使反应液通过反应液相流道进入混合液相流道中与微球充分混和,从而实现实现快速准确的定量控制进行精确高效非均相反应,解决了如何设计一种微流控装置和操作工艺,使其能够在生成高分散液滴、颗粒的基础上,实现快速准确的定量控制进行精确高效非均相反应的技术问题。

附图说明

为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本申请实施例所提供的微流道结构的俯视图;

图2为本申请实施例所提供的连续外三角扩张聚焦流道的俯视图;

图3为申请实施例中的主动阀定量均匀控制单元的控制原理图;

图4为本申请实施例所提供的微流控芯片的整体结构图。

其中,附图标记为:连续外三角扩张聚焦单元1、主动阀定量均匀控制单元2、同轴流非均相反应单元3、连续液相进样口4、连续外三角扩张聚焦流道5、连续液相流道6、内置塞阀7、气相进样口8、气相通道9、气体缓冲室10、反应液相进样口11、反应液相流道12、混合液相流道13、基板14、盖板15、第一输送泵16、第二输送泵17、第三输送泵18、提取装置19、第一流道20、第二流道21、混合相出样口22。

具体实施方式

下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。

除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。

为了便于理解,请参阅图1至图3。

本申请实施例提供了一种微流道结构,其特征在于,包括:连续外三角扩张聚焦单元1、主动阀定量均匀控制单元2和同轴流非匀相反应单元;

连续外三角扩张聚焦单元1包括:连续液相进样口4、连续外三角扩张聚焦流道5和连续液相流道6;

连续液相进样口4和连续外三角扩张聚焦流道5进液端连通,连续液相流道6进液端和连续外三角扩张聚焦流道5的出液端连通;

主动阀定量均匀控制单元2包括:流道内置阀塞7、气相进样口8、气相通道9和气体缓冲室10;

连续液相流道6内壁设有内置阀塞7,气相通道9出气端与气体缓冲室10连通,进气端与气相进样口8连通,气体缓冲室10与内置塞阀相对应;

同轴流非匀相反应单元包括:反应液相进样口11、反应液相流道12和混合液相流道13;

反应液相流道12进液端端与反应液相进样口11连通,出液端端与混合液相流道13的进液端相连通,混合液相流道13出液端与混合相出样口22连通;混合液相流道13的进液端与连续液相流道6连通。

需要说明的是,连续外三角扩张聚焦流道5内侧壁为连续的锯齿形,俯视角度类似于多个连续的三角形,且该三角形优选为等边三角形,从而实现等距地进行分散样品,形成更加均匀的微球颗粒,连续外三角扩张聚焦流道5最窄处和连续液相流道6横截面相同,从而可正好进行对接,连续外三角扩张聚焦流道5的底面优选为光滑壁面,从而有利于样品的流动,对应的连续液相流道6的壁面也可优选为光滑壁面。

优选的,为避免气相通道9与连续液相流道6壁面直接接触导致连续液相流道6壁面接触点压力过大而损坏壁面,设置气体缓冲室10隔开气相通道9和液相流道壁,缓冲室与液相流道壁面保持一定距离。

所述同轴流非均相反应单元3由经过主动阀定量均匀控制后的高分散的液滴(或微球)连续液相流道6末端、反应液相进样流道和混合液相流道13组成。其中,反应液相进样口11和反应液相流道12均优选为两个,一个反应液相进样口11和一个反应液相流道12相匹配,从而可实现两种反应液的同时加入,使得微流道结构的功能性更强,优选的,反应液相流道12包括第一流道20和第二流道21,第一流道20的一端与第二流道21的一端连通,第一流道20的另一端与反应液相进样口11连通,第二流道21的另一端与混合液相流道13的进液端连通,第一流道20和第二流道21为同径管道,第一流道20呈水平走向,第二流道21的走向与第一流道20呈45°夹角。混合液相流道13的口径大于连续液相流道6的口径以及反应液相流道12的口径,使得混合液相流道13可更好地同时容纳微球以及多种反应液。

本申请中所提供的微流道结构,包括连续外三角扩张聚焦单元1、主动阀定量均匀控制单元2和同轴流非匀相反应单元,连续外三角扩张聚焦单元1包括连续液相进样口4、连续外三角扩张聚焦流道5和连续液相流道6,连续液相进样口4用于导入样品(液滴或颗粒),样品通过连续外三角扩张聚焦流道5的连续外三角结构进行层层分离,使得样品形成大小相同且等距分散排布的微球并进入连续液相通道,通过主动阀定量均匀控制单元2控制连续液相通道的开闭程度,从而控制微球的流量,实现定量控制,并最后进入混合液相流道13,通过在反应液相进样口11导入反应液,并使反应液通过反应液相流道12进入混合液相流道13中与微球充分混和,从而实现实现快速准确的定量控制进行精确高效非均相反应,解决了如何设计一种微流控装置和操作工艺,使其能够在生成高分散液滴、颗粒的基础上,实现快速准确的定量控制进行精确高效非均相反应的技术问题。

作为进一步的改进,本申请实施例所提供的微流道结构的连续外三角扩张聚焦流道5呈螺旋状;

连续外三角扩张聚焦流道5的进液端位于螺旋状的中心;

连续外三角扩张聚焦流道5的出液端位于螺旋状的外侧。

具体来说,采用螺旋状结构有利于在尽量小的占用面积的情况下降连续外三角扩张流道的长度最大话,从而使其对样品的分离分散效果更优。

作为进一步的改进,本申请实施例所提供的微流道结构的主动阀定量均匀控制单元2至少有一个。优选为两个,通过设置两个主动发定量均匀控制单元,有利于其对连续液相流道6中的流量进行分级控制,使连续液相流道6中的流量逐级减小,从而有利于更加精准地对其最终流量进行控制。

作为进一步的改进,本申请实施例所提供的内置阀塞7呈块状;

内置阀塞7设置于连续液相流道6内壁远离气体缓冲室10一侧。优选的,内置阀塞7呈长方体状。

作为进一步的改进,本申请实施例所提供的气体缓冲室10和连续液相流道6的材质均为可变形材质,气体缓冲室10在非充气状态下不产生形变,气体缓冲室10在充气状态下扩张并与连续液相流道6的一侧相抵接,是连续液相流道6的内壁与内置阀塞7充分接触,从而实现连续液相流道6的阻断。具体的,气相通道9中的气源来自于气相进样口8导入的气体,气相进样口8可外接气泵等设备。

作为进一步的改进,本申请实施例所提供的连续液相流道6、气相通道9和反应液相流道12横截面均呈矩形,且各种流道高度统一,且高度均为100μm~200μm。

优选的,连续外三角扩张聚焦流道5的总长度为200mm~2000mm;连续外三角扩张聚焦流道5的宽度为100μm~200μm;连续外三角扩张聚焦流道5的相邻两流道的间距为100μm~400μm;连续外三角扩张聚焦流道5的最内侧流道的曲率半径为20mm~50mm。

优选地,连续外三角扩张聚焦流道5的三角形壁面与下光滑壁面宽度为100μm~300μm,其三角形流道壁面结构为等边三角形且边长为50μm~200μm;流道的总长度为500mm~5000mm,相邻两涡旋聚焦弯道之间的距离为200μm~500μm,最内侧流道曲率半径为10mm~100mm;

优选地,气体缓冲室10并和液相流道壁的距离为50μm~200μm;

优选地,混合液相流道13将连续液相流道6末端、反应液相进样流道包裹形成同轴流,反应液相进样流道宽度为50μm~200μm,连续液相流道6末端的宽度为100μm~200μm,以及混合液相流道13宽度为200μm~400μm;

优选地,连续气相通道9宽度为40μm~120μm。

请参阅图1至图4,本申请还提供了一种微流控芯片,其特征在于,包括芯片本体和上述实施例中的微流道结构;微流道结构设置于芯片本体内。

有选的,芯片本体的材料优选为透明材质的PDMS作为芯片材料,可以直接使用显微镜进行观察、拍照记录。

作为进一步的改进,本申请实施例所提供的微流控芯片的芯片本体包括基板14和盖板15;微流道结构设置于基板14的上表面;盖板15覆盖于基板14的上表面,且连续液相进样口4、气相进样口8、反应液相进样口11和混合相出样口22均贯通于盖板15。

作为进一步的改进,本申请实施例所提供的微流控芯片还包括输送装置和提取装置19;输送装置包括与连续液相进样口4连通的第一输送泵16、与气相进样口8连通的第二输送泵17、与反应液相进样口11连通的第三输送泵18;提取装置19和混合相出样口22连通。其中,第一输送泵16用于输送样品进入连续液相进样口4;第二输送泵17用于输送起源进入气相进样口8;第三输送泵18用于输送反应液进入反应液相进样口11,具体的,由于反应液相进样口11和反应液相流道12均优选为两个,一个反应液相进样口11和一个反应液相流道12相匹配,因此第三输送泵18可优选为两个,每个第三输送泵18可分别与一个反应液相进样口11连通,用于往各自对应的反应液相进样口11输送相同或不同的反应液。

本申请所提供的微流控芯片具有以下优点:

1、装置结构微型化。整个芯片装置面积小,比表面积大。输送装置和提取装置19的协调运作,可实现高通量。

2、高分散稳定性。连续外三角扩张聚焦流道5更有利于被动迪恩流惯性聚焦,增加了颗粒分散稳定性。

3、定量控制精准。经过聚焦弯道的微球拥有均匀的高度以及间距值,通过调节气动泵可以快速、准确的控制连续液相中颗粒(或液滴)数量,实现精准可控的定量控制。

4、易于观察。该装置可以选用透明材质的PDMS作为芯片材料,可以直接使用显微镜进行观察、拍照记录。

5、适应领域广。由于气相通道9和液相流道之间隔开,气体不会对反应液中的颗粒发生任何反应,适于用许多非均相反应。

6、成本低廉。操作过程中只需要更少的颗粒和反应液就能达到常规操作难以达到的均匀、充分反应。

本申请还提供了一种非均相反应方法,应用于权利要求1-6任一项的微流道结构,其特征在于,包括步骤:

S1、将微球悬浮液通过连续外三角扩张聚焦流道5均匀、稳定分散并流入至连续液相通道;

S2、通过主动阀定量均匀控制单元的气相通道9调节连续液相通道的开闭,精准地控制流入同轴流非匀相反应单元的微球悬浮液中的微球数量;

S3、将反应液通过反应液相流道12进入混合液相流道13,并与混合液相流道13中的微球悬浮液混合反应。

以上为本申请所提供的实施例一,以下为本申请所提供的实施例二,具体为:

芯片本体材质为PDMS,其中连续外三角扩张聚焦流道5长度为1000mm,相邻两涡旋聚焦流道的间距为150μm,最内侧流道曲率半径为20mm,气相流道、反应液相流道12宽度为50μm,连续液相流道6宽度为100μm,混合液相流道13宽度为200μm,气体缓冲室10和液相流道壁保持一定距离,为40μm,所有流道高度为100μm。选用氮气作为气相,含有粒径30μm聚苯乙烯微球的50%酒精溶液作为样品液,去离子水溶液作为反应样品液。使用聚四氟乙烯毛细软管将流体注入芯片本体,并利用第二输送泵17控制气相流体。样品液流量为30μl/min,气相流量为50μl/min,反应液相流量为30μl/min.调节气相和连续相液相流量可以得到各种定量微球含量的液相,通过同轴流与反应液流体混合完成定量非均相反应。

以上为本申请所提供的实施例二,以下为本申请所提供的实施例三,具体为:

芯片本体材质为PDMS,其中连续外三角扩张聚焦流道5长度为1100mm,相邻两涡旋聚焦流道的间距为130μm,最内侧流道曲率半径为15mm,气相流道、反应液相流道12宽度为60μm,连续液相流道6宽度为100μm,混合液相流道13宽度为180μm,气体缓冲室10和液相流道壁保持一定距离,为50μm,所有流道高度为100μm。选用氮气作为气相,含有粒径50μm改性二氧化钛溶液作为样品液,去离子水溶液作为反应样品液。使用聚四氟乙烯毛细软管将流体注入芯片,并利用第二输送泵17泵控制气相流体。样品液流量为20μl/min,气相流量为50μl/min,反应液相流量为20μl/min.调节气相和连续相液相流量可以得到各种定量微球含量的液相,通过同轴流与反应液流体混合完成定量非均相反应。

以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号