首页> 中国专利> 一种长距离输水明渠水质模拟预测方法及系统

一种长距离输水明渠水质模拟预测方法及系统

摘要

本发明涉及一种长距离输水明渠水质模拟预测方法及系统。该方法包括:根据输水明渠的走向,沿渠布设多个干湿沉降监测设备,并获取大气沉降物质量以及降雨量;根据大气沉降物质量确定干沉降中污染物源强;根据降雨量确定湿沉降中污染物源强;基于干沉降中污染物源强以及湿沉降中污染物源强构建考虑干湿沉降影响的长距离输水明渠水质模型;对长距离输水明渠水质模型进行离散处理,确定差分格式表达的长距离输水明渠水质模型;获取输水明渠的实测资料,将实测资料作为差分格式表达的长距离输水明渠水质模型的边界条件,并根据边界条件求解差分格式表达的长距离输水明渠水质模型,确定输水明渠的水质。本发明能够准确评估大型输水明渠水质。

著录项

  • 公开/公告号CN112685688A

    专利类型发明专利

  • 公开/公告日2021-04-20

    原文格式PDF

  • 申请/专利权人 长江水资源保护科学研究所;

    申请/专利号CN202110037288.X

  • 申请日2021-01-12

  • 分类号G06F17/11(20060101);G06F17/13(20060101);G06F30/20(20200101);G06Q10/04(20120101);G06Q50/06(20120101);G06F111/10(20200101);G06F113/08(20200101);

  • 代理机构11569 北京高沃律师事务所;

  • 代理人杜阳阳

  • 地址 430051 湖北省武汉市汉阳区琴台大道515号

  • 入库时间 2023-06-19 10:41:48

说明书

技术领域

本发明涉及河流水质保护研究领域,特别是涉及一种长距离输水明渠水质模拟预测方法及系统。

背景技术

输水水质保护的成功与否决定着调水工程的成败,特别是作为生活饮用水水源的调水工程,从调水水源到输水线路,再到分水渠的水质保护十分重要。一般情况下,采用明渠输水的调水工程多采用立体交叉模式,使输水明渠与本地水系不发生交换,不与本地污染源发生直接联系,其目的也是为了确保输水水质。但输水明渠为开放式结构,必然与大气和外界产生联系,因此水质就会受到大气干湿沉降作用。近几年的实践表明,作为一个相对独立、对水质要求十分严格的输水系统,其水质受干湿沉降的影响不容忽视,以南水北调中线为例,总干渠多数水质指标可满足《地表水环境质量标准》(GB3838-2002)的Ⅰ类水质标准,但从各断面的水质监测结果发现,总干渠的部分水质指标由南向北存在浓度增加的趋势,如总氮和总磷。在总干渠封闭式管理条件下,排除意外事件造成的影响,大气干湿沉降在水体表面形成浮灰,造成总干渠底泥累积,是总干渠水体潜在的外部污染源,因此开展输水明渠沿线大气干湿沉降研究是有必要的。而在以往的工程论证和管理实践中,并未将大气干湿沉降影响水质的问题作为一个主要研究内容,因此也未能建立一种考虑大气干湿沉降影响的明渠水质模拟预测数学模型,无法准确评估出大型输水明渠水质。

发明内容

本发明的目的是提供一种长距离输水明渠水质模拟预测方法及系统,以解决无法准确评估出大型输水明渠水质的问题。

为实现上述目的,本发明提供了如下方案:

一种长距离输水明渠水质模拟预测方法,包括:

根据输水明渠的走向,沿渠布设多个干湿沉降监测设备,并获取所述干湿沉降监测设备采集的大气沉降物质量以及降雨量;

根据所述大气沉降物质量确定干沉降中污染物源强;

根据所述降雨量确定湿沉降中污染物源强;

基于所述干沉降中污染物源强以及所述湿沉降中污染物源强构建考虑干湿沉降影响的长距离输水明渠水质模型;所述长距离输水明渠水质模型包括水流运动方程以及污染物运输方程;所述水流运动方程包括水流连续性方程以及水流动量方程;

对所述长距离输水明渠水质模型进行离散处理,确定差分格式表达的长距离输水明渠水质模型;所述差分格式表达的长距离输水明渠水质模型包括差分格式表达的水流连续性方程、差分格式表达的水流动量方程以及差分格式表达的污染物运输方程;

获取所述输水明渠的实测资料,将所述实测资料作为所述差分格式表达的长距离输水明渠水质模型的边界条件,并根据所述边界条件求解所述差分格式表达的长距离输水明渠水质模型,确定所述输水明渠的水质;所述实测资料包括模拟明渠上下游边界处流量、水位以及水质;所述输水明渠的水质为输水明渠内的流量、水位、过水断面面积以及各个断面任一污染物的浓度。

可选的,所述根据所述大气沉降物质量确定干沉降中污染物源强,具体包括:

根据公式SSG=SSGC×V

可选的,所述根据所述降雨量确定湿沉降中污染物源强,具体包括:

根据公式SSS=SSP/1000.0×B×DX×SSSC/86400确定湿沉降中污染物源强;其中,SSS为湿沉降降尘中污染物源强;SSP为日降雨量;B为明渠水面宽度;DX为明渠微段长度;SSSC为试验分析得出雨水中污染物的浓度。

可选的,所述水流连续性方程为

所述水流动量方程为:

所述污染物运输方程为:

可选的,所述对所述长距离输水明渠水质模型进行离散处理,确定差分格式表达的长距离输水明渠水质模型,具体包括:

利用Preissmann四点隐式差分格式对所述水流运动方程进行离散处理,确定所述差分格式表达的水流连续性方程、所述差分格式表达的水流动量方程以及所述差分格式表达的污染物运输方程;

所述差分格式表达的水流连续性方程为

所述差分格式表达的水流动量方程为

所述差分格式表达的污染物运输方程为

可选的,所述获取所述输水明渠的实测资料,将所述实测资料作为所述差分格式表达的长距离输水明渠水质模型的边界条件,并根据所述边界条件求解所述差分格式表达的长距离输水明渠水质模型,确定所述输水明渠的水质,具体包括:

求解所述差分格式表达的水流连续性方程以及所述差分格式表达的水流动量方程,确定流量、水位以及过水断面面积;所述边界条件为A

当模拟河流上游为水位边界条件时,建立追赶方程:

当被模拟河流上游为流量边界条件时,建立追赶方程:

求解所述差分格式表达的污染物运输方程的代数方程,确定各个断面任一污染物的浓度;所述差分格式表达的污染物运输方程的代数方程为:

一种长距离输水明渠水质模拟预测系统,包括:

大气沉降物质量以及降雨量采集模块,用于根据输水明渠的走向,沿渠布设多个干湿沉降监测设备,并获取所述干湿沉降监测设备采集的大气沉降物质量以及降雨量;

干沉降中污染物源强确定模块,用于根据所述大气沉降物质量确定干沉降中污染物源强;

湿沉降中污染物源强确定模块,用于根据所述降雨量确定湿沉降中污染物源强;

长距离输水明渠水质模型构建模块,用于基于所述干沉降中污染物源强以及所述湿沉降中污染物源强构建考虑干湿沉降影响的长距离输水明渠水质模型;所述长距离输水明渠水质模型包括水流运动方程以及污染物运输方程;所述水流运动方程包括水流连续性方程以及水流动量方程;

离散处理模块,用于对所述长距离输水明渠水质模型进行离散处理,确定差分格式表达的长距离输水明渠水质模型;所述差分格式表达的长距离输水明渠水质模型包括差分格式表达的水流连续性方程、差分格式表达的水流动量方程以及差分格式表达的污染物运输方程;

水质确定模块,用于获取所述输水明渠的实测资料,将所述实测资料作为所述差分格式表达的长距离输水明渠水质模型的边界条件,并根据所述边界条件求解所述差分格式表达的长距离输水明渠水质模型,确定所述输水明渠的水质;所述实测资料包括模拟明渠上下游边界处流量、水位以及水质;所述输水明渠的水质为输水明渠内的流量、水位、过水断面面积以及各个断面任一污染物的浓度。

可选的,所述干沉降中污染物源强确定模块具体包括:

干沉降中污染物源强确定单元,用于根据公式SSG=SSGC×V

可选的,所述湿沉降中污染物源强确定模块具体包括:

湿沉降中污染物源强确定单元,用于根据公式SSS=SSP/1000.0×B×DX×SSSC/86400确定湿沉降中污染物源强;其中,SSS为湿沉降降尘中污染物源强;SSP为日降雨量;B为明渠水面宽度;DX为明渠微段长度;SSSC为试验分析得出雨水中污染物的浓度。

可选的,所述水流连续性方程为

所述水流动量方程为:

所述污染物运输方程为:

根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明提供了一种长距离输水明渠水质模拟预测方法及系统,以大气干湿沉降监测为基础,构建考虑干湿沉降影响的长距离输水明渠水质模型,根据该长距离输水明渠水质模型准确评估大型输水明渠水质。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明所提供的长距离输水明渠水质模拟预测方法流程图;

图2为典型渠段物质平衡示意图;

图3为水动力方程离散格式示意图;

图4为污染物输运方程离散格式示意图;

图5为本发明所提供的长距离输水明渠水质模拟预测结构流程图;

图6为南阳断面不同情景总氮浓度示意图;

图7为叶县断面不同情景总氮浓度示意图;

图8为郏县断面不同情景总氮浓度示意图;

图9为禹州断面不同情景总氮浓度示意图;

图10为某一时刻污染物浓度的沿程变化示意图;

图11为南阳断面不同情景总磷浓度示意图;

图12为叶县断面不同情景总磷浓度示意图;

图13为郏县断面不同情景总磷浓度示意图;

图14为禹州断面不同情景总磷浓度示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明的目的是提供一种长距离输水明渠水质模拟预测方法及系统,能够准确评估大型输水明渠水质。

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

图1为本发明所提供的长距离输水明渠水质模拟预测方法流程图,如图1所示,一种长距离输水明渠水质模拟预测方法,包括:

步骤101:根据输水明渠的走向,沿渠布设多个干湿沉降监测设备,并获取所述干湿沉降监测设备采集的大气沉降物质量以及降雨量。

干湿沉降监测:根据输水明渠的走向,沿渠布置具有代表性的干湿沉降监测设备,一般可按照行政区划布置,和气象站或输水明渠管理站房结合布置。其中输水明渠起点、终点必须设置一个监测点;中间可根据渠道距离、形状变化设置1个或多个验证点位,同时在有分水口、退水闸、倒虹吸、隧洞等特征点位布设监测点。其中降雨量和降尘量可采用GH-200型降水降尘自动采样器,按照《降雨自动采样器技术要求及检测方法》(HJ/T174-2005)规定的操作方法实施监测。通过监测,获得固定时段干沉降的质量Mg(单位:kg),固定时段的降雨量SSP(单位:mm),用于(3)、(4)描述干、湿沉降源强。

干湿沉降环境化学分析:干沉降化学分析中需要按固定周期连续监测分析大气降尘质量Mg,然后用纯净水浸泡降尘物,测试分析出溶液中污染物浓度。湿沉降需分析每次降雨后记录降雨量SSP,取样品保存于冰箱后测定其中主要污染物浓度,测定频次可根据大气降尘量和降雨量适当调整,但为保证精度应每半月不少于1次。监测的污染物指标为常规指标输水明渠敏感水质指标,一般以化学需氧量、氨氮、总磷、总氮等常规指标,Cl

步骤102:根据所述大气沉降物质量确定干沉降中污染物源强。

大气干沉降源强刻画方法:

干沉降中的污染物是由于总干渠接收的粉尘经水溶解后,吸附在粉尘上的污染物重新释放至输水明渠水体中。每个监测点采用内径300mm圆筒收集干沉降粉尘,每两周收集1次,记录质量Mg,然后用500mL纯净水溶解收集到的降尘,充分搅拌后静置,测量上层溶液的污染物(以总氮、总磷为代表)浓度,用此表征大气降尘中总氮、总磷的污染物浓度。然后可以通过如下公式换算干沉降中污染物源强:

单位面积、单位时间的源强可描述为:

SSG=SSGC×V

那么单个渠段内的污染源强可描述为:

SSG=SSGC×0.5/1000000/A

其中,SSG为干沉降降尘中污染物源强,g/s;SSGC为试验获得该站点干沉降溶出液某污染物的浓度,mg/L;V

步骤103:根据所述降雨量确定湿沉降中污染物源强。

大气湿沉降源强刻画方法:

湿沉降中的污染过程是大气中的雨水溶解污染物以后,降雨时雨水直接落入总干渠中而形成的污染。根据现场监测站的降雨数据,每个测站代表一个渠段,每个测站的湿沉降强度代表该渠段的湿沉降强度。可以通过如下公式换算湿沉降中的污染物源强:

SSS=SSP/1000.0×B×DX×SSSC/86400 (3)

其中,SSS为湿沉降降尘中污染物源强,g/s;SSP为该渠段代表气象站的日降雨量,mm,需转换成m;B为明渠水面宽度,有水动力模型计算得出,m;DX为明渠微段长度,m;与B一起计算该微段能够接收降雨的水面面积;SSSC为试验分析得出雨水中污染物的浓度,mg/L。

步骤104:基于所述干沉降中污染物源强以及所述湿沉降中污染物源强构建考虑干湿沉降影响的长距离输水明渠水质模型;所述长距离输水明渠水质模型包括水流运动方程以及污染物运输方程;所述水流运动方程包括水流连续性方程以及水流动量方程。

建立可考虑干湿沉降影响的长距离输水明渠水质模型控制方程。输水明渠中水流运动方程采用一维非恒定流控制方程组,所述一维非恒定流控制方程组由水流连续性方程和水流动量方程组成;所述污染物输运方程采用一维对流扩散方程;

所述水流连续性方程:

所述水流动量方程为:

所述一维污染物输运方程为:

上述式(1)、(2)、(3)中,Q为流量(m

步骤105:对所述长距离输水明渠水质模型进行离散处理,确定差分格式表达的长距离输水明渠水质模型;所述差分格式表达的长距离输水明渠水质模型包括差分格式表达的水流连续性方程、差分格式表达的水流动量方程以及差分格式表达的污染物运输方程。

图2为考虑大气干湿沉降作用的明渠污染物平衡示意图,如图2所示。

河流衰减型污染物模拟方法,其中,所述水流运动方程的离散格式采用Preissmann四点隐式差分格式(空间和时间离散意义如图3所示),任意函数(用f来表示)及其时间和空间导数的离散公式为:

将式(7)~(9)带入上述式(4)~(5),并整理,得到水流运动方程的差分表达式:

其中,

所述河流衰减型污染物模拟方法,其中,所述污染物输运方程采用隐式有限差分格式进行离散,空间和时间离散意义如图4所示,其中,Δx

步骤106:获取所述输水明渠的实测资料,将所述实测资料作为所述差分格式表达的长距离输水明渠水质模型的边界条件,并根据所述边界条件求解所述差分格式表达的长距离输水明渠水质模型,确定所述输水明渠的水质;所述实测资料包括模拟明渠上下游边界处流量、水位以及水质等资料;所述输水明渠的水质为输水明渠内的流量、水位、过水断面面积以及各个断面任一污染物的浓度。

代数方程组求解方法:

首先求解(10)~(11)形成的代数方程组,对于范围界定的输水明渠而言,起始断面或终止断面均设有水位站或水文站,其实测资料作为模型求解的边界条件,边界条件作为水位过程、流量过程或水位流量关系过程,统一写为:

A

当模拟河流上游为水位边界条件时,建立如下追赶方程:

式(14)中,L1为断面编号,

其中,Y

当被模拟河流上游为流量边界条件时,建立如下追赶方程:

式(15)中

P

其中,Y

然后求解(12)整理得到污染物输运方程离散后的代数方程组,对于范围界定的输水明渠而言,如前述干湿沉降监测时,必须在起点和终点设置监测点,便于获得模型的边界条件:

其中,

当j=2时,带入上游边界条件

当j=3,…,N-1时,

当j=N时,用传递边界作为下游的边界条件

则第N个方程为

AA'

BB'

形成了一个由N-1个方程组成的三对角矩阵,所述对角矩阵采用托马斯法求解:

即当j=2时,

当j=3,…,N-1时,

当j=N时,

GG

本发明首先安装大气干沉降和降雨量监测设施,开展输水明渠沿线大气干湿沉降水质监测分析,按照固定周期监测分析干沉降溶液和湿沉降(雨水)中相关污染物的浓度,作为模拟计算的输入数据。其次构建数学模型,采用有限差分法对数学模型进行离散,巧妙地运用追赶法对代数方程组进行求解,形成一种考虑大气干湿沉降影响的长距离输水明渠水质模型,并在FORTRAN编程平台上实施模型通用化。

图5为本发明所提供的长距离输水明渠水质模拟预测系统结构图,如图5所示,一种长距离输水明渠水质模拟预测系统,包括:

大气沉降物质量以及降雨量采集模块501,用于根据输水明渠的走向,沿渠布设多个干湿沉降监测设备,并获取所述干湿沉降监测设备采集的大气沉降物质量以及降雨量。

干沉降中污染物源强确定模块502,用于根据所述大气沉降物质量确定干沉降中污染物源强。

所述干沉降中污染物源强确定模块502具体包括:干沉降中污染物源强确定单元,用于根据公式SSG=SSGC×V

湿沉降中污染物源强确定模块503,用于根据所述降雨量确定湿沉降中污染物源强。

所述湿沉降中污染物源强确定模块503具体包括:湿沉降中污染物源强确定单元,用于根据公式SSS=SSP/1000.0×B×DX×SSSC/86400确定湿沉降中污染物源强;其中,SSS为湿沉降降尘中污染物源强;SSP为日降雨量;B为明渠水面宽度;DX为明渠微段长度;SSSC为试验分析得出雨水中污染物的浓度。

长距离输水明渠水质模型构建模块504,用于基于所述干沉降中污染物源强以及所述湿沉降中污染物源强构建考虑干湿沉降影响的长距离输水明渠水质模型;所述长距离输水明渠水质模型包括水流运动方程以及污染物运输方程;所述水流运动方程包括水流连续性方程以及水流动量方程。

所述水流连续性方程为

所述水流动量方程为:

离散处理模块505,用于对所述长距离输水明渠水质模型进行离散处理,确定差分格式表达的长距离输水明渠水质模型;所述差分格式表达的长距离输水明渠水质模型包括差分格式表达的水流连续性方程、差分格式表达的水流动量方程以及差分格式表达的污染物运输方程。

水质确定模块506,用于获取所述输水明渠的实测资料,将所述实测资料作为所述差分格式表达的长距离输水明渠水质模型的边界条件,并根据所述边界条件求解所述差分格式表达的长距离输水明渠水质模型,确定所述输水明渠的水质;所述实测资料包括模拟明渠上下游边界处流量、水位以及水质;所述输水明渠的水质为输水明渠内的流量、水位、过水断面面积以及各个断面任一污染物的浓度。

以南水北调中线输水总干渠河南段为例,模拟陶岔~董岗南共计449km的明渠段,共计划分816个代表(计算)断面,陶岔、郑州两站的实测数据作为边界条件,中间南阳、叶县、郏县、禹州四站同步开展了干湿沉降监测、分析。分(1)不考虑沉降;(2)只考虑湿沉降;(3)考虑干、湿沉降三种情形进行总氮和总磷浓度模拟。

南阳、叶县、郏县、禹州四个断面的总氮浓度变化见图6~图10,可以看出,如果考虑沉降的影响,总氮浓度呈现出微小增加,而且增加值随着渠道距离越长,影响越明显的规律,但总体影响在10%以内。湿沉降发生在雨季,因此,降雨期间干渠污染物浓度会波动增加。

南阳、叶县、郏县、禹州四个断面的总磷浓度变化见图11~图14,可以看出,如果考虑沉降的影响,总磷浓度也呈现出微小增加,但干湿沉降中总总磷浓度角度,因此干湿沉降对总磷浓度的影响程度有限。

综上,基于本发明所提供的方法及系统,考虑大气干湿沉降影响的长距离输水明渠水质模拟预测模型工作流程如下:

1)根据输水明渠特点,在明渠起点、终点和中间适宜位置设置代表性水文、水质和干湿沉降监测站点,开展干沉降量监测和降雨量监测,获得Mg和SSP。

2)开展水文、水质和干湿沉降监测分析工作。水文、水质一般为例行监测,可直接向输水明渠运行管理部门获取。干湿沉降监测主要监测干沉降粉尘质量、500mL纯净水溶液浸泡粉尘上层清液主要污染物浓度SSGC;降雨量SSP,雨水中主要污染物浓度SSSC等参数,由此计算出干湿沉降源强SS。

3)设置模型相关的计算参数即包括曼宁糙率参数n、综合衰减系数K和纵向弥散系数E,输入地形资料和本时步的水动力和污染物浓度边界条件;

4)根据河网地形资料,给定河道初始水位值,初始流量值设为0;

5)根据初始条件或上一时步的水位流量值,求代数方程(14)或(15)中系数P、V、S、T,实现“追赶”过程;

6)根据下游边界条件,即末断面水位Z

7)根据干湿沉降源强刻画方法,带入SS作为计算跳进,计算出式(16)中DD系数。

8)根据水流方程计算得到的流量Q、水位Z、过水断面面积A,进一步按照代数方程组(16)的求解说明,计算出各断面某种污染物浓度C;

9)时间层向前推进一步,重复步骤3)~5),直到模拟完成所有时段,可得出某种污染物浓度的时间变化过程和空间变化过程。

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号