首页> 中国专利> 具有可控的中间电路中心点电压的充电设备以及具有这种充电设备的驱动系统

具有可控的中间电路中心点电压的充电设备以及具有这种充电设备的驱动系统

摘要

本发明涉及一种用于给设有电驱动马达(2)的机动车的电池(7)充电的充电设备。该充电设备具有电感和驱动变流器(3),所述驱动变流器在机动车的驱动运行中转换用于所述电驱动马达(2)的所述电池(7)的直流电压,并且所述驱动变流器具有中间电路中心点(5),其中,所述电感与所述驱动变流器(3)一起在所述电池(7)的充电运行中用作升压转换器。为了提供完整的和成本低廉的充电设备,所述充电设备具有可控的开关装置(9),所述开关装置设计为,使得所述中间电路中心点(5)充电和/或放电到一个电压。

著录项

  • 公开/公告号CN112512861A

    专利类型发明专利

  • 公开/公告日2021-03-16

    原文格式PDF

  • 申请/专利权人 汉拿电驱动股份有限公司;

    申请/专利号CN201980051340.8

  • 发明设计人 卡特娅·施泰格特;

    申请日2019-08-12

  • 分类号B60L53/24(20060101);B60L53/22(20060101);B60L50/51(20060101);H02M3/158(20060101);H02M7/219(20060101);H02P27/06(20060101);

  • 代理机构51258 成都超凡明远知识产权代理有限公司;

  • 代理人王晖;李楠

  • 地址 列支敦士登埃申市

  • 入库时间 2023-06-19 10:14:56

说明书

本发明涉及一种用于给设计有电驱动马达的机动车的电池充电的充电设备以及一种具有这种充电设备的电驱动系统。

为了给电动汽车充电,使用不同的充电策略。通过家用插座使用交流电的充电方式几乎无处不在,但这种方式仅提供低于5千瓦的低充电功率。相比之下,在直流电源(DC充电)上进行快速充电时,例如通过特殊充电站,可以实现更高的功率(50kW及以上)输出。然而,当充电桩的可用电压电平,通常为400伏DC低于车辆电池的电压电平(中期为800伏DC)时,需要对充电电压进行调整。

为了调整电压电平,可以使用升压转换器(也被称为“升压斩波器”,“boost-converter”或者“step-up-converter”)作为独立的结构单元。但是还可能的是,使用牵引马达或电动马达中已经存在的逆变器(在英语中也被称为“Inverter”)作为升压转换器,用来进行直流电压转换。为了不必在逆变器中使用用于升压的附加电感,已知可行的是,牵引马达的绕组用作充电电感:

DE 10 2016 209 905 A1示出了一种用于电动车辆的快速充电单元,其中,牵引马达的逆变器结合马达线圈用作升压转换器。

DE 10 2009 052 680 A1示出了在逆变器之前连接降压转换器。

除了2级逆变器之外,对于电动车辆也存在具有第三电压电平的三电平逆变器。尤其在具有NPC拓扑(中点钳位)的三电平逆变器中,施加在半桥的开关器件上的电压由此降低到额定电压的一半。相应地,这种额定电压通常仅针对该电压值设计。

DE 10 2016 218 304 B3示出了一种用于电动车辆的NPC配置(“neutral pointclamped”的缩写)中的三电平逆变器,其在快速充电运行中可以作为升压转换器运行,其中,可以使用外部电感作为用于升压的电感。

在三电平逆变器作为升压转换器运行时,必须避免开关器件达到满额的额定电压。由于拓扑,禁止特定的开关状态,其使得某些开关器件被错开地切换:首先必须切换内部的开关器件,然后必须切换外部的开关器件。在此时间内,电流流入中间电路(或其电容)的中心点,并且进行不希望地充,且随着每个开关周期继续该充电过程。如果中间电路中心点的电压超过开关器件或二极管的允许的截止电压,或者如果中间电路中心点的电压超过开关器件的允许的电容电压,则会导致相关器件发生故障,并且导致逆变器的损坏。必须避免这种情况。

在正常操作中(逆变器DC->AC)使电压水平在中间电路中心点处振荡,但中间电路中心点不充电。为了减少这些振荡,要么根本不调节,要么主动调节中间电路电压。

一种可能性是通过适当的控制半桥来实现虚拟调控。在此,各个相位的脉冲宽度在时间上如下地适配:减小有效流入中间电路中心点的电流。即,一个相位的脉冲宽度并不都一样长。这方面的示例例如由US 5790396给出。

另一种可能性是通过输入外部补偿负载进行调控:

WO 2012/093504 A1示出了一种三电平逆变器,其具有在逆变器操作(DC到AC转换)中主动的电压平衡目的在于,在中间电路中能够减小包含的电容。该电压平衡包括可控的开关和至少一个通过外部器件持续预充电的辅助电容,其为电压平衡提供电荷。平衡装置直接布置在中间电路的中点和半桥的中间入口之间;她尤其没有与正汇流条和负汇流条连接。

为了利用现有的DC充电站给电动车辆的电池充电,在车辆侧需要DC/DC转换器形式的适配器件。如果三电平NPC用作开关拓扑结构,人们会想要将其同时用作DC/AC转化器。同时需要针对两个中间电路电容C1和C2的电压平衡的解决方案,也即保留和/或控制中间电路电压或平均电压。

因此,本发明所要解决的技术问题在于,提供一种改进的直流充电设备,用于为具有电动机的机动车的电池充电。

为此,根据本发明提供了一种根据权利要求1所述的充电设备。尤其涉及一种用于给设有电驱动马达的机动车的电池充电的充电设备,其具有:电感和驱动变流器,所述驱动变流器在机动车的驱动运行中转换用于所述电驱动马达的所述电池的直流电压,并且所述驱动变流器具有中间电路中心点,其中,所述电感与所述驱动变流器一起在所述电池的充电运行中用作升压转换器。在此,所述充电设备具有可控的开关装置,所述开关装置设计为,使得所述中间电路中心点电气充电和/或放电,或者充电和/或放电到一个电压。

由此避免了:在充电过程中,中间电路中心点电压太高超过允许额度,损害电容和/或开关器件或二极管。因此,使用作为升压转化器的驱动变流器,在充电模式下该变流器,尤其它的以晶体管形式的开关单元,应该被相应地控制,以便将输入电压(充电源的电压)升压转换为较高的输出电压(车辆电池电压)。在此,周期性地断开和闭合开元单元。根据本发明,充电设备的可控开关装置用于主动地电压控制,尤其是主动地电压平衡。在此,这样连接中间电路中心点,使其被电气充电和/或放电,以便达到和保持在特定的电压。由于概念“电压平衡”能够这样理解,即中间电路中心点能够被充电或保持在车辆电池的电压的一半。

优选的是,通过如此设计的开关装置进行电压平衡,将中间电路中心点与车辆电池的正极和/或负极,尤其周期性地和/或可变地电气连接或联接。由此省去了附加的电压源,降低了充电设备的成本。

优选的是,开关装置具有至少两个晶体管,所述晶体管与电池的正极和负极连接,并且尤其通过扼流圈与中间电路中心点连接。在此涉及实践中的实施方式,不需要机械上的开关。扼流圈的优势是,不用具有较高频率的电流,并且能够因此实现用于电压控制的较均匀的、较规律的电流。

同样有利的设计是,电感具有电驱动马达的至少一个绕组或绕组部段,或者由驱动马达的至少一个绕组或绕组部段构成。由此能够省去附加的构件并且由此降低成本和空间需求。

为了除控制用于行驶的电动机外还能在充电运行时提供有效的电压转换,驱动变流器针对三个电压相位分别具有一个三电平逆变器(也称为相脚或者phase leg),尤其以半桥的形式,每个相位。每个三电平逆变器与电驱动马达的三个绕组中的一个绕组连接。这种设计的优点是,全部三个绕组能够分别用作升压转换器,尤其用作逐一地或同时地用作升压转换器,并且能够因此提高充电功率。

优选的是,三电平逆变器(4a;4b;4c)或半桥具有相同的中间电路中心点。因此,只能够与一个导线连接,因此还可再次节省构件和材料。

在另外的有利实施方式中,三个三电平逆变器或半桥中的一个是可控的开关装置。虽然由此降低了充电效率,但是同时也降低了充电设备的成本。在这种情况下能够设置,开关装置可分离地、尤其通过开关,与电驱动马达的绕组连接。

同样有利的是,中间电路中心点被布置在两个串联连接的电容之间,其中,机动车的电池能够与电容并联地接通。

优选的是,充电设备具有控制电路,该控制电路用于控制驱动变流器,尤其是驱动变流器的半桥作为升压转换器。因此,控制电路不仅能够解决上述技术问题,还能够作为驱动变流器和作为升压转换器,并且由此节省了用于附加构件的成本。

主动的电压控制能够根据电压测量装置测量中间电路中点的电压。在此,控制电路设计为根据所测量的电压,例如借助PI调节器控制开关装置。

本发明还涉及一种电驱动系统,其具有根据本发明的充电设备和车辆电池。

下面的附图示出根据本发明的充电装置的优选实施例,其中,这些实施例不是对本发明的限制,而是基本上用于阐述本发明。

附图为:

图1示出了电驱动系统的电路图,所述电驱动系统具有根据第一实施例的充电装置;

图2示出了根据图1所示的各个器件的电流-信号表;

图3示出了关于本发明的充电装置的中间电路中心点的电流-电压信号表;

图4示出根据图3的电流和电压-信号图,其在时间上被放大地示出;

图5示出了电驱动系统的电路图,其具有根据第二实施例的充电设备;和

图6示出了电驱动系统的电路图,其具有根据第三实施例的充电设备。

图7示出了电驱动系统的电路图,其具有根据第四实施例的充电设备。

图1示出配备有电动机2的电驱动系统1a。电动机2具有三个呈线圈绕组形式的电感L1、L2和L3。这些线圈L1、L2和L3分别被驱动变流器3的半桥4a、4b和4c供应交流电流,并且可以使电动机2、特别其转子(未示出)旋转。为了将来自电池7的直流电转换成交流电,通过控制电路10控制半桥4a,4b和4c。对半桥4a,4b和4c的控制这样进行,使得它们周期性地并且交替地将正极和负极与线圈L1,L2和L3连接。半桥的三向交流电分别相对于彼此相位偏移120°。每个半桥4a,4b和4c分别具有以下器件:四个晶体管(例如MOSFET特别是IGBT)T1、T2、T3和T4,他们分别具有在漏极和源极之间连接的二极管D1、D2、D3和D4以及两个二极管D5和D6,该二极管与驱动变流器3的中间电路中心点5(Zwischenkreismittelpunkt)连接。中间电路中心点5位于两个串联的中间电路电容C1和C2之间,所述中间电路电容与三个半桥4a,4b和4c并联地布置。中间电路中心点5通过相应的二极管D5和D6与每个半桥4a、4b和4c电连接。电动机2的三个电感L1、L2和L3在星形电路(Sternschaltung)中相互连接;在驱动模式下,线圈L1、L2和L3的三角形电路也是可能的。此外,导体从电动机2的星形接点12延伸至插头接口6,该插头接口6将充电源8(例如充电桩)与电池7的负极和星形接点12连接。在驱动或行驶模式下,不是插头接口6与其余系统1a(例如通过开关)电分离,就是没有充电源8连接在接口6上。车辆电池7与驱动变流器3连接并且给该驱动变流器供给直流电压。对于驱动模式,电驱动系统1的控制电路10构造成:控制半桥4a、4b和4c以及其晶体管D1、D2、D3和D4,使得分别产生交流电,所述交流电相对于其他两向电流偏移120°。因此,例如电流从电池7的正极经由第一半桥4a的晶体管T1和T2流向第一线圈L1,然后经由线圈L2和L3以及第二和第三半桥4b和4c的晶体管T3和T4流向电池7的负极。对于充电模式,控制电路10构造为:这样控制半桥4a、4b和4c,使得所述半桥与线圈L1、L2和L3组合地用作升压转换器。在充电模式期间,每次在关闭晶体管T4以及之后关闭晶体管T3时,都会有小的平衡电流流入中间电路中心点5内,并且为电容C1和C2充电。通常,中心点5的电压是电池电压7的一半,特别是在驱动模式期间。在充电模式下,中间电路中心点5的电压由于平衡电流而移动并且影响升压转换器的效率和功能性。为了中和该电荷,设置有可控的开关装置9。在这种情况下,开关装置9具有两个晶体管ST1和ST2,晶体管ST1和ST2经由扼流圈LD和去耦电阻RD与中间电路中心点5连接。两个晶体管ST1和ST2彼此串联并且与电池7以及与两个电容C1和C2并联。通过控制电路10这样控制晶体管ST1和ST2:电荷要么从电池7传导到中间电路中心点5上,要么反向传导。由此,可以将中心点5的电压提高或降低到确定的值,并最终保持或稳定在该确定的值。通过测量两个电容C1和C2的电压来确定中点5的电压。为此,第一电压表和第二电压表分别与电容C1和C2并联连接并且将电压表测量的结果传递给控制电路10。控制电路10不仅对于开关装置9的晶体管ST1和ST2而且对于半桥4a、4b和4c的晶体管T3和T4分别具有一个调角信号产生器A1和两个信号调制器B1和B2。

图2示出了以下电路元件(从上到下x轴是:以安培为单位的电流,y轴是:以毫秒为单位的时间)在充电模式期间的五个电流图表:线圈L1、晶体管T3、晶体管T4、二极管D2和二极管D6。通过线圈L1的电流曲线以三角形形式从0至100安培(参见第一图表)。在第二和第三图表中,示出了电流流动,其一次穿过晶体管T3并且穿过晶体管T4(参见第二和第三图)。在此可以看出,通过晶体管T4的电流与通过晶体管T3的电流相比更早地被中断。也就是说,晶体管T4在晶体管T3之前截止。一旦晶体管T3也截止,电流从线圈L1经由二极管D2(和二极管D1)流向电池7(参见第四图)。在晶体管T4截止并且晶体管T3仍然打开的短时间内,小的平衡电流经由二极管D6流到中间电路中心点5(参见第五图)并且由此给中间电路中心点充电。

图3和图4分别示出了来自图1所示驱动系统的不同的器件的三个信号图表,其中,在图3中的信号从0秒到3毫秒并且在图4中从大约2.55到2.95毫秒。这意味着,在图4的信号图表中的信号与在图3中的信号比,虽然被放大,但是最终仍是相同的。第一信号图表示电压信号IGBT3和IGBT4作为晶体管T3和T4的栅极控制信号(X轴:0至1伏)。在这种情况下,可以清楚地看到,晶体管T4总是在晶体管T3之前截止,因此晶体管T3不会承受全部电压,因此受到保护。第二信号图示出电容C1和C2上的电压V_C1和V_C2,所述电压通过借助可控的开关装置9振荡电池电压的一半(x轴:0至800伏)。在此可以看出,中间电路中心点5的电压(其对应于电压V_C2或电池7的电压减去电压V_C1)随时间振荡或稳定。一旦两个晶体管T3和T4被截止或打开并且没有电流在流过这些晶体管,则电压V_SW表示由升压转换器产生的向上转换到800V的电压。当两个晶体管T3和T4闭合并且电流流过所述晶体管时,电压下降到大约0V或下降到电池7的负极的电压加上经由晶体管T3和T4的电压降。在第四晶体管T4打开且第三晶体管T3关闭的短时间内,电流短暂地通过二极管D6(也参见图2的图表5)流向中间电路中心点5(参见图1)。该电流适用于借助可控的开关装置9进行平衡。第三个信号图显示了来自线圈的电流I_L和流过扼流圈的电流I_Lbal(X轴:0至150安培),该电流用于给中间电路中心点5或电容C1和C2充电/放电,从而稳定其电压。这两个电流随时间稳定,最后分别在平均值处振荡I_L为100A和I_Lbal大约为5A。电流I_L的频率低于电流I_Lbal的频率。

图5示出另一电驱动系统1b,所述另一电驱动系统具有根据另外的优选实施例设计的根据本发明的充电设备。除了图1所示的开关装置9的晶体管ST1和ST2,扼流圈LD和去耦电阻RD之外,图5所示的驱动系统1b与图1所示的驱动系统1a相同。为了给中间电路中心点5充电和/或放电,取代图1中所示的附加的晶体管,例如ST1和ST2,使用半桥4b用作开关装置9。在这种情况下,半桥4b在充电模式期间不用作升压转换器。控制电路10为此构造为:在充电模式期间操控半桥4b的所有四个晶体管T1至T4。为了使电荷能够从中间电路中心点5流到电池7的负极,晶体管T1断开并且其余的晶体管T2至T4闭合。该电路配置允许电流通过二极管D5和半桥4b的晶体管T2至T4流向电池7的负极。为了将电荷从电池7的正极传导到中间电路中心点5,断开晶体管T4并且闭合晶体管T1至T3。这种电路配置允许电流从电池7的正极经由晶体管T1至T3和半桥4b的二极管D6流动。

图6示出另一电驱动系统1c,所述另一电驱动系统具有根据另一优选实施例的根据本发明的充电设备。在考虑开关11的情况下,该实施例与图5中的实施例相同。开关11在充电模式下使逆变器4b与线圈L2断开。在行驶模式中,闭合开关11。

图7示出另一电驱动系统1d,其具有根据另一优选实施例的根据本发明的充电设备。除了使用运行模式开关11和可通过该开关接通的扼流圈LD之外,图7所示的驱动系统1d与图5所示的驱动系统1b相同。半桥4b在充电模式期间用于可控的开关装置9,并且在行驶模式期间用作逆变器。开关11在行驶模式期间连接线圈L2和半桥4b。在充电模式下,开关11连接半桥4b与扼流圈Ld(代替线圈L2),并且因此与中间电路中心点5连接。通过相应地控制半桥4b的晶体管T1至T4,电流能够流向中间电路中心点5(经由T1,T2,开关11和扼流圈LD)或从中心点5流出(经由扼流圈LD,开关11,T3和T4)。

图5,6和图7所示的充电设备具有的优点是,理想地不必使用附加的构件;当半桥的内部电感和电阻相对来说对于出现的“中间点电流”

附图标记列表

1a 电驱动系统,第一实施例

1b 电驱动系统,第二实施例

1c 电驱动系统,第三实施例

1d 电驱动系统,第四实施例

2 电动马达/电驱动马达

3 逆变器/驱动变流器

4a 用于第一相位的第一半桥或逆变器

4b 用于第二相位的第二半桥或逆变器

4c 用于第三相位的第三半桥或逆变器

5 中间电路中心点

6 插头接口

7 车辆电池

8 充电源或充电桩

9 开关装置

10 控制电路

11 运行模式开关

12 星形点

L1 第一电机绕组

L2 第二电机绕组

L3 第三电机绕组

C1 第一电容

C2 第二电容

T1 第一晶体管

T2 第二晶体管

T3 第三晶体管

T4 第四晶体管

D1 第一空载二极管

D2 第二空载二极管

D3 第三空载二极管

D4 第四空载二极管

D5 第一中间二极管

D6 第二中间二极管

LD 扼流圈

RD 解耦电阻

ST1 开关装置的充电晶体管-第一晶体管

ST2 开关装置的放电晶体管-第二晶体管

A1 PWM或方波信号发生器

B1 第一信号调制器

B2 第二信号调制器

VM1 第一电压表

VM2 第二电压表。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号