首页> 中国专利> 基于毛细管封装光纤光栅温度压力传感器

基于毛细管封装光纤光栅温度压力传感器

摘要

一种基于毛细管封装光纤光栅温度压力传感器,刚玉管上设置有进气口、出气口,刚玉管内密封封装有单模光纤、光子晶体光纤、毛细玻璃管,单模光纤的一端与刚玉管的一端用高温胶密封固定,单模光纤另一端熔接有光子晶体光纤,光子晶体光纤的另一端从毛细玻璃管一端伸入到毛细玻璃管内,毛细玻璃管一端固定在光子晶体光纤上,光子晶体光纤另一端端面与毛细玻璃管另一端端面之间留有一定距离,毛细玻璃管另一端用高温胶密封,光子晶体光纤位于毛细玻璃管外的纤芯上刻写有第一热再生光栅、位于毛细玻璃管内的纤芯上刻写有第二热再生光栅。本发明具有能长时间在高温环境下精确区分测量压力和温度的优点。

著录项

  • 公开/公告号CN112378429A

    专利类型发明专利

  • 公开/公告日2021-02-19

    原文格式PDF

  • 申请/专利权人 西北大学;

    申请/专利号CN202011091796.8

  • 申请日2020-10-13

  • 分类号G01D5/353(20060101);G01D5/38(20060101);G01K11/32(20210101);G01L1/24(20060101);G02B6/02(20060101);

  • 代理机构61201 西安永生专利代理有限责任公司;

  • 代理人郝燕燕

  • 地址 710069 陕西省西安市太白北路229号

  • 入库时间 2023-06-19 09:55:50

说明书

技术领域

本发明属于光纤传感测量技术领域,具体涉及到一种光纤光栅温度压力传感器。

背景技术

发动机的研制和发展是一项涉及空气动力学、工程热物理、传热传质、机械、强度、传动、密封、电子、自动控制等多学科的复杂综合性系统工程,必须依托先进的测试方法,进行大量的试验来验证性能及可靠性。可以说,现代发动机测试是航空推进技术的支撑性技术,是整个发动机预研试验研究和工程发展阶段的重要技术环节。随着航空推进技术、计算技术和电子计算机应用技术的发展,人们建立了更加复杂的设计和分析方法加速航空推进技术系统的研制进程,而这些工程设计与分析方法需要更多、更精密的试验测试数据来验证和确认,例如发动机高温、高压、高转速、高负荷、大流量等大量参数,因此,对生产过程中的设备的检测与监测是非常必要的。而传统电学类传感器无法长期在高温压力环境下同时区分测量温度和压力,因此,急需要一种在高温压力环境下能够实现温度压力同时区分测量的传感器。

发明内容

本发明所要解决的技术问题在于提供一种设计合理、结构简单、体积小、长期在高温压力环境下同时区分测量温度和压力的基于毛细管封装光纤光栅温度压力传感器。

解决上述技术问题所采用的技术方案是:一种基于毛细管封装光纤光栅温度压力传感器,刚玉管一端侧壁上设置有进气口、另一端侧壁上设置有出气口,刚玉管内密封封装有单模光纤、光子晶体光纤、毛细玻璃管,单模光纤的一端与刚玉管的一端用高温胶密封固定,单模光纤的中心线与刚玉管的中心线重合,单模光纤另一端熔接有光子晶体光纤,光子晶体光纤与单模光纤的纤芯直径相同、包层外径相同,光子晶体光纤的另一端从毛细玻璃管一端伸入到毛细玻璃管内,毛细玻璃管一端用高温胶固定在光子晶体光纤上,光子晶体光纤的中心线与毛细玻璃管中心线重合,光子晶体光纤另一端端面与毛细玻璃管另一端端面之间留有一定距离,毛细玻璃管另一端用高温胶密封,光子晶体光纤位于毛细玻璃管外的纤芯上刻写有第一热再生光栅、位于毛细玻璃管内的纤芯上刻写有第二热再生光栅。

作为一种优选的技术方案,所述的第一热再生光栅和第二热再生光栅的栅区长度相同,第一热再生光栅和第二热再生光栅的栅区中心距为30~40mm,所述的第一热再生光栅的中心波长大于第二热再生光栅中心波长。

作为一种优选的技术方案,所述的第一热再生光栅的栅区长度为5~15mm、中心波长为1510~1590nm,所述的第一热再生光栅的中心波长与第二热再生光栅的中心波长差为3~10nm。

作为一种优选的技术方案,所述的光子晶体光纤另一端端面与毛细玻璃管另一端端面之间距离为2~3mm。

作为一种优选的技术方案,所述的光子晶体光纤为柚子型光子晶体光纤,所述的柚子型光子晶体光纤包层直径为125μm,纤芯截面为不规则六边形,纤芯周围环绕有6个均匀分布的气孔,相邻两气孔的孔心距为7.7μm,所述的气孔横向孔径为19.7μm、纵向孔径为15μm。

作为一种优选的技术方案,所述的光子晶体光纤也可以是蓝宝石光纤。

作为一种优选的技术方案,所述的毛细玻璃管的内径为150~330μm、外径为350~500μm。

作为一种优选的技术方案,所述的毛细玻璃管还可以是蓝宝石晶体毛细管。

作为一种优选的技术方案,所述的刚玉管的外径为4000~5000μm,内径为 2000~3000μm。

本发明的有益效果如下:

本发明毛玻璃细管与光子晶体光纤之间存在高温陶瓷胶,将第二热再生光栅隔离在毛玻璃细管内,当光纤结构处于温度压力环境中,第二热再生光栅只会受到温度影响,第一热再生光栅会同时受到温度压力同时影响,通过双波长矩阵分别计算出温度压力,从而实现温度压力区分测量。本发明克服了传统电学类测量方式需要分别测量且无法长时间在高温环境下精确测量的局限性,具有体积更小更适合在密封狭窄的结构元件内监测的优点。

附图说明

图1是本发明的结构示意图。

图2是本发明实施例1在0~900℃反射谱图。

图3是本发明实施例1在700℃环境下进行压力测试波长与强度图。

图4是本发明实施例1在700℃环境下波长与压力的拟合图。

具体实施方式

下面结合附图和实施例对本发明进一步详细说明,但本发明不限于下述的实施方式。

实施例1

在图1中,本实施例的基于毛细管封装光纤光栅温度压力传感器由刚玉管1、单模光纤2、柚子型光子晶体光纤3、毛细玻璃管4连接构成。

刚玉管1的内径为2500μm、外径为4500μm,刚玉管1一端侧壁上加工有进气口、另一端侧壁上加工有出气口,刚玉管1内密封封装有单模光纤2、柚子型光子晶体光纤3、毛细玻璃管4,单模光纤2的型号为SMF-28、纤芯直径为8.2 μm、包层直径为125μm,单模光纤2的一端与刚玉管1的一端用高温陶瓷胶密封固定,单模光纤2的中心线与刚玉管1的中心线重合,单模光纤2另一端熔接有柚子型光子晶体光纤3,柚子型光子晶体光纤3包层直径为125μm,纤芯截面为不规则六边形,纤芯周围环绕有6个均匀分布的气孔a,相邻两气孔a的孔心距为7.7μm,气孔a横向孔径为19.7μm、纵向孔径为15μm,柚子型光子晶体光纤3的另一端从毛细玻璃管4一端伸入到毛细玻璃管4内,毛细玻璃管4内径为318μm、外径为449μm,毛细玻璃管4一端用高温陶瓷胶固定在柚子型光子晶体光纤3上,柚子型光子晶体光纤3的中心线与毛细玻璃管4中心线重合,柚子型光子晶体光纤3另一端端面与毛细玻璃管4另一端端面之间距离为2.5mm,毛细玻璃管4另一端用高温胶密封,使毛细玻璃管4腔为密闭腔,柚子型光子晶体光纤3位于毛细玻璃管4外的纤芯上刻写有第一热再生光栅5、位于毛细玻璃管4内的纤芯上刻写有第二热再生光栅6,第一热再生光栅5的栅区长度为10mm、中心波长为1553nm,第二热再生光栅6的栅区长度为10mm、中心波长为1548nm,第一热再生光栅5和第二热再生光栅6的中心距为35mm,由于毛玻璃细管与柚子型光子晶体光纤3之间存在高温陶瓷胶,将第二热再生光栅6隔离在毛玻璃细管内,当光纤结构处于温度压力环境中,第二热再生光栅6只会受到温度影响,第一热再生光栅5会同时受到温度压力同时影响,通过双波长矩阵分别计算出温度压力,从而实现温度压力区分测量。

实施例2

在本实施例中刚玉管1的内径为2000μm、外径为4000μm,刚玉管1一端侧壁上加工有进气口、另一端侧壁上加工有出气口,刚玉管1内密封封装有单模光纤2、柚子型光子晶体光纤3、毛细玻璃管4单模光纤2的一端与刚玉管1的一端用高温陶瓷胶密封固定,单模光纤2的中心线与刚玉管1的中心线重合,单模光纤2另一端熔接有柚子型光子晶体光纤3,柚子型光子晶体光纤3的另一端从毛细玻璃管4一端伸入到毛细玻璃管4内,毛细玻璃管4内径为150μm、外径为 350μm,毛细玻璃管4一端用高温陶瓷胶固定在柚子型光子晶体光纤3上,柚子型光子晶体光纤3的中心线与毛细玻璃管4中心线重合,柚子型光子晶体光纤3 另一端端面与毛细玻璃管4另一端端面之间距离为2mm,毛细玻璃管4另一端用高温胶密封,使毛细玻璃管4腔为密闭腔,柚子型光子晶体光纤3位于毛细玻璃管4外的纤芯上刻写有第一热再生光栅5、位于毛细玻璃管4内的纤芯上刻写有第二热再生光栅6,第一热再生光栅5的栅区长度为5mm、中心波长为1513nm,第二热再生光栅6的栅区长度为5mm、中心波长为1510nm,第一热再生光栅5和第二热再生光栅6的中心距为30mm。其他零部件及零部件的连接关系与实施例 1相同。

实施例3

在本实施例中刚玉管1的内径为3000μm、外径为5000μm,刚玉管1一端侧壁上加工有进气口、另一端侧壁上加工有出气口,刚玉管1内密封封装有单模光纤2、柚子型光子晶体光纤3、毛细玻璃管4单模光纤2的一端与刚玉管1的一端用高温陶瓷胶密封固定,单模光纤2的中心线与刚玉管1的中心线重合,单模光纤2另一端熔接有柚子型光子晶体光纤3,柚子型光子晶体光纤3的另一端从毛细玻璃管4一端伸入到毛细玻璃管4内,毛细玻璃管4内径为330μm、外径为 500μm,毛细玻璃管4一端用高温陶瓷胶固定在柚子型光子晶体光纤3上,柚子型光子晶体光纤3的中心线与毛细玻璃管4中心线重合,柚子型光子晶体光纤3 另一端端面与毛细玻璃管4另一端端面之间距离为3mm,毛细玻璃管4另一端用高温胶密封,使毛细玻璃管4腔为密闭腔,柚子型光子晶体光纤3位于毛细玻璃管4外的纤芯上刻写有第一热再生光栅5、位于毛细玻璃管4内的纤芯上刻写有第二热再生光栅6,第一热再生光栅5的栅区长度为15mm、中心波长为1590nm,第二热再生光栅6的栅区长度为15mm、中心波长为1580nm,第一热再生光栅5 和第二热再生光栅6的中心距为40mm。其他零部件及零部件的连接关系与实施例1相同。

实施例4

在上述实施例1~3中,毛细玻璃管4替换为蓝宝石晶体毛细管,其他零部件与零部件的连接关系与相应的实施例相同。

实施例5

在上述实施例1~4中,柚子型光子晶体光纤3替换为蓝宝石光纤,其他零部件与零部件的连接关系与相应的实施例相同。

本发明的工作原理如下:

热再生光栅温度传感机理:热再生光栅的波长漂移会受到温度变化的影响,热再生光栅中心波长产生漂移则是受到有效折射率和热再生光栅周期而影响,当外界均匀压力以及轴向应力场均保持恒定不变的时候,可以得到由热再生光栅周期变化引起的热膨胀效应为:

ΔΛ=α·Λ·ΔT (1)

式中:α为光纤的热膨胀系数,Λ为热再生光栅周期,ΔT为温度变化量;

由热光效应引起的有效折射率变化为:

Δn

式中ξ为光纤的热光系数,Δn

式中Δλ

热再生光栅的温度灵敏度系数K

当温度变化不是太大时,普遍认为ξ为一个常数,其关系式为

Δλ

热再生光栅压力传感机理:当热再生光栅受受到的径向压力作用时热再生光栅会产生正的轴向应变,热再生光栅周期发生改变,轴向应变引起的热再生光栅中心波长的变化为:

式中P

在高温压力环境中,第一热再生光栅5的谱线移动同时受温度和压力的影响,由于毛细玻璃管结构的引入,毛细玻璃管中的第二热再生光栅6不受压力影响,可认为第二热再生光栅6的谱线只受温度参量影响,因此,使用第二热再生光栅 6的中心波长表征环境温度,当环境温度确定后,使用该温度对第一热再生光栅5 的光谱谱线进行修正,从而计算出传感器所受压力与光谱谱线漂移量之间的关系。

为了验证本发明的有益效果,以实施例1的基于毛细管封装光纤光栅温度压力传感器在700℃环境下进行压力测试:

将基于毛细管封装光纤光栅温度压力传感器的单模光纤左端与SM125光学解调仪的一端相连,SM125光学解调仪发出宽带光由单模光纤的左端进入,经过柚子型光子晶体光纤3的第一热再生光栅5和第二热再生光栅6的反射返回到单模光纤2,由单模光纤2左端传出到SM125光学解调仪,SM125光学解调仪将接收到的反射宽带光解调成反射宽带光的反射光谱曲线,在0~900℃环境下,实施例 1基于毛细管封装光纤光栅温度压力传感器的反射谱,如图2。

当外界环境的压力和温度同时变化时,第一热再生光栅5和第二热再生光栅6的波长飘移分别为:

Δλ

Δλ

式中Δλ

温度补偿的系数矩阵为:

由于第二热再生光栅6隔绝压力影响,故k

实验结果及分析

由图2可以观察到在900℃环境下保持27min后,其干扰峰发生明显的降低,实施例1的结构在700℃环境下进行压力测试,由图3可知,图中右侧波峰为受毛细玻璃管4保护的第二热再生光栅6,由于毛细玻璃管4隔绝压力的作用,该反射峰只受到测试环境温度轻微的扰动,其波峰基本保持不变,而与此相反,左侧波峰为不受毛细玻璃管4保护的第一热再生光栅5,在0~4.5MPa的压力测试下保持向短波长方向漂移,经过图4的拟合,测得在700℃环境下,该结构的压力灵敏度为 147pm/Mpa,通过测量不同温度下第一热重生光栅、第二热重生光栅波峰的漂移,得到对应的温度灵敏度,将其对应的带入公式(10),即可得到此时对应温度压力。

由于该传感器受到高温陶瓷胶的限制,温度的响应范围随高温陶瓷胶的最低耐受温度而发生变化,且不同的温度下该类型的结构都可以参照1000℃下的温度压力测试方法,实现不同温度下的压力的精确测量。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号