首页> 中国专利> 一种适用于旋转叶片叶尖定时信号的时-频处理方法

一种适用于旋转叶片叶尖定时信号的时-频处理方法

摘要

本发明公开了一种适用于旋转叶片叶尖定时信号的时‑频处理方法,包括获取叶尖定时信号的采样信号;设定功率谱变化率阈值;确定功率谱向量W(i);根据功率谱向量W(i)计算自相关矩阵R(i);对所采集的叶尖定时信号进行傅里叶变换F(i),计算离散幅值谱S(i);并根据离散幅值谱S(i)计算功率谱向量W(i);进行F(i)、S(i)、W(i)循环迭代,当迭代次数达到所设定的阈值或功率谱变化率小于所设定的功率谱变化率阈值,则停止循环迭代;将最后一次傅里叶变换所得到的频谱信号作为处理结果。本发明所提供的方法扩大了分析频率的范围,提高了频率分辨率,能够对非均匀和欠采样叶尖定时信号频谱的精确分析。

著录项

  • 公开/公告号CN112304616A

    专利类型发明专利

  • 公开/公告日2021-02-02

    原文格式PDF

  • 申请/专利权人 中国特种设备检测研究院;

    申请/专利号CN202011135715.X

  • 发明设计人 张继旺;丁克勤;

    申请日2020-10-22

  • 分类号G01M15/00(20060101);G01M15/02(20060101);G01H17/00(20060101);G06F17/14(20060101);G06F17/16(20060101);

  • 代理机构11855 北京惟盛达知识产权代理事务所(普通合伙);

  • 代理人杨青

  • 地址 100029 北京市朝阳区和平街西苑2号

  • 入库时间 2023-06-19 09:46:20

说明书

技术领域

本发明涉及烟气轮机、航空发动机、汽轮机等设备的旋转叶片状态监测领域,具体涉及一种适用于旋转叶片叶尖定时信号的时-频处理方法。

技术背景

旋转叶片是透平机械的核心部件,旋转叶片在长期运行过程中承受着复杂的交变载荷,容易产生疲劳裂纹乃至发生断裂事故,因此需要对旋转叶片进行状态监测。

对于旋转叶片的状态监测通常采用的是叶尖定时测振方法获取旋转叶片的叶尖定时信号,如图1所示,具体是通过在旋转叶片外围机壳上安装若干个定时传感器,在转轴处安装键相传感器P1~P3用于转速计算。当叶片旋转过程中产生振动,叶尖到达定时传感器的时间会提前或滞后于理论时间,从而产生一个时间差,再据该时刻对应的转速信息可计算出叶片振动位移,通过连续采集即可得到叶片振动位移序列,再对该振动位移序列进行处理,即可得到叶片的振动信息。采用上述叶尖定时测振方法获取叶尖定时信号时,对于一个定时传感器,旋转叶片转动一周才能够采集到一个叶片振动信号,即使在旋转叶片外围机壳上安装多个定时传感器,但由于设备结构的限制,安装的定时传感器数量有限,但旋转叶片的振动频率远高于其转动频率,定时传感器安装的位置也无法均匀分布,因此导致最终所获取的信号属于非均匀且欠采样的信号,无法满足奈奎斯特采样定理,从而无法采用传统方法进行有效的时-频分析。

发明内容

为了解决上述存在的技术问题,将烟气轮机、航空发动机、汽轮机等设备的旋转叶片所采集到的非均匀、欠采样信号,从时域转换至频域,本发明提供了一种适用于旋转叶片叶尖定时信号的时-频处理方法,其具体技术方案如下:

一种适用于旋转叶片叶尖定时信号的时-频处理方法,包括如下步骤:

S1.获取旋转叶片的叶尖定时信号的采样信号,所述采样信号包括采样时间序列t

S2.设定功率谱变化率阈值T

S3.确定功率谱向量W

S4.根据功率谱向量W

S5.对步骤S1中所采集的叶尖定时信号进行傅里叶变换F

S6.将步骤S5中计算得到的功率谱向量W

S7.将最后一次傅里叶变换F

可选的,作为获取采样信号的方法之一,采用定时传感器进行实际测量,所述步骤S1中采样信号的获取过程包括,a.在旋转叶片外围机壳上布置至少一个定时传感器;b.启动旋转叶片,定时传感器获取旋转叶片通过定时传感器所在位置时的叶片振动信号,设定采样长度和采样时间间隔,进行采样形成采样幅值序列x(t

进一步的,所述定时传感器的数量为2~8个,将各个所述定时传感器等角度的布置在旋转叶片外围机壳上,并对各个所述定时传感器所形成的采样幅值序列x(t

可选的,作为获取采样信号的方法之二,采用数学方法进行获取,所述步骤S1中采样信号的获取过程包括,

a.建立叶片振动信号y(t)的表达式,y(t)=A*sin(2π·ft),其中A为叶尖振动幅值,f为振动频率;

b.确定旋转叶片外围机壳上布置的定时传感器的数量以及相邻定时传感器的距离在角域上的差值为ω

c.将叶片到达第一个定时传感器的时刻记为0时刻,确定定时传感器的采样长度为N个采样点,并确定采样的时间间隔Δt,Δt=1/F

d.将第j个定时传感器的采样时间序列u

进一步的,在采样时间序列中加入均值为0,信噪比强度为d的定时误差,将第j′个定时传感器的采样时间序列u

进一步的,在叶片振动信号y(t)内加入均值为0,一定幅值的随机信号,将叶片振动信号y(t)″表达式记载为y(t)″=y(t)+h*rand(length(y),1),h表示随机信号的幅值大小,将第j′个定时传感器的采样时间序列u

进一步的,所述步骤S5中功率谱向量W

进一步的,所述步骤S4中自相关矩阵R

进一步的,所述步骤S5中傅里叶变换F

进一步的,所述步骤S5中离散幅值谱S

由上述分析算法可知,该算法输入参数仅有:

信号采样时间序列t

由上述计算过程可以看出,本专利所提出的分析处理方法不再要求采样过程为均匀采样,也不要求采样频率必须为最高分析频率的2倍以上,且频率分析的分辨率可以由所输入的分析频率序列决定(所述输入的分析频率序列可根据需要设定即可),不再由采样长度所决定。

有益效果:1.采用本发明所公开的方法对旋转叶片叶尖定时信号的采样信号进行处理,避免了传统傅里叶变换需要严格满足奈奎斯特采样定理的限制,依然能够完整的保留原始信号中信息,扩大了分析频率的范围,提高了频率分辨率,能够对非均匀和欠采样叶尖定时信号频谱的精确分析,且该方法具有良好的抗干扰性和鲁棒性。

2.采用本发明所公开的方法对旋转叶片叶尖定时信号的采样信号进行处理,在获取采样信号时,设定采样长度以及采样时间间隔建立采样时间序列的数学模型,并将采样时间序列的时间信号代入叶片振动信号的表达式中获得采样幅值序列,仅需要确定定时传感器的角度以及旋转叶片振动幅值和振动频率即可获得采样信号,避免因旋转叶片外围机壳形状而无法均匀的布置定时传感器的局限性,以及传感器布置数量的局限性,从而使获得的采样信号更加均匀。另外,在获取采样信号时在通过数学建模所获得的采样时间序列中加入定时误差,在理想的叶片振动信号表达式内加入系统测量误差,使获得的采样信号更加具有真实性。

附图说明

图1为叶尖定时测量系统的原理示意图;

图2为本发明所提供的旋转叶片叶尖定时信号的处理方法流程示意图;

图3为实施例1中采用传统傅里叶变换处理方法对1-6个定时传感器所采集的信号处理结果的频域图;

图4为实施例1中采用本发明所提供的处理方法对1-6个定时传感器所采集的信号处理结果的频域图;

图5为实施例1中对不同定时误差下的叶尖定时信号采用本发明所提供的方法处理结果的频域图;

图6为实施例1中对不同系统误差下的叶尖定时信号采用本发明所提供的方法处理结果的频域图;

图7为实施例2中测试用试验台装置示意图;

图8为实施例2中传统的傅里叶处理分析后的效果图;

图9为实施例2本发明提出处理方法分析后的效果图。

具体实施方式

下面将结合具体实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

如图2所示,一种适用于旋转叶片叶尖定时信号的时-频处理方法,包括如下步骤:

S1.获取旋转叶片的叶尖定时信号的采样信号,所述采样信号包括采样时间序列t

S2.设定功率谱变化率阈值T

S3.确定功率谱向量W

S4.根据功率谱向量W

S5.对步骤S1中所采集的叶尖定时信号进行傅里叶变换F

S6.将步骤S5中计算得到的功率谱向量W

S7.将最后一次傅里叶变换F

在本实施例中,所处理的信号为有限带宽[-Ω,Ω]内的信号,其离散的频率值为-Ω≤ω

在本实施例中,采用上述方法对旋转叶片叶尖定时信号进行处理,避免了传统傅里叶变换需要严格满足奈奎斯特采样定理的限制,扩大了分析频率的范围,提高了频率分辨率,能够对非均匀和欠采样叶尖定时信号频谱的精确分析,且该方法具有良好的抗干扰性和鲁棒性。

在本实施例中,作为获取采样信号的方式之一,根据采样的原理采用数学的方法获取实际旋转叶片的采样信号,具体来说,所述步骤S1中采样信号的获取过程包括,

a.建立叶片振动信号y(t)的表达式,y(t)=A*sin(2π·ft),其中A为叶尖振动幅值,f为振动频率;

对于叶尖定时系统的采样过程,根据其采样原理,每个叶片旋转一周可以通过单个传感器一次,即只能得到一个振动幅值信号,也就是单个定时传感器的采样频率为旋转叶片的转动频率F

b.确定旋转叶片外围机壳上布置的定时传感器的数量以及相邻定时传感器的距离在角域上的差值为ω

为了描述定时系统的采样过程,我们假设系统随机安装了n个传感器,传感器间的距离在角域上相差为ω

c.将叶片到达第一个定时传感器的时刻记为0时刻,确定定时传感器的采样长度为N个采样点,并确定采样的时间间隔Δt,Δt=1/F

d.将第j个定时传感器的采样时间序列u

由于实际测量中存在定时误差和系统测量误差的问题,为了进一步提高所获得的采样信号的真实性,在采样时间序列中加入均值为0,信噪比强度为d的定时误差,将第j′个定时传感器的采样时间序列u

在本实施例中,以试验台为基准,设定叶尖振动幅值A为0.02,频率为137Hz,叶片的旋转速度为3000RPM,假定在叶片外围半个周向区域内安装有6个定时传感器,传感器两两相隔36°,第j个定时传感器所采集的叶片振动信号表达式为,y

在本实施例中,选取单个定时传感器采样点为K=100,定时误差的信噪比强度分别为(10、20、30和40dB),而系统测量误差幅值分别为(0.25A、0.5A、0.075A和1A),从而获得叶尖定时信号的采样信号,即采样时间序列t

分别对不同数量定时传感器所获得的采样信号采用传统傅里叶变换处理方法进行处理,所获得的结果如图3所示。

在本实施例中,作为获取采样信号的方式之二,也可以采用定时传感器直接测量振动信号,并获取采样信号,具体来说,所述步骤S1中采样信号的获取过程包括,a.在旋转叶片外围机壳上布置至少一个定时传感器;b.启动旋转叶片,定时传感器获取旋转叶片通过定时传感器所在位置时的叶片振动信号,设定采样长度和采样时间间隔,进行采样形成采样幅值序列x(t

更进一步的,定时传感器的布置数量可以根据实际情况进行确定,在本实施例中,分别对布置了1~6个定时传感器的旋转叶片进行信号采样

分别对不同数量定时传感器所获得的采样信号采用本发明所公开的方法进行处理,在处理过程中当达到迭代阈值,或则相邻两侧功率谱能量差小于0.01时停止迭代,所获得的结果如图4所示。

具体来说,采用本发明所公开的处理方法进行处理时,对传统的傅里叶变换进行改进,首先构造一个变换基α(ω,t)代替传统傅里叶变换的基e

由于实际的采样信号均为离散信号,则对于周期性均匀采样则上式可以表示为

为了确定S(ω

由上述计算过程可知,相对于传统傅里叶变换方法对采样信号进行处理,本发明所公开的方法不再需要满足奈奎斯特定理要求以及均匀采样要求,依然可以能够完整地保留原始信号中的信息。降低了对采样过程的要求,能够适用于非均匀和欠采样的采样信号分析。

对比图3和图4可知,当采用传统傅里叶变换方法对1个定时传感器采集的叶尖定时信号进行处理时,只在13Hz处出现峰值,这与实际振动频率137Hz相差较大;当传感器数量逐渐增多时,频域图中出现多组成分,且当传感器数量达到6个时,采用传统傅里叶变换方法的频谱图中出现叶片振动频率成分,幅值为0.55,远小于其它成分幅值,且不等于叶片实际振动幅值,这主要是由于采用6个传感器进行采样虽然达到了传统傅里叶变换处理中采样频率的要求,但该信号并不满足均匀采样的要求,造成传统傅里叶变换处理时发生频率偏移和混叠。

当采用本发明所提供的处理方法对叶尖定时信号进行处理时,对仅采用1个定时传感器的数据进行处理时就出现了叶片振动幅值,当定时传感器数量为2时,叶片振动频率已成为主要成分,且幅值为真值0.02mm,当定时传感器数量大于等于3时,干扰成分逐渐减小直至消失,表明当采样率达到一定要求后,基于所提方法能够准确分析得到非均匀欠采样信号的频域成分,实现理想采样状态下叶片振动参数的有效辨识。

对3个定时传感器状态下的采样时间序列中分别加入信噪比为10、20、30和40的噪声信号,得到仅含有定时误差的采样信号,然后采用本发明所提供的处理方法对上述存在定时误差的数据进行分析,分析结果如图5所示。

由图5可以看出,对于仅有含定时误差的非均匀欠采样叶尖定时信号,通过分析,可以有效得到叶片真实振动频率,其频率成分和幅值均不随噪声强度变化而发生偏移,且频域信号中也并未产生其它干扰成分,表明本发明所提供的处理方法可以对仅含定时误差的叶尖定时信号进行有效分析,且具有非常良好的抗干扰性。

对3个定时传感器状态下含系统测量误差的采样数据进行分析,通过在理想采样信号中分别加入最大幅值为0.25A、0.5A、0.075A和1A的随机噪声来构造系统不同的测量误差下的采样信号,然后采用本发明所提供的处理方法对上述存在系统测量误差的采样信号进行处理,结果如图6所示。

由图6可以看出,对于含随机测量误差的叶尖定时信号,采用本发明所提供的分析方法可以准确得到叶片振动频率,且其频率成分和幅值并未随噪声强度发生明显变化,仅在0Hz处出现幅值较大的一组成分,这是由于随机噪声所引起的,并不影响对叶片振动参数的分析。表明所提方法对含有随机测量误差的叶尖定时信号分析具有良好的可靠性和抗干扰性。

实施例2

利用如图7所示的试验台进行试验数据测试,对实测叶尖定时信号进行分析,该试验台由,包括电机、联轴器、齿轮箱、传感器、叶片垫板、底座和外径为300mm的叶片,定时传感器选用光纤传感器,原始脉冲信号的采样频率为100MHz,4个传感器以相邻25°的角度安装在叶轮护罩上,该实验台中所采用的电机为三相异步电机,该三相异步电机的变频范围为5~50Hz,额定转矩为1273N.m,该叶片一阶振动频率为137.2Hz。

启动旋转叶片,定时传感器获取旋转叶片通过定时传感器所在位置时的叶片振动信号,设定采样长度和采样时间间隔,进行采样形成采样幅值序列x(t

对所测得的叶尖定时信号进行传统的傅里叶处理和本发明所提供的方法处理,其中进行本发明所提供的方法处理时,迭代次数设为15,分析频率序列范围为(-140,139.8),频率分辨率同样取0.2Hz,所得到的频域信号分别如图8所示(建议将原图9中的EDFT分析结果和FFT分析结果拆分)。

由图8可以看出,对实测叶尖定时信号进行传统傅里叶处理,其频域图中主要成分在39Hz附近,幅值为2.1mm,均不能反映叶片的振动参数;而采用本发明所提供的处理方法分析,其主要成分在137.1Hz处,幅值为0.013mm,与叶片实际振动频率基本相同。通过对比分析可以看出本发明所提供的处理分析方法在能够对非均匀欠采样叶尖定时信号进行谱分析,基于该方法可以准确辨识出叶片振动频率,具有很好的实用性。

以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号