首页> 中国专利> 基于CS/GO/Cu(II)离子印迹聚合物电极的电化学传感器及其制备方法

基于CS/GO/Cu(II)离子印迹聚合物电极的电化学传感器及其制备方法

摘要

本发明公开了一种基于CS/GO/Cu(II)离子印迹聚合物电极的电化学传感器及其制备方法。本发明中采用易操作的滴涂法将CS/GO/Cu(II)复合物均匀滴涂到电极表面,通过原位聚合的方法制备出CS/GO/Cu(II)离子印迹聚合物修饰电极,并将其作为工作电极用作水体中Cu(II)的电化学传感器。本发明的有益效果在于:制备方法所需的原材料成本低廉,合成工艺简单,可大批量制备;得到的电化学传感器对水环境中Cu(II)的检测具有高选择性,高灵敏度,良好的重复性和再现性。

著录项

  • 公开/公告号CN109060919A

    专利类型发明专利

  • 公开/公告日2018-12-21

    原文格式PDF

  • 申请/专利权人 上海第二工业大学;

    申请/专利号CN201810768519.2

  • 发明设计人 朱志刚;韦鹏举;

    申请日2018-07-13

  • 分类号G01N27/333(20060101);G01N27/02(20060101);G01N27/48(20060101);G01N23/2251(20180101);

  • 代理机构31200 上海正旦专利代理有限公司;

  • 代理人王洁平

  • 地址 201209 上海市浦东新区金海路2360号

  • 入库时间 2023-06-19 07:51:04

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-04-21

    授权

    授权

  • 2019-01-15

    实质审查的生效 IPC(主分类):G01N27/333 申请日:20180713

    实质审查的生效

  • 2018-12-21

    公开

    公开

说明书

技术领域

本发明涉及传感器技术领域,具体来说,涉及一种基于CS/GO/Cu(II)离子印迹聚合物电极的电化学传感器及其制备方法。

背景技术

铜是人类最早发现的金属之一,在地球中含量较高,同时由于其耐用性、导电性及良好的化学性质,被广泛的应用于电气、轻工业、制造建造业以及国防工业中。另外,铜是一种动植物必需的微量重金属元素,对人们的身体非常重要,但是,当人们日常生活中摄取的铜离子超过人体所需的正常含量时,这些过量的铜离子会使得人们的身体生理机能发生紊乱,会引发Menkes 病、阿尔茨海默病,甚至会引发肝肾损伤等疾病。因此,对各类水源地,河道以及饮用水中Cu(II) 浓度的检测是十分重要的。

目前国内外对重金属离子的检测方法有很多,比如原子吸收光谱法,原子荧光光谱法,电感耦合等离子体原子发射光谱法。虽然这些方法在灵敏度以及抗干扰性方面具有明显的优势,但是需要繁杂的样品前处理、昂贵的仪器设备以及需要在紫外区进行激发和发射等缺陷给这些方法也造成了一定的局限性。电化学分析法相较于其他方法具有低成本、操作简单以及小体积便携、可适用于现场检测的优点而得到广泛研究。其中电化学分析法中阳极溶出伏安法因为杰出的低检测限的优点使其在重金属离子检测中占有重要地位。近年来为了进一步提高电极自身的选择性和灵敏度,基于基础电极(如玻碳电极、碳糊电极、金电极等)进行化学修饰受到广泛研究。目前应用比较广泛的有金属材料、金属氧化物材料、碳材料和高分子聚合物材料,氧化石墨烯 (GO) 因其独特的电性能和高比表面积常用来修饰电极。然而单纯的GO用来修饰电极难度较大,例如选择性差、分散性差、不易成膜以及易脱落等问题。

发明内容

为了克服现有技术的不足,本发明的目的在于提供一种基于CS/GO/Cu(II)离子印迹聚合物电极的电化学传感及其制备方法。本发明的传感器对Cu(II) 表现出高选择性、高灵敏度、宽检测范围等特点。

本发明的目的是通过以下技术方案来实现的。

本发明提供一种基于CS/GO/Cu(II)离子印迹聚合物电极的电化学传感器的制备方法,具体步骤如下:

(1)将0.1-1 g 壳聚糖CS粉末溶于10-50 mL 1wt%-5wt%醋酸溶液中,搅拌溶解均匀,离心收集上清液,得到壳聚糖溶液;

(2)将100 mg-500 mg 可溶性铜盐、1.1~25 mL质量体积浓度在9~10mg/ml之间的氧化石墨烯GO分散液和壳聚糖溶液混合,搅拌溶解制成CS/GO/Cu(II) 复合物溶液;

(3)吸取2-5 μL CS/GO/Cu(II) 复合物溶液均匀滴涂在电极表面,室温下风干干燥成膜;

(4)将步骤(3)的电极置于2-10wt% 的环氧氯丙烷的溶液中,40-65℃的温度下反应2-4h,聚合反应结束后,取出电极,用去离子水冲洗去除未反应的环氧氯丙烷,然后在EDTA溶液中浸泡,使其完全洗脱掉模板离子,最后用去离子水冲洗、晾干,得到CS/GO/Cu(II) 离子印迹聚合物电极,将其作为工作电极结合三电极电化学工作站进行Cu(II)检测,用作Cu(II)电化学传感器。

上述步骤(1)中,壳聚糖为脱乙酰度在61%~97%之间的壳聚糖。

上述步骤(2)中,可溶性铜盐选自Cu(NO3)2、CuSO4、CuCl2或Cu(CH3COO)2中的一种或几种。

上述步骤(3)中,电极选自玻碳电极、金电极或丝网印刷电极中的任一种。

上述步骤(3)中,风干时间为10-30min。

上述步骤(4)中,EDTA溶液的浓度为0.5-1.0 mol/L,浸泡时间为3-8h。

上述步骤(4)中,环氧氯丙烷的溶液中的溶剂为甲醇和水形成的混合溶剂,其中甲醇和水的体积比为1:5~1:1。

本发明还提供一种上述制备方法制得的基于CS/GO/Cu(II)离子印迹聚合物电极的电化学传感器。

与现有技术相比,本发明的有益效果在于:

1、壳聚糖含有大量-OH和-NH2>

2、本发明采用简单易操作的滴涂方式在电极表面形成均匀膜层,通过原位聚合方法制备出Cu(II) 印迹聚合物修饰的电极。洗脱模板Cu(II) 后,电极修饰层留下能与Cu(II) 特异性吸附的结合位点,因此该修饰层可以增强对目标离子的吸附能力从而提高出传感器的检测性能。

3、本发明构建的电化学传感器具有灵敏度高(检测限达到0.15 μmol/L)、选择性好、重现性好以及检测线性宽(在0.1 ~ 100 μmol/L内呈现良好的线性)等优点,能对Cu(II) 进行准确、痕量的检测。

附图说明

图1为本发明的制备方法的原理流程图。

图2为实施例1制得的CS/GO/Cu(II)-IIP修饰电极的扫描电镜(SEM)照片。

图3为实施例2制得的CS/GO/Cu(II)-NIP修饰电极的扫描电镜(SEM)照片。

图4为实施例3制得的未洗脱模板离子CS/GO/Cu(II)-IIP 修饰电极的扫描电镜(SEM)照片。

图5为实施例5不同电极循环伏安曲线图 (CV) 。

图6为实施例5不同电极电化学阻抗图谱图 (EIS) 。

图7为实施例6中CS/GO/Cu(II)-IIP修饰电极对Cu(II) 检测的峰电流对应的标准曲线图。

图8为实施例7中CS/GO/Cu(II)-IIP修饰电极的传感器的选择性测试。

图9为实施例8中CS/GO/Cu(II)-IIP修饰电极的传感器的重现性测试。

具体实施方式

以下提供本发明一种基于CS/GO/Cu(II)-IIP修饰电极的Cu(II) 电化学传感器的具体实施方式。

如图1所示为本发明的制备方法的原理流程图。

实施例1:CS/GO/Cu(II)-IIP的制备

(1) 首先以0.2 g脱乙酰度为 95% 的壳聚糖粉末为原料,将其溶解在配制20 mL 1wt%

的HAc溶液中,离心取上清液,得到壳聚糖溶液备用;

(2)称取220 mg CuSO4·5H2O溶解于20>

酸铜=3:1),磁力搅拌30 min得到均一的蓝色溶液;

(3) 将4 mL GO分散液(10 mg/mL) 加入上述蓝色溶液,继续搅拌60 min使GO完全分散于壳聚糖溶液中;

(4) 吸取3 μL 上述溶液滴涂到玻碳电极表面,使其完全覆盖于玻碳电极表面,室温下

风干成膜;

(5) 将上述电极浸泡在2wt% 的环氧氯丙烷溶液(环氧氯丙烷溶液中,甲醇和水的体积比为1:3)中65℃ 水浴加热3 h,聚合后先用去离子水冲洗去除未反应的环氧氯丙烷,随后将电极浸泡在0.5 mol/L的EDTA溶液中3 h 去除模板离子,得到CS/GO/Cu(II)-IIP修饰电极;其扫描电镜照片见图2,所得到的CS/GO/Cu(II)-IIP表面粗糙这是由于模版离子洗脱后导致,另外可以看到表面存在些许的空洞,这可能是由于相邻的印迹空穴连在一起导致空穴坍塌所引起的。

实施例2:CS/GO/Cu(II)-NIP的制备

不实施实施例1的步骤(2),其他步骤和条件都与实施例1相同,具体条件在发明内容限定的范围内作相应的变动和调整,得到CS/GO/Cu(II)-NIP 修饰的电极,其扫描电镜照片见图3,由于实验聚合过程中没有加入模版离子,聚合后聚合物网络中不会出现特定的结合位点,因此不会存在特定的空洞,导致结果与图2相比很明显所得到的CS/GO/Cu(II)-NIP表面光滑。

实施例3:未洗脱模板离子CS/GO/Cu(II)-IIP的制备

在实施例1中步骤(5)中,聚合后不进行模板离子的洗脱处理,其他步骤和条件都与实施例1相同,具体条件在发明内容限定的范围内作相应的变动和调整,得到未洗脱模板离子CS/GO/Cu(II)-IIP 修饰的电极,其扫描电镜照片见图4,与图2相比表面结构光滑,进一步证实了图2所表现出的粗糙以及空洞是由于模版离子洗脱之后所造成的。

实施例4:CS修饰电极的制备

不进行实施例1的步骤(3),其他步骤和条件都与实施例1相同,具体条件在发明内容限定的范围内作相应的变动和调整,得到CS 修饰的电极。

实施例5:上述三种修饰电极以及未修饰电极的电化学行为测试

采用CHI-660C电化学工作站以上述电极作为工作电极,饱和甘汞电极作为参比电极,铂片电极作为辅助电极,以含有0.1 M KCl 的5 mM [Fe(CN)6]3−/4−>6]3−/4−和GCE之间的电子转移导致的结果。实施例2制备的CS/GO/Cu(II)-NIP(曲线d)峰电流进一步下降,这是因为随着GO的加入,电极表面-COOH>6]3−/4−发生静电斥力,进一步阻碍了电子转移到电极表面。然而,实施例1制备的CS/GO/Cu(II)-IIP(曲线b)由于模版离子的洗脱之后留下印迹空穴能够有利于电子转移至电极表面,因此相较于曲线c和d峰电流值明显增大。

同样将上述电极在开路电压下以高频为100 kHz,低频为0.01 Hz参数下进行电化学阻抗图谱测试,得到的电化学阻抗图谱 (EIS) 见图6,结果与CV测试结果一致,由于GCE表面的CS阻碍了[Fe(CN)6]3−/4−和GCE之间的电子转移导致电阻增大表现出半圆直径增大。

实施例6:Cu(II) 的检测

采用CHI-660C电化学工作站以修饰电极作为工作电极,饱和甘汞电极作为参比电极,铂片电极作为辅助电极对Cu(II) 进行检测,向25 mL 电解池中加入20 mL 含有不同浓度Cu(II) 的HAc-NaAc 缓冲液 (pH=5.0),利用差示脉冲阳极溶出伏安法测试溶出峰电流值。其测试图见图6,结果表明,不同浓度的Cu(II) 所对应的峰电流值具有良好的线性关系(ipc>(μA) =0.8081CCu(II)(μmol/L)-0.4133>2=0.9988),说明制备的传感器对Cu(II)>

实施例7:CS/GO/Cu(II)-IIP电极的电化学传感器的选择性测试

采用CHI-660C电化学工作站以修饰电极作为工作电极,饱和甘汞电极作为参比电极,铂片电极作为辅助电极对Cu(II) 进行检测。

(1) 向25 mL 电解池中加入20 mL 含有100 μM Cu(II) 的HAc-NaAc 缓冲液

(pH=5.0),利用差示脉冲阳极溶出伏安法测试溶出峰电流值I0

(2) 向25 mL 电解池中加入20 mL 100 μM Cu(II) 和分别含有1 mM Fe, Cr, Na, K,Mg,

Al, Co, Mn, Ni, Zn共存的HAc-NaAc 缓冲液 (pH=5.0),利用差示脉冲阳极溶出伏安法测试溶出峰电流值I;

(3) 将步骤 (1) 和 (2) 所得电流值的比值 (I/I0)>

其测试图见图8,结果表明,当Cu(II) 与其他金属离子共存时,传感器的溶出峰电流比值接近1,说明制备的传感器对Cu(II) 表现出了良好的选择性。

实施例8:CS/GO/Cu(II)-IIP电极的电化学传感器的再现性测试取5根同样方法制备的电极在相同条件下进行溶出伏安检测,结果表明,5根电极检测出的峰电流的RSD=3.03%,表明传感器的重现性良好,其测试图见图9。

实施例9:CS/GO/Cu(II)-IIP电极的电化学传感器对实际样品的检测

(1)实际样品的前处理:分别以实验室自来水和河水作为实际样品检测,自来水和河水分别取自上海第二工业大学环境实验楼和校内河道水。实验室自来水无需前处理,河水经抽滤去除悬浮物备用;

(2)以实施例6中测试标准曲线采用加标回收方式检测不同加标量下的回收率,测试结果见表1。

表1为实施例9中实际样品的加标回收率

以上实施例的说明仅是本发明的优选实施方式,应当指出,对于所述技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以对本发明进行若有改进和修饰,这些改进和修饰也应视为本发明权利要求的保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号