首页> 中国专利> 一种可电场调控选择性释放生物分子的复合双层薄膜及其制备方法

一种可电场调控选择性释放生物分子的复合双层薄膜及其制备方法

摘要

本发明公开了一种可电场调控选择性释放生物分子的复合双层薄膜及其制备方法。薄膜通过电化学沉积法连续沉积,下层为传统掺杂的聚吡咯膜层,上层为含有两类生物分子共沉积的聚吡咯复合层。上、下两层的厚度和成分可分别通过电化学沉积电量和沉积电流及时间进行调控。本发明的薄膜具有良好的生物相容性、并且鉴于生物分子本身由于电极附近pH变化所带来的不同变化,以及两类生物分子的粒径和电负性的较大差异,能够通过不同电压调控原位两类生物分子的选择性释放,定时定点的为细胞提供不同时期所需的相关生长因子。薄膜制备过程简单易行,可广泛应用于体外细胞培养、组织工程、医疗器械表面涂层等领域。

著录项

  • 公开/公告号CN108411344A

    专利类型发明专利

  • 公开/公告日2018-08-17

    原文格式PDF

  • 申请/专利权人 浙江大学;

    申请/专利号CN201810068895.0

  • 发明设计人 程逵;朱翼飞;翁文剑;

    申请日2018-01-24

  • 分类号C25D9/02(20060101);C25D5/54(20060101);C08G73/06(20060101);

  • 代理机构33200 杭州求是专利事务所有限公司;

  • 代理人万尾甜;韩介梅

  • 地址 310058 浙江省杭州市西湖区余杭塘路866号

  • 入库时间 2023-06-19 06:13:14

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-01-10

    授权

    授权

  • 2018-09-11

    实质审查的生效 IPC(主分类):C25D9/02 申请日:20180124

    实质审查的生效

  • 2018-08-17

    公开

    公开

说明书

技术领域

本发明属于生物医用薄膜领域,具体涉及一种可电场调控选择性释放生物分子的复合双层薄膜及其制备方法,该薄膜可实现由电场调控原位选择性释放细胞所需的生物因子。

背景技术

传统聚吡咯作为近年来被广泛研究的一种导电聚合物,具有制备简单,形貌均匀,成分可控,生物相容性好的特点[X.H.Chu,Q.Xu,Z.Q.Feng,et al.In vitrobiocompatibility of polypyrrole/PLGA conductive nanofiber scaffold withcultured rat hepatocytes.Materials Research Express,2014,1(3):035402.],吡咯聚合方式简单来说,先单体在电极表面失去一个电子而被氧化为正性原子团,接着生成正性原子团的二聚、三聚、多聚体。正性原子团间存在静电斥力,而支撑电解液中的掺杂阴离子在其间就起到了“桥梁”的作用,使得齐聚反应以较快的速度发生,并且在聚合过程中以电荷补偿的方式同PPy的主链相连接。当施加外界负电压刺激时,聚吡咯转变为中性的还原态,会实现膜中负电性离子的释放。

但沉积有生物分子的聚吡咯膜层会出现生物相容性大幅下降的情况[D.D.Ateh,P.Vadgama,H.A.Navsaria.Culture of human keratinocytes on polypyrrole-basedconducting polymers.Tissue Engineering,2006,12(4):645-655.],经研究是由于生物分子作为掺杂剂导致的聚吡咯聚合度降低,聚合度低的聚吡咯细胞毒性较大。

因此一种新的沉积生物分子聚吡咯薄膜的制备方法势在必行,并且细胞生长不同时期所需生长因子不同,单一的生物分子沉积并不能满足细胞生长的需求,一种能够在外场调控下原位定时选择性生长因子的薄膜的出现对体外细胞培养、组织工程等生物医学工程领域有较大意义。

发明内容

本发明的目的是提供一种可电场调控选择性释放生物分子的复合双层薄膜及其制备方法,该薄膜为由两类生物分子共沉积的复合双层聚吡咯薄膜,能够实现电场调控选择性原位定时定点提供细胞不同时期生长所需不同生长因子、具有良好生物相容性、制备方法简便,。

本发明的可电场调控选择性释放生物分子的复合双层薄膜,是在基底上以传统掺杂剂掺杂的聚吡咯膜层为下层,以两类生物分子共沉积的聚吡咯膜层为上层,所述的两类生物分子其负电性差异满足如下条件:在正电压刺激下一类生物分子得到释放,而在负电压刺激下另一类生物分子得到释放。该两类生物分子的粒径差距较大且负电性差距较大,可在不同电压下实现选择性的释放。

上述技术方案中,所述的基底为ITO、FTO、钛片、钽片或具有导电薄膜的聚合物。所述的聚合物可以为聚乳酸或聚乙醇酸或聚已内酯或聚四氟乙烯或聚偏氟乙烯。

所述的传统掺杂剂为对甲苯磺酸钠或十二烷基苯磺酸钠或十二烷基硫酸钠。

所述的在正电压刺激下得到释放的一类生物分子通常为白蛋白或BMP-2。

所述的在负电压刺激下得到释放的一类生物分子可以为肝素或透明质酸。

制备上述的可电场调控选择性释放生物分子的复合双层薄膜的方法,步骤如下:

1)先将传统掺杂剂以1~50mg/ml的浓度溶于去离子水中,待其完全溶解,加入吡咯单体,吡咯单体浓度为0.1~0.5M,配置出下层沉积液;

2)将生物分子A和生物分子B依次溶于去离子水中,浓度分别为0.02~2mg/ml和0.5~5mg/ml,待其完全溶解,加入吡咯单体,吡咯单体浓度为0.1~0.5M,配置出上层沉积液;

3)将基板放入下层沉积液中作为工作电极,以Pt或石墨电极为对电极,采用计时电位法进行恒电流沉积,沉积得到下层传统掺杂的聚吡咯膜层;

4)将具有下层聚吡咯膜层的基体直接转移到上层沉积液中作为工作电极,以Pt或石墨电极为对电极,采用计时电位法进行恒电流沉积,得到复合双层聚吡咯薄膜,将薄膜用去离子水洗净之后保存在37℃烘箱中。

优选的,所述的步骤3)中沉积参数为:以0.1~2mA的电流沉积10~300s。

所述的步骤4)中沉积参数为:以0.1~2mA的电流沉积10~300s。

所述的生物分子A为白蛋白或BMP-2。

所述的生物分子B为肝素或透明质酸。

本发明以生物相容性良好的传统聚吡咯膜作为基底,在其成核基础上继续生长聚合,提高顶层沉积有生物分子的聚吡咯生物相容性,实现两类生物分子共沉积的同时,得到了生物相容性良好的聚吡咯薄膜。并且因所选生物分子的粒径大小和负电性强弱相差较大,如:白蛋白粒径较小,负电性较弱(等电点4.7),肝素作为已知负电性最强的生物分子,其具有由六糖或八糖重复单位构成的线形链状分子,粒径较大,两种类型分子在相同电压刺激下的释放行为出现了明显差异,正电压刺激下白蛋白得到释放,而负电压条件下肝素得到释放,实现了两类生物分子的选择性释放,能够原位定时定点为细胞生长提供不同的生长因子,可应用于体外细胞培养、组织工程、医疗器械表面涂层等领域。

附图说明

图1是本发明的复合双层薄膜(Ppy-A/B/Ppy)的结构示意图。

图2是Ppy-BMP-2/Hep/Ppy双层薄膜的SEM图。

图3是PPY-BMP-2/HA/PPY双层薄膜的生物相容性图。

图4是Ppy-BSA/Hep/Ppy双层薄膜在负电压条件下BSA和Hep释放量图。

图5是Ppy-BSA/Hep/Ppy双层薄膜在正电压条件下BSA和Hep释放量图。

图6是Ppy-BSA/Hep/Ppy双层薄膜在负电压条件下释放Hep后e-1细胞的ALP活性图。

图7是BSA/Hep/Ppy薄膜的生物相容性图。

具体实施方式

下面结合实施例和附图来详细说明本发明,但本发明并不仅限于此。

实施例1

1)先将传统掺杂剂以20mg/ml的浓度溶于去离子水中,待其完全溶解,加入吡咯单体,浓度为0.1M,配置出下层沉积液;

2)将生物分子BMP-2和生物分子肝素钠依次溶于去离子水中,浓度分别为0.02mg/ml和5mg/ml,待其完全溶解,加入吡咯单体,浓度为0.1M,配置出上层沉积液;

3)将基板放入底层沉积液中作为工作电极,以Pt电极为对电极,采用计时电位法,以1mA的电流在基板上沉积60s,沉积得到下层传统掺杂的聚吡咯膜层;

4)将具有下层聚吡咯膜层的基体直接转移到含有生物分子的沉积液中以0.5mA的电流在基板上沉积200s,即得所述的双层复合聚吡咯薄膜,将薄膜去离子水洗净之后保存在37℃烘箱中。

本薄膜宏观呈微黑色,结构示意图见图1,微观形貌图见图2,由20~40nm的纳米颗粒组成。

实施例2

1)先将传统掺杂剂以1mg/ml的浓度溶于去离子水中,待其完全溶解,加入吡咯单体,浓度为0.2M,配置出下层沉积液;

2)将生物分子BMP-2和生物分子透明质酸依次溶于去离子水中,浓度分别为0.04mg/ml和1mg/ml,待其完全溶解,加入吡咯单体,浓度为0.2M,配置出上层沉积液;

3)将基板放入底层沉积液中作为工作电极,以Pt电极为对电极,采用计时电位法,以0.1mA的电流在基板上沉积300s,沉积得到下层传统掺杂的聚吡咯膜层;

4)将具有下层聚吡咯膜层的基体直接转移到含有生物分子的沉积液中以2mA的电流在基板上沉积10s,即得所述的双层复合聚吡咯薄膜,将薄膜去离子水洗净之后保存在37℃烘箱中。

实施例3

1)先将传统掺杂剂以50mg/ml的浓度溶于去离子水中,待其完全溶解,加入吡咯单体,浓度为0.5M,配置出下层沉积液;

2)将生物分子白蛋白和生物分子透明质酸依次溶于去离子水中,浓度分别为2mg/ml和0.5mg/ml,待其完全溶解,加入吡咯单体,浓度为0.5M,配置出上层沉积液;

3)将基板放入底层沉积液中作为工作电极,以Pt电极为对电极,采用计时电位法,以2mA的电流在基板上沉积10s,沉积得到下层传统掺杂的聚吡咯膜层;

4)将具有下层聚吡咯膜层的基体直接转移到含有生物分子的沉积液中以0.1mA的电流在基板上沉积300s,即得所述的双层复合聚吡咯薄膜,将薄膜去离子水洗净之后保存在37℃烘箱中。

实施例4

1)先将传统掺杂剂以20mg/ml的浓度溶于去离子水中,待其完全溶解,加入吡咯单体,浓度为0.2M,配置出下层沉积液;

2)将生物分子BMP-2和生物分子透明质酸依次溶于去离子水中,浓度分别为0.04mg/ml和1mg/ml,待其完全溶解,加入吡咯单体,浓度为0.1M,配置出上层沉积液;

3)将基板放入底层沉积液中作为工作电极,以石墨电极为对电极,采用计时电位法,以1mA的电流在基板上沉积100s,沉积得到下层传统掺杂的聚吡咯膜层;

4)将具有下层聚吡咯膜层的基体直接转移到含有生物分子的沉积液中以0.5mA的电流在基板上沉积200s,即得所述的双层复合聚吡咯薄膜,将薄膜去离子水洗净之后保存在37℃烘箱中;

5)分别在ITO基板和PPY-BMP-2/HA/PPY双层膜样上接种5*104密度的e-1细胞,在细胞培养1天和3天的时候,利用CCK-8(Cell>

实施例5

1)先将传统掺杂剂以20mg/ml的浓度溶于去离子水中,待其完全溶解,加入吡咯单体,浓度为0.2M,配置出下层沉积液;

2)将生物分子BSA和生物分子肝素钠依次溶于去离子水中,浓度分别为0.5mg/ml和1mg/ml,待其完全溶解,加入吡咯单体,浓度为0.1M,配置出上层沉积液;

3)将基板放入底层沉积液中作为工作电极,以石墨电极为对电极,采用计时电位法,以1mA的电流在基板上沉积80s,沉积得到下层传统掺杂的聚吡咯膜层;

4)将具有下层聚吡咯膜层的基体直接转移到含有生物分子的沉积液中以0.5mA的电流在基板上沉积160s,即得所述的双层复合聚吡咯薄膜,将薄膜去离子水洗净之后保存在37℃烘箱中。

5)分别在ITO基板和PPY-BSA/Hep/PPY双层膜样上接种5*104密度的e-1细胞,在细胞培养1天和3天的时候,利用CCK-8(Cell>

实施例6

1)先将传统掺杂剂以20mg/ml的浓度溶于去离子水中,待其完全溶解,加入吡咯单体,浓度为0.2M,配置出下层沉积液;

2)将生物分子BSA和生物分子肝素钠依次溶于去离子水中,浓度分别为0.5mg/ml和1mg/ml,待其完全溶解,加入吡咯单体,浓度为0.1M,配置出上层沉积液;

3)将基板放入底层沉积液中作为工作电极,以Pt电极为对电极,采用计时电位法,以1mA的电流在基板上沉积100s,沉积得到下层传统掺杂的聚吡咯膜层;

4)将具有下层聚吡咯膜层的基体直接转移到含有生物分子的沉积液中以0.5mA的电流在基板上沉积200s,即得所述的双层复合聚吡咯薄膜,将薄膜去离子水洗净之后保存在37℃烘箱中。

对本例制得的样品进行不同大小的负电压处理,时间为10min,通过MicroBCA试剂盒测量BSA的释放量,通过ICP测量肝素的释放量,结果如图4所示,负电压条件下,BSA的释放受到抑制,而Hep的释放量大大增加。

实施例7

1)先将传统掺杂剂以20mg/ml的浓度溶于去离子水中,待其完全溶解,加入吡咯单体,浓度为0.2M,配置出下层沉积液;

2)将生物分子BSA和生物分子肝素钠依次溶于去离子水中,浓度分别为0.5mg/ml和1mg/ml,待其完全溶解,加入吡咯单体,浓度为0.1M,配置出上层沉积液;

3)将基板放入底层沉积液中作为工作电极,以Pt电极为对电极,采用计时电位法,以1mA的电流在基板上沉积100s,沉积得到下层传统掺杂的聚吡咯膜层;

4)将具有下层聚吡咯膜层的基体直接转移到含有生物分子的沉积液中以0.5mA的电流在基板上沉积200s,即得所述的双层复合聚吡咯薄膜,将薄膜去离子水洗净之后保存在37℃烘箱中。

对本例制得的样品进行-0.3mA的电处理,时间分别为30s、60s、300s、600s、900s,通过MicroBCA试剂盒测量BSA的释放量,通过ICP测量肝素的释放量,负电压条件下,BSA的释放随着刺激时间的增加变化较小,而Hep的释放量随着刺激时间的增加而逐渐增加。

实施例8

1)先将传统掺杂剂以25mg/ml的浓度溶于去离子水中,待其完全溶解,加入吡咯单体,浓度为0.1M,配置出下层沉积液;

2)将生物分子BSA和生物分子肝素钠依次溶于去离子水中,浓度分别为1mg/ml和2mg/ml,待其完全溶解,加入吡咯单体,浓度为0.1M,配置出上层沉积液;

3)将基板放入底层沉积液中作为工作电极,以Pt电极为对电极,采用计时电位法,以1.5mA的电流在基板上沉积80s,沉积得到下层传统掺杂的聚吡咯膜层;

4)将具有下层聚吡咯膜层的基体直接转移到含有生物分子的沉积液中以1mA的电流在基板上沉积120s,即得所述的双层复合聚吡咯薄膜,将薄膜去离子水洗净之后保存在37℃烘箱中。

对本例制得的样品进行正电压处理,时间为10min,通过MicroBCA试剂盒测量BSA的释放量,通过ICP测量肝素的释放量,结果如图5所示,正电压条件下,Hep的释放受到抑制,而BSA的释放量大大增加。

实施例9

1)先将传统掺杂剂以25mg/ml的浓度溶于去离子水中,待其完全溶解,加入吡咯单体,浓度为0.1M,配置出下层沉积液;

2)将生物分子BSA和生物分子肝素钠依次溶于去离子水中,浓度分别为1mg/ml和2mg/ml,待其完全溶解,加入吡咯单体,浓度为0.1M,配置出上层沉积液;

3)将基板放入底层沉积液中作为工作电极,以Pt电极为对电极,采用计时电位法,以1.5mA的电流在基板上沉积80s,沉积得到下层传统掺杂的聚吡咯膜层;

4)将具有下层聚吡咯膜层的基体直接转移到含有生物分子的沉积液中以1mA的电流在基板上沉积120s,即得所述的双层复合聚吡咯薄膜,将薄膜去离子水洗净之后保存在37℃烘箱中。

对本例制得的样品进行+0.3mA的电处理,时间分别为30s、60s、300s、600s、900s,通过MicroBCA试剂盒测量BSA的释放量,通过ICP测量肝素的释放量,正电压条件下,BSA的释放随着刺激时间的增加而逐渐增加,而Hep的释放量随着刺激时间的增加变化不大。

实施例10

1)先将传统掺杂剂以15mg/ml的浓度溶于去离子水中,待其完全溶解,加入吡咯单体,浓度为0.2M,配置出下层沉积液;

2)将生物分子BSA和生物分子肝素钠依次溶于去离子水中,浓度分别为0.5mg/ml和1mg/ml,待其完全溶解,加入吡咯单体,浓度为0.1M,配置出上层沉积液;

3)将基板放入底层沉积液中作为工作电极,以Pt电极为对电极,采用计时电位法,以1mA的电流在基板上沉积60s,沉积得到下层传统掺杂的聚吡咯膜层;

4)将具有下层聚吡咯膜层的基体直接转移到含有生物分子的沉积液中以0.5mA的电流在基板上沉积180s,即得所述的双层复合聚吡咯薄膜,将薄膜去离子水洗净之后保存在37℃烘箱中。

分别在用SDS洗去膜中生物分子的Ppy-BSA/Hep/Ppy双层薄膜(参照组)和未处理的Ppy-BSA/Hep/Ppy双层薄膜上进行e-1细胞的体外培养,培养1day和3days的时候加入-2V的电刺激释放Hep,在细胞培养达到7days的时候,将细胞裂解,然后分别用BCA试剂盒和ALP试剂盒测试总蛋白和ALP的量,最后计算得出ALP活性结果如图6,和参照组对比,通过负电压刺激释放Hep对细胞的分化性能有较大的促进作用。

对比例1

1)将生物分子白蛋白和生物分子肝素钠依次溶于去离子水中,浓度分别为0.5mg/ml和2mg/ml,待其完全溶解,加入吡咯单体,吡咯单体浓度为0.1M,配置出沉积液;

2)将基板放入沉积液中作为工作电极,以Pt电极为对电极,采用计时电位法,以1mA的电流在基板上沉积30s,沉积得到含有生物分子的聚吡咯膜层;

3)将另一基板放入新的沉积液中作为工作电极,以Pt电极为对电极,采用计时电位法,以0.5mA的电流在基板上沉积120s,沉积得到另一含有生物分子的聚吡咯膜层

4)分别在ITO基板和BSA/Hep/PPY膜样上接种5*104密度的e-1细胞,在细胞培养3天的时候,利用CCK-8(Cell>

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号