首页> 中国专利> 一类具有聚集诱导发光性质的荧光化合物在有机胺检测中的应用

一类具有聚集诱导发光性质的荧光化合物在有机胺检测中的应用

摘要

本发明属于分析检测技术领域,公开了一类具有聚集诱导发光性质的荧光化合物在有机胺检测中的应用。所述具有聚集诱导发光性质的荧光化合物,具有式I的结构,R

著录项

  • 公开/公告号CN108300456A

    专利类型发明专利

  • 公开/公告日2018-07-20

    原文格式PDF

  • 申请/专利权人 华南理工大学;

    申请/专利号CN201810077685.8

  • 申请日2018-01-26

  • 分类号

  • 代理机构广州市华学知识产权代理有限公司;

  • 代理人陈智英

  • 地址 510640 广东省广州市天河区五山路381号

  • 入库时间 2023-06-19 05:57:58

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-08-18

    授权

    授权

  • 2018-08-14

    实质审查的生效 IPC(主分类):C09K11/06 申请日:20180126

    实质审查的生效

  • 2018-07-20

    公开

    公开

说明书

技术领域

本发明属于分析检测技术领域,特别涉及一类具有聚集诱导发光性质的荧光化合物用于检测有机胺。

背景技术

荧光分析具有实时快速报告信号的特点。荧光信号的采集方便且直观,可用于快速的定性分析。然而传统的荧光基团在聚集态时会发生自猝灭现象,使得在高浓度情况下其荧光强度与浓度存在非线性关系。这种猝灭现象使得以荧光信号为输出信号的检测手段受到制约。同时,常见荧光染料要求在溶液条件下进行检测,而此状态下,荧光基团容易受到光漂白效应的影响。

聚集诱导发光现象的发现使得一类具有AIE性质的染料分子有效克服了上述缺点。这种性质的分子在诸多领域得到了广泛运用,其中便包括食品安全检测。由于AIE体系的分子不存在染料浓度过高而导致自猝灭的现象,此现象有利于在不破坏食品完整性的前提下获得检测结果,并能够通过增加染料浓度得到较高的荧光发射强度,而不受制于常见染料的浓度猝灭效应。

目前常用的生物胺检测技术中,由于很多食品中生物胺分子缺少发色集团,需要对生物胺进行衍生处理,大多检测技术存在处理时间长、方式繁琐、仪器贵重不方便携带、检测成本较高等缺点。而本发明的荧光化合物能够与有机胺进行反应,生成物与荧光化合物具有不同波长的荧光性质,变化明显。本发明易于检测有机胺,同时具有携带方便、检测结果以不同波长荧光显示出来等优点。

发明内容

为了克服上述现有技术的缺点与不足,本发明的目的在于提供一类具有聚集诱导发光性质的荧光化合物的应用。本发明的荧光化合物在分析检测领域的应用,特别是用于有机胺的检测。

本发明的荧光化合物能与有机胺进行反应,生成物波长发蓝绿光,与没反应前的化合物发的红光成鲜明对比,可用于胺的检测。

本发明的目的通过下述方案实现:

一类具有聚集诱导发光性质的荧光化合物用于有机胺的检测;所述荧光化合物具有式I的结构:

其中,R1为芳族基团。

所述R1优选为以下结构式中一种:

R2各自独立地选自氢、甲基、乙基、甲氧基、二甲基氨基和二乙基氨基中的一种。

上述具有聚集诱导发光性质的荧光化合物,具有在溶液状态下几乎不发光或发射弱荧光,但在固态及聚集状态下可获得强荧光发射的聚集诱导发光性质。

将上述具有聚集诱导发光性质的荧光化合物用于有机胺的检测,具体为在溶剂中,将具有聚集诱导发光性质的荧光化合物与有机胺进行反应,然后进行光致发光光谱检测。

所述溶剂为四氢呋喃、四氢呋喃与水的混合物。所述溶剂优选为四氢呋喃与水的混合溶剂,四氢呋喃的含量为混合溶剂体积的20~100%,优选为20~50%。

所述有机胺为伯胺、仲胺、叔胺,优选为伯胺;所述伯胺为乙胺、正丁胺、正己胺、十二胺等;

所述荧光化合物的浓度为10μmol/L,有机胺的浓度为0~130mmol/L。

所述反应的时间为10min~90min。

所述光致发光谱检测是指将485nm波长处发射光强度与645nm波长长处发光强度的比值来判断荧光化合物对有机胺响应强弱。

上述具有聚集诱导发光性质的荧光化合物,具有比例式荧光双发射信号,荧光发射强度强,抗光漂白效果好等特点,可广泛应用于分析检测、生物分析等领域。

本发明的荧光化合物能与有机胺反应,有机胺进攻荧光化合物的碳碳双键使其断裂,使得荧光化合物的共轭程度降低,反应后的物质发蓝绿色光。

本发明相对于现有技术,具有如下的优点及有益效果:

本发明提供的具有聚集诱导发光性质的荧光化合物在有机胺检测领域中的应用具有操作简便、迅速、选择性好、荧光信号抗光漂白性质优异、荧光发射光谱变化明显的特点。该方法在有机胺的检测研究领域具有实际的应用价值,可用于食品安全检测、试纸检测等。

本发明的荧光化合物易于制备,原料易得。

附图说明

图1为实施例2中荧光化合物TPA-T-BTZ与正己胺反应后溶液的荧光强度比随THF含量变化的柱状图;荧光强度比是指I1短波长处(λEm=485nm)与I2长波长处(λEm=645nm)强度之比;

图2为实施例3中在不同反应时间下,荧光化合物TPA-T-BTZ与正己胺反应后溶液的荧光发射光谱图;

图3为实施例3中荧光化合物TPA-T-BTZ与正己胺反应后溶液的荧光强度比随反应时间变化的散点图;

图4为实施例4中荧光化合物TPA-T-BTZ与不同浓度的正己胺反应后溶液的荧光发射光谱图;

图5为实施例4中荧光化合物TPA-T-BTZ与不同浓度的正己胺反应后溶液的荧光强度比随正己胺浓度变化的散点图;

图6为实施例5中荧光化合物TPA-T-BTZ与不同有机胺反应后溶液的荧光强度比随不同有机胺变化的柱状图;

图7为实施例5中荧光化合物TPA-T-BTZ与不同有机胺反应后溶液的紫外灯照射图。

具体实施方式

下面结合附图和具体实施例对本发明作进一步详细的描述,但本发明不限于此。

实施例1中除化合物3及所应用染料TPA-T-BTZ外,其他物料均可从商业渠道获得。

实施例1荧光化合物的制备

具有聚集诱导发光性质的荧光化合物(TPA-T-BTZ)制备的反应方程式为:

荧光化合物TPA-T-BTZ的制备:称取1.7g化合物1,0.95g化合物2,2g碳酸钾,0.2g二(三苯基膦)二氯化钯,加入40mL甲苯,10mL按体积比1:1混合后除氧的乙醇水溶液,在无氧、110℃回流的条件下,利用Suzuky反应制备出化合物3;称取0.71g化合物3,0.39g化合物4,加入12mL二氯甲烷,6mL无水乙醇,0.5mL哌啶,室温(25℃)反应24小时后,得到黑色晶体沉淀,过滤收集沉淀,以乙醇洗涤后,在二氯甲烷和石油醚混合溶剂(体积比为1:1)中重结晶,得黑色晶体TPA-T-BTZ,产量0.85g,产率82%。

1H-NMR(500MHz,CDCl3)δ8.35(s,1H),8.04(d,J=7.9Hz,1H),7.89(dd,J=8.0,0.5Hz,1H),7.72(dd,J=4.1,0.5Hz,1H),7.55(d,J=8.8Hz,2H),7.51(td,J=8.3,1.2Hz,1H),7.40(td,J=8.3,1.2Hz,1H),7.35-7.27(m,5H),7.19-7.12(m,4H),7.10(t,J=7.4Hz,2H),7.06(d,J=8.8Hz,2H).

13C-NMR(125MHz,CDCl3)δ162.92,153.69,153.15,149.07,146.95,138.82,137.82,134.90,134.87,129.50,127.25,126.87,126.09,125.57,125.19,123.90,123.14,123.10,122.38,121.64,117.12,99.97.

HRMS(TOF LD+):m/z=511.1141(C32H21N3S2+,calcd=511.1171).

实施例2~5为荧光化合物用于有机胺的检测

实施例2

将荧光化合物TPA-T-BTZ(TPA-T-BTZ荧光染料)溶于THF中,得探针溶液(1×10-4mol/L),随后加入不同比例的水与THF混合溶剂,得到TPA-T-BTZ的不同极性溶剂分散液;随后加入正己胺,正己胺在溶液中的浓度为100mmol/L,TPA-T-BTZ在溶液中的浓度为10μmol/L,THF在溶剂中体积百分比含量分别为20%、40%、50%、60%、80%、100%;反应60min,测试这些溶液的荧光发射强度。将荧光发射的短波长处(λEm=485nm)与长波长处(λEm=645nm)强度之比作为变量,THF含量为自变量,绘制柱状图见图1。图1为实施例2中荧光化合物TPA-T-BTZ与正己胺反应后溶液的荧光强度比随THF含量变化的柱状图;所述荧光强度比是指I1短波长处(λEm=485nm)与I2长波长处(λEm=645nm)强度之比。

由图1可知,该荧光化合物对于正己胺具有响应,且THF溶液的体积比处于20%-50%之间时,短波长与长波长的强度之比较大,对于正己胺的响应性较好。

实施例3

由实施例2的结果和考虑到溶剂对荧光化合物的溶解性,选择THF与H2O的体积比为1:1的溶液进行时间与响应强弱的验证。将TPA-T-BTZ荧光染料(荧光化合物TPA-T-BTZ)溶于THF中,得探针溶液(1×10-4mol/L),随后加入水和正己胺,THF的含量为溶剂总体积的50%,正己胺的浓度为100mmol/L,TPA-T-BTZ在溶液中的浓度为10μmol/L;分别反应0、10、20、30、40、50、60、75、80、85、90min,测试这些溶液的荧光发射强度,绘制荧光发射光谱图见图2。图2为实施例3中在不同反应时间下,荧光化合物TPA-T-BTZ与正己胺反应后溶液的荧光发射光谱图。

将荧光发射的短波长处(λEm=485nm)与长波长处(λEm=645nm)强度之比作为变量,反应时间为自变量,绘制散点图见图3。图3为实施例3中荧光化合物TPA-T-BTZ与正己胺反应后溶液的荧光强度比随反应时间变化的散点图。由图3可知,该荧光化合物对于正己胺具有响应,且随着反应时间的增加,响应强度开始呈线性增加,大约80分钟时反应完全,之后随着时间增加,强度之比基本不变。

实施例4

将TPA-T-BTZ荧光染料(荧光化合物TPA-T-BTZ)溶于THF中,得探针溶液(1×10-4mol/L),加入水和不同含量的正己胺,THF的含量为溶剂总体积的50%,TPA-T-BTZ在溶液中的浓度为10μmol/L,正己胺的浓度分别为0、5、10、15、20、30、40、60、80、90、100、110、120、130mmol/L;反应60min,测试这些溶液的荧光发射强度,绘制荧光光谱图见图4。图4为实施例4中荧光化合物TPA-T-BTZ与不同浓度的正己胺反应后溶液的荧光发射光谱图。

将荧光发射的短波长处(λEm=485nm)与长波长处(λEm=645nm)强度之比作为变量,正己胺浓度作为自变量,绘制散点图见图5。图5为实施例4中荧光化合物TPA-T-BTZ与不同浓度的正己胺反应后溶液的荧光强度比随正己胺浓度变化的散点图。由图5可知,TPA-T-BTZ分子对正己胺响应具有两段线性区间,分别为0~20mmol/L及20~130mmol/L,0~20mmol/L段响应强度增加较快,之后随着浓度增加,响应强度之比呈现较为平缓地线性增加。

实施例5

将TPA-T-BTZ荧光染料溶于THF中,得探针溶液(1×10-4mol/L),加入水和不同的有机胺(乙胺、正丁胺、正己胺、十二胺、二乙胺、三甲胺、三乙胺),有机胺的浓度均为100mmol/L,THF的含量为溶剂总体积的50%,TPA-T-BTZ在溶液中的浓度为10μmol/L;反应时间为1h,测试这些溶液的荧光发射强度。将荧光发射的短波长处与长波长处强度之比作为变量,绘制的响应强度对比柱状图见图6。图6为实施例5中荧光化合物TPA-T-BTZ与不同有机胺反应后溶液的荧光强度比随不同有机胺变化的柱状图。由图6可知,化合物TPA-T-BTZ对一级胺均具有较好的响应性,对二级胺或三级胺响应性较弱或不响应。图7为实施例5中荧光化合物TPA-T-BTZ与不同有机胺反应后溶液的紫外灯照射图。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号