首页> 中国专利> 一种深厚淤泥质软土路基的加固施工工艺

一种深厚淤泥质软土路基的加固施工工艺

摘要

本发明公开了一种深厚淤泥质软土路基的加固施工工艺,其技术方案要点是包括如下步骤:(1)划定施工范围,开挖路基槽,并铺设砂石层;(2)浇灌压敏型胶粘层;(3)铺设钢筋笼骨架;(4)插入管桩,管桩的一端穿过压敏型胶粘层并插进砂石层内、另一端沿竖直方向向上延伸;(5)依次铺设碎石块层、火山岩层、混凝土层;(6)固实;压敏型胶粘层的固化时间较长,将管桩插进砂石层内,经过重载施压后,压敏型胶粘层具有良好的胶粘能力,能够牢固地粘结在管桩的管壁上,经过重载施压后,沉管底端的高度保持一致,显著提高了加固路段的载重稳定性。

著录项

  • 公开/公告号CN108003821A

    专利类型发明专利

  • 公开/公告日2018-05-08

    原文格式PDF

  • 申请/专利权人 江苏惠淳建设有限公司;

    申请/专利号CN201711255183.1

  • 申请日2017-12-02

  • 分类号C09J151/00(20060101);C09J133/14(20060101);C09J11/04(20060101);C08F220/06(20060101);C08F220/18(20060101);C08F212/08(20060101);C08F220/56(20060101);C08F287/00(20060101);C08F220/14(20060101);C08F222/38(20060101);C08F2/24(20060101);E01C3/00(20060101);

  • 代理机构11508 北京维正专利代理有限公司;

  • 代理人杨春女

  • 地址 211300 江苏省南京市高淳区东坝镇芜太路28号

  • 入库时间 2023-06-19 05:17:29

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-10-25

    授权

    授权

  • 2018-06-01

    实质审查的生效 IPC(主分类):C09J151/00 申请日:20171202

    实质审查的生效

  • 2018-05-08

    公开

    公开

说明书

技术领域

本发明涉及道路施工,特别涉及一种深厚淤泥质软土路基的加固施工工艺。

背景技术

随着市政基础设施建设不断发展,市政道路工程在软土段施工出现许多行之有效的施工工艺。但是在沿海地区有相当多的淤泥质软土,并且淤泥质软土层较厚,部分地区甚至超过15米。对于如此深厚的软基路段,其路堤填筑稳定性极差,现有技术中釆用换填、排水板固结、粉喷桩、水泥搅拌桩等传统施工方法加固处理,但是工程质量难以达到较为理想的效果,其软基加固路段的工后沉降和跳车现象十分严重。

目前,现有专利中申请公布号为CN105625301A的中国专利公开了一种软基处理施工工艺,将沉管沉入软基的地面以下,并采用振动沉管的方式进行施工,起到增强软基地面强度的作用。

但是,现有技术中相邻沉管通常是相对设置的,将其深埋在地下后,当不同位置的沉管遭受重载施压时,会发生不同程度的沉降,导致沉管底端的竖直高度不一致,影响该软基加固路段的载重稳定性。

发明内容

本发明的目的是提供一种深厚淤泥质软土路基的加固施工工艺,经过重载施压后,沉管底端的高度保持一致,显著提高了加固路段的载重稳定性。

本发明的上述技术目的是通过以下技术方案得以实现的:

一种深厚淤泥质软土路基的加固施工工艺,包括如下步骤:

(1)划定施工范围,在软基上开挖路基槽,铺设砂石层;

(2)向砂石层上浇灌压敏型胶粘层,浇灌速度为5~10m2/min;

(3)然后将钢筋笼骨架铺设在压敏型胶粘层上;

(4)向钢筋笼骨架内等间距插入管桩,管桩的一端穿过压敏型胶粘层并插进砂石层内、另一端沿竖直方向向上延伸;

(5)在钢筋笼骨架上依次铺设碎石块层、火山岩层、混凝土层;

(6)在混凝土层上以5t/m2的重载施压15~20天进行固实。

通过采用上述技术方案,在砂石层上浇灌压敏型胶粘层,压敏型胶粘层的固化时间较长,将管桩插进砂石层内,钢筋笼骨架对相邻管桩在水平方向上进行约束,经过重载施压后,压敏型胶粘层具有良好的胶粘能力,能够牢固地粘结在管桩的管壁上,避免管桩底端在竖直方向上发生不一致的下沉,从而对软土路基进行有效加固。

本发明进一步设置为:步骤(3)中压敏型胶粘层采用丙烯酸酯-SEBS共聚物浇灌形成。

通过采用上述技术方案,丙烯酸酯-SEBS共聚物作为建筑用粘结剂,具有与无机建筑材料良好的粘结作用。丙烯酸酯类胶粘剂可室温固化,固化速度适中,胶层的抗重载强度高,具有优异的户外耐老化性和较好的耐水性,并且流动性良好,被粘物表面不需要特殊处理,固化后胶层表面平整;SEBS热塑性弹性体是以聚苯乙烯为末端段,以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物,SEBS不含不饱和双键,因此具有良好的稳定性和耐老化性;丙烯酸酯-SEBS共聚物兼具有丙烯酸酯与SEBS热塑性弹性体的优点,SEBS热塑性弹性体接枝在丙烯酸酯的分子链上,提高了丙烯酸酯胶粘剂的韧性,有助于增强共聚物在砂石层上的贴合性能,从而保证与砂石层表面的附着强度较高。

本发明进一步设置为:所述丙烯酸酯-SEBS共聚物包括如下重量份的组分:丙烯酸甲酯20~25份、丙烯酸异辛酯5~10份、SEBS热塑性弹性体10~12份、增强填料包裹体10~20份、丙烯酸乳液成膜物5~10份、N,N亚甲基双丙烯酰胺1~3份、过氧化二异丙苯0.5~1份与丙烯酸分散剂3~5份。

通过采用上述技术方案,丙烯酸甲酯是一种挥发性的不饱和甲基酯,作为有机合成中间体,也是合成高分子聚合物的单体,应用在粘合剂中;

丙烯酸异辛酯是一种重要的有机化工原料,可作为均一聚合或共聚合的单体,均一聚合物PMMA为无色透明的塑料,容易加工成型与调色,可用来生产有机玻璃、制造其他树脂、塑料、涂料、粘合剂、润滑剂、木材和软木的浸润剂、电机线圈的浸透剂、纸张上光剂、印染助剂和绝缘灌注材料等;

SEBS热塑性弹性体是由特种线型SBS加氢使双键饱和而制得,SEBS热塑性弹性体比较坚硬,刚性较强,模量较高,抗压强度比加氢前有显著提高,且对光氧、臭氧的耐老化性能较好,还具有优异的耐老化性,既具有可塑性,又具有高弹性,无需硫化即可加工使用;

增强填料包裹体有助于提高压敏型胶粘层的抗压强度,同时提高无机增强填料在压敏型胶粘层内的分散性,以及与砂石层的附着性能;

丙烯酸乳液成膜物是一个非均相的分散液,由一个连续的水相中的许多聚合物微粒组成,当水逐渐蒸发或被多孔表面吸收时,分散相浓度逐渐增大,这些聚合物微粒就慢慢接近,粒子间距离缩小,最后粒子间相互接触,开始产生凝结,此时水分继续减少,聚合物粒子接触更紧密,然后在粒子间形成细小的毛细管,毛细管力的作用促使聚合物自黏,形成薄膜,丙烯酸乳液成膜物有助于提高体系内各组分之间的融合性;

N,N亚甲基双丙烯酰胺是一种交联剂,有助于引发丙烯酸酯类与SEBS热塑性弹性体发生共聚合;

通过上述各组分,制备形成的丙烯酸酯-SEBS共聚物与砂石层表面的贴合性良好,有助于与砂石层表面保持牢固的附着状态,同时具有良好的柔韧性、较高的抗压强度等;当重载持续施压在该压敏型胶粘层上时,丙烯酸酯-SEBS共聚物进行二次的接枝反应,有助于增强压敏型胶粘层的粘结性能。

本发明进一步设置为:所述丙烯酸乳液成膜物的粘度范围在300~350mpa·s。

通过采用上述技术方案,限定丙烯酸乳液成膜物的粘度非常关键,粘度超过350mpa·s时,由于粘度太大,丙烯酸乳液成膜物容易产生团结,同时影响该压敏型胶粘层的流动性;而若丙烯酸乳液成膜物的粘度低于300mpa·s时,丙烯酸乳液成膜物在砂石层上的附着力较低,不利于该压敏型胶粘层与砂石层表面的贴合。

本发明进一步设置为:所述增强填料包裹体是采用聚硼硅氧烷熔融液对增强填料进行包裹,增强填料与聚硼硅氧烷的重量比为2:1,包裹后在-40℃下进行低温冷冻24h,冷冻后在300~320℃下进行高温烧结20~40min,待烧结体冷却至室温后进行粉碎。

通过采用上述技术方案,聚硼硅氧烷进行高温熔融,将增强填料浸润在聚硼硅氧烷熔融液中,熔融液对增强填料进行包裹,将增强填料包裹体放在坩埚中并在-40℃下进行低温冷冻24h,然后在300~320℃下进行高温烧结后再进行粉碎,有助于聚硼硅氧烷分子链与无机纳米基团更好地结合,同时能够提高压敏型胶粘层与砂石层之间的相容性。

本发明进一步设置为:增强填料包括纳米碳酸钙、纳米二氧化硅、滑石粉中至少一种。

通过采用上述技术方案,纳米碳酸钙又称为超微细碳酸钙,可改善塑料制品加工过程中的流动性,提高其成型性,还具有优异的分散性能,可均匀分散在体系内;纳米二氧化硅是超细纳米级的白色粉末,可均匀附着在丙烯酸乳液成膜物的表面,提高该胶粘层的抗压强度与硬度,同时,能够改善共混物的加工流动性,使加工的复合材料质地均匀,强度较高;滑石粉为白色微细无砂性的粉末,具有优良的润滑性、抗黏性、抗酸性、化学稳定性、良好的遮盖力和柔软性,在该体系中充当增强增韧辅助材料,增加胶粘层的抗张力强度、剪切强度,减小变形伸缩率和热膨胀系数,可均匀分散在丙烯酸乳液成膜物与其他组分的间隙内;上述三种增强填料中的任意一种添加到胶粘层体系内,具有较好的分散性与填充性,有助于提高胶粘层的抗压强度与硬度。

本发明进一步设置为:所述丙烯酸酯-SEBS共聚物的制备过程如下:

(1)配料:称取丙烯酸甲酯20~25份、丙烯酸异辛酯5~10份、SEBS热塑性弹性体10~12份、增强填料包裹体10~20份、丙烯酸乳液成膜物5~10份、N,N亚甲基双丙烯酰胺1~3份、过氧化二异丙苯0.5~1份与丙烯酸分散剂3~5份;

(2)向反应罐中加入SEBS热塑性弹性体,升温至180~190℃,搅拌2~2.5h;

(3)持续通入N2,并加入丙烯酸甲酯、丙烯酸异辛酯、丙烯酸分散剂、N,N亚甲基双丙烯酰胺与过氧化二异丙苯,搅拌4~5h;

(4)降温至160~170℃,加入丙烯酸乳液成膜物、增强填料包裹体进行搅拌1~2h;

(5)将步骤(4)搅拌后的混合物装桶储存。

通过采用上述技术方案,首先将SEBS热塑性弹性体在180~190℃的温度下进行预热、熔融,然后在通入N2的环境下,加入丙烯酸甲酯、丙烯酸异辛酯、丙烯酸分散剂、N,N亚甲基双丙烯酰胺与过氧化二异丙苯,有助于制备交联度较高的丙烯酸酯-SEBS共聚物;然后降温至160~170℃,加入丙烯酸乳液成膜物、增强填料包裹体,搅拌均匀,制得与砂石层表面贴合性更高的丙烯酸酯-SEBS共聚物。

本发明进一步设置为:步骤(5)中碎石块是采用破碎机破碎至5cm以下,并向破碎后的碎石块中掺入比例为40~45%的粉质粘土。

通过采用上述技术方案,将碎石块破碎成粒径为5cm以下的较小的碎石,有助于碎石块填充在钢筋笼骨架的空隙内,提高该软土路基加固结构的支撑性能;并且在破碎的碎石中掺杂40~45%的粉质粘土,粉质粘土具有良好的粘结作用,在碎石块的堆积过程中,有助于将碎石块粘结在一起,从而增强碎石之间连接的结构整体性。

本发明进一步设置为:浇灌压敏型胶粘层与插入管桩的时间间隔小于30min。

通过采用上述技术方案,缩短了浇灌压敏型胶粘层与插入管桩的时间间隔,从而保证在压敏型胶粘层尚未交联、固化时,进行管桩的插入,有助于提高施工的稳定性。

综上所述,本发明具有以下有益效果:

1、本发明公开了一种深厚淤泥质软土路基的加固施工工艺,软土路基经过加固后,具有优异的结构强度与硬度,提高了路堤填筑的稳定性;

2、钢筋笼骨架与管桩之间产生相互的约束作用,且利用压敏型胶粘层将钢筋笼骨架粘结在砂石层上,同时牢固粘结管桩,以减少管桩的底端高度下沉程度不一致的现象;

3、由于压敏型胶粘层固化时间很长,当施压重载15~20天后,在此过程中压敏型胶粘层会发生二次交联,进一步提高压敏型胶粘层的粘结能力;

4、压敏型胶粘层是利用丙烯酸酯类与SEBS热塑性弹性体发生接枝反应,同时添加增强填料包裹体、丙烯酸乳液成膜物,增强压敏型胶粘层与无机建筑材料的相容性。

具体实施方式

以下结合实施例对本发明作进一步详细说明。

实施例一:

一种丙烯酸酯-SEBS共聚物的制备过程如下:

(1)配料:称取丙烯酸甲酯20份、丙烯酸异辛酯5份、SEBS热塑性弹性体10份、增强填料包裹体10份、丙烯酸乳液成膜物5份、N,N亚甲基双丙烯酰胺1份、过氧化二异丙苯0.5份与丙烯酸分散剂3份;

(2)制备增强填料包裹体:采用聚硼硅氧烷熔融液对纳米碳酸钙进行包裹,纳米碳酸钙与聚硼硅氧烷的重量比为2:1,包裹后在-40℃下进行低温冷冻24h,冷冻后在300℃下进行高温烧结30min,待烧结体冷却至室温后进行粉碎;

(3)制备丙烯酸乳液成膜物:(1)预乳化:向反应瓶中加入100份水、3份乳化剂、5份丙烯酰胺,在搅拌条件下加入5份苯乙烯、10份丙烯酸丁酯、10份丙烯酸,制备无分层的白色预乳化液;(2)聚合:向反应瓶中加入100份水、1份引发剂、10份预乳化液与5份过硫酸铵水溶液,升温到65℃后,保温1h,氨水中和到pH=7.5~8之间即可。

(4)向反应罐中加入SEBS热塑性弹性体,升温至190℃,搅拌2h;

(5)持续通入N2,并加入丙烯酸甲酯、丙烯酸异辛酯、丙烯酸分散剂、N,N亚甲基双丙烯酰胺与过氧化二异丙苯,搅拌4h;

(6)降温至170℃,加入丙烯酸乳液成膜物、增强填料包裹体进行搅拌1h;

(7)将步骤(6)搅拌后的混合物装桶储存。

实施例二:

一种丙烯酸酯-SEBS共聚物的制备过程如下:

(1)配料:称取丙烯酸甲酯22份、丙烯酸异辛酯7份、SEBS热塑性弹性体10份、增强填料包裹体14份、丙烯酸乳液成膜物5份、N,N亚甲基双丙烯酰胺1份、过氧化二异丙苯0.7份与丙烯酸分散剂3份;

(2)制备增强填料包裹体:采用聚硼硅氧烷熔融液对纳米碳酸钙进行包裹,纳米碳酸钙与聚硼硅氧烷的重量比为2:1,包裹后在-40℃下进行低温冷冻24h,冷冻后在300℃下进行高温烧结30min,待烧结体冷却至室温后进行粉碎;

(3)制备丙烯酸乳液成膜物:(1)预乳化:向反应瓶中加入100份水、3份乳化剂、5份丙烯酰胺,在搅拌条件下加入5份苯乙烯、10份丙烯酸丁酯、10份丙烯酸,制备无分层的白色预乳化液;(2)聚合:向反应瓶中加入100份水、1份引发剂、10份预乳化液与5份过硫酸铵水溶液,升温到65℃后,保温1h,氨水中和到pH=7.5~8之间即可。

(4)向反应罐中加入SEBS热塑性弹性体,升温至190℃,搅拌2h;

(5)持续通入N2,并加入丙烯酸甲酯、丙烯酸异辛酯、丙烯酸分散剂、N,N亚甲基双丙烯酰胺与过氧化二异丙苯,搅拌4h;

(6)降温至170℃,加入丙烯酸乳液成膜物、增强填料包裹体进行搅拌1h;

(7)将步骤(6)搅拌后的混合物装桶储存。

实施例三:

一种丙烯酸酯-SEBS共聚物的制备过程如下:

(1)配料:称取丙烯酸甲酯23份、丙烯酸异辛酯8份、SEBS热塑性弹性体12份、增强填料包裹体18份、丙烯酸乳液成膜物8份、N,N亚甲基双丙烯酰胺2份、过氧化二异丙苯0.8份与丙烯酸分散剂3份;

(2)制备增强填料包裹体:采用聚硼硅氧烷熔融液对纳米碳酸钙进行包裹,纳米碳酸钙与聚硼硅氧烷的重量比为2:1,包裹后在-40℃下进行低温冷冻24h,冷冻后在300℃下进行高温烧结30min,待烧结体冷却至室温后进行粉碎;

(3)制备丙烯酸乳液成膜物:(1)预乳化:向反应瓶中加入100份水、3份乳化剂、5份丙烯酰胺,在搅拌条件下加入5份苯乙烯、10份丙烯酸丁酯、10份丙烯酸,制备无分层的白色预乳化液;(2)聚合:向反应瓶中加入100份水、1份引发剂、10份预乳化液与5份过硫酸铵水溶液,升温到65℃后,保温1h,氨水中和到pH=7.5~8之间即可。

(4)向反应罐中加入SEBS热塑性弹性体,升温至190℃,搅拌2h;

(5)持续通入N2,并加入丙烯酸甲酯、丙烯酸异辛酯、丙烯酸分散剂、N,N亚甲基双丙烯酰胺与过氧化二异丙苯,搅拌4h;

(6)降温至170℃,加入丙烯酸乳液成膜物、增强填料包裹体进行搅拌1h;

(7)将步骤(6)搅拌后的混合物装桶储存。

实施例四:

一种丙烯酸酯-SEBS共聚物的制备过程如下:

(1)配料:称取丙烯酸甲酯25份、丙烯酸异辛酯10份、SEBS热塑性弹性体12份、增强填料包裹体20份、丙烯酸乳液成膜物10份、N,N亚甲基双丙烯酰胺3份、过氧化二异丙苯1份与丙烯酸分散剂5份;

(2)制备增强填料包裹体:采用聚硼硅氧烷熔融液对纳米碳酸钙进行包裹,纳米碳酸钙与聚硼硅氧烷的重量比为2:1,包裹后在-40℃下进行低温冷冻24h,冷冻后在300℃下进行高温烧结30min,待烧结体冷却至室温后进行粉碎;

(3)制备丙烯酸乳液成膜物:(1)预乳化:向反应瓶中加入100份水、3份乳化剂、5份丙烯酰胺,在搅拌条件下加入5份苯乙烯、10份丙烯酸丁酯、10份丙烯酸,制备无分层的白色预乳化液;(2)聚合:向反应瓶中加入100份水、1份引发剂、10份预乳化液与5份过硫酸铵水溶液,升温到65℃后,保温1h,氨水中和到pH=7.5~8之间即可。

(4)向反应罐中加入SEBS热塑性弹性体,升温至190℃,搅拌2h;

(5)持续通入N2,并加入丙烯酸甲酯、丙烯酸异辛酯、丙烯酸分散剂、N,N亚甲基双丙烯酰胺与过氧化二异丙苯,搅拌4h;

(6)降温至170℃,加入丙烯酸乳液成膜物、增强填料包裹体进行搅拌1h;

(7)将步骤(6)搅拌后的混合物装桶储存。

实施例五:

一种深厚淤泥质软土路基的施工工艺,包括如下步骤:

(1)划定施工范围,在软基上开挖路基槽,铺设砂石层;

(2)向砂石层上浇灌压敏型胶粘层,压敏型胶粘层选用实施例一中制备的丙烯酸酯-SEBS共聚物浇灌形成,浇灌速度为5m2/min;

(3)然后将钢筋笼骨架铺设在压敏型胶粘层上;

(4)向钢筋笼骨架内等间距插入管桩,管桩的一端穿过压敏型胶粘层并插进砂石层内、另一端沿竖直方向向上延伸;

(5)在钢筋笼骨架上依次铺设碎石块层、火山岩层、混凝土层,其中,碎石块层选用碎石块中掺入比例为40%的粉质粘土混合形成,碎石块的平均粒径小于5cm;

(6)在混凝土层上以5t/m2的重载施压15天进行固实。

实施例六:与实施例五的不同之处在于压敏型胶粘层选用实施例二中制备的丙烯酸酯-SEBS共聚物浇灌形成。

实施例七:与实施例五的不同之处在于压敏型胶粘层选用实施例三中制备的丙烯酸酯-SEBS共聚物浇灌形成。

实施例八:与实施例五的不同之处在于压敏型胶粘层选用实施例四中制备的丙烯酸酯-SEBS共聚物浇灌形成。

对比例:

(1)划定施工范围,在软基上开挖路基槽;

(2)向路基槽内架设沉管,沉管之间相对设置,并紧紧地插进路基槽内;

(3)向路基槽内铺洒大量的砂石以及铺洒沥青层。

检测手段:

劈裂抗拉强度:试验在大连理工大学实验室3000KN微机控制电液伺服压力试验机上进行,具体步骤是在试验之前,在试件中部画出待劈裂的位置;然后将试件放在试验机下压板的中心位置,在上下压板与试件之间垫圆弧型垫板及木制三合板垫层,木垫层宽0.5m,厚度0.01m,长度大于0.5m;开动试验机,先手动控制以将上压板与试件接近,调整球座使接触均衡;开动试验机自动控制,加荷速度为0.05MPa/s,至构件破坏,保存试验结果。

试件劈裂抗拉强度的试验结果如下表所示:

通过上表可知,实施例五~实施例八的试件所能达到的平均劈拉强度在5.4MPa以上,远远大于现有技术的劈拉强度,在软基上按照本申请的施工工艺铺装的道路具有优异的抗劈裂强度,对软土路基进行较好的加固。

本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号