首页> 中国专利> 一种逆合成孔径雷达空间目标分类方法及系统

一种逆合成孔径雷达空间目标分类方法及系统

摘要

本发明实施例涉及一种逆合成孔径雷达空间目标分类方法及系统,属于雷达技术领域。其中,该方法包括:根据采集到的目标ISAR像,确定目标ISAR像中的目标散射点的强度信息和位置信息;根据位置信息和预先设置的分布规则,确定目标ISAR像的特征信息,其中,特征信息包括:几何结构特征信息和散射分布特征信息;根据强度信息、几何结构特征信息和散射分布特征信息确定特征向量;根据特征向量和预先设置的分类器,确定目标ISAR像对应的空间目标的类别。通过本实施例提供的技术方案,一方面,避免了现有技术中分类识别效果不佳,局限大的技术弊端;另一方面,实现了对空间目标进行分类的精准性和高效性的技术效果。

著录项

  • 公开/公告号CN107871123A

    专利类型发明专利

  • 公开/公告日2018-04-03

    原文格式PDF

  • 申请/专利权人 北京无线电测量研究所;

    申请/专利号CN201711129995.1

  • 申请日2017-11-15

  • 分类号

  • 代理机构北京轻创知识产权代理有限公司;

  • 代理人杨立

  • 地址 100854 北京市海淀区永定路50号32楼

  • 入库时间 2023-06-19 04:59:29

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-06-30

    专利权的转移 IPC(主分类):G06K 9/00 专利号:ZL2017111299951 登记生效日:20230616 变更事项:专利权人 变更前权利人:北京无线电测量研究所 变更后权利人:北京无线电测量研究所 变更事项:地址 变更前权利人:100854 北京市海淀区永定路50号32楼 变更后权利人:100854 北京市海淀区永定路50号59楼 变更事项:专利权人 变更前权利人: 变更后权利人:平湖空间感知实验室科技有限公司

    专利申请权、专利权的转移

  • 2020-06-05

    授权

    授权

  • 2018-05-01

    实质审查的生效 IPC(主分类):G06K9/00 申请日:20171115

    实质审查的生效

  • 2018-04-03

    公开

    公开

说明书

技术领域

本发明实施例涉及雷达技术领域,尤其涉及一种逆合成孔径雷达空间目 标分类方法及系统。

背景技术

随着航天技术的发展,卫星等天基系统对国家军事和安全起到了越来 越重要的作用。美国的发展高度依赖于空间系统,然而空间在轨操作技术 的广泛研究和发展应用,给空间安全带了更大的挑战,为了提高空间安全、 加强对空间目标监视,对空间目标分类(卫星目标与空间碎片目标)需求 越来越迫切。

逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)作为 一种高分辨二维成像设备,能通过发射大带宽信号获取高距离分辨率,依 靠目标与雷达相对运动产生的多普勒信息提高横向分辨率,并能全天候、 全天时的获取丰富的目标结构信息,为雷达目标特征提取、分类识别提供 有力支撑,大大提高雷达战场感知能力。

在现有技术中,通过区域特征:区域特征是除轮廓特征外的另一种目 标形状特征的表示方法区域特征关系到整个形状区域,包括形状轮廓及其 包含的区域。基于区域特征的识别,即直接提取ISAR像区域的特征进行分 类,其中包括傅里叶变换特征、小波变换特征不变矩特征等。与轮廓特征 类似,区域特征的有效性依赖于目标区域分割,而ISAR像的成像机理和散 射特性使得目标区域的模糊和部件的缺损,影响了其分类识别效果。

发明内容

为解决上述技术问题,本发明实施例提供了一种逆合成孔径雷达空间目 标分类方法及系统。

根据本发明实施例的第一方面,本发明实施例提供了一种逆合成孔径雷 达空间目标分类方法,所述方法包括:

根据采集到的目标ISAR像,确定所述目标ISAR像中的目标散射点的强 度信息和位置信息;

根据所述位置信息和预先设置的分布规则,确定所述目标ISAR像的特征 信息,其中,所述特征信息包括:几何结构特征信息和散射分布特征信息;

根据所述强度信息、所述几何结构特征信息和所述散射分布特征信息确 定特征向量;

根据所述特征向量和预先设置的分类器,确定所述目标ISAR像对应的空 间目标的类别。

通过本实施例提供的:根据位置信息和分布规则,确定ISAR像的特征信 息,根据强度信息和特征信息确定特征向量,根据特征向量和分类器,确定 ISAR像对应空间目标的分类的技术方案,一方面,避免了现有技术中基于轮 廓特征识别时,由于遮挡即散射中心分布等因素对ISAR像的识别存影响,从 而限制了目标分类的稳健性的技术弊端;另一方面,实现了精准且高效的对 空间目标分类的技术效果。

进一步地,所述根据采集到的目标ISAR像确定所述目标ISAR像的目标 散射点的强度信息和位置信息,具体包括:

根据所述目标ISAR像确定初始目标散射点的噪声强度;

从所述初始目标散射点中,选择所述噪声强度大于预先设置的检测门限 的初始目标散射点作为所述目标散射点;

根据所述目标散射点确定所述强度信息和所述位置信息。

在本实施例中,根据初始目标散射点的噪声强度和检测门限,从初始目 标散射点中选择符合要求的散射点,作为目标散射点,继而根据目标散射点 确定强度信息和位置信息的技术方案,实现了对噪声散射点的快速剔除,实 现了快速且精准的对目标散射点进行确定的技术效果,从而进一步实现了精 准且高效的对空间目标分类的技术效果。

进一步地,所述方法还包括:

根据式1确定所述检测门限,式1:

thr=mean(I)·C

其中mean()为取均值操作,I为所述目标ISAR像,C为预先设置的大 于0的常数。

进一步地,根据式1-1确定所述强度信息,式1-1:

其中,σi为第i个目标散射点对应的强度。

进一步地,所述根据所述位置信息和预先设置的分布规则确定特征信息, 具体包括:

根据所述位置信息和PCA算法确定所述目标散射点的主方向信息和次方 向信息;

根据直方图法确定所述主方向信息的主方向分布长度信息和所述次方向 信息的次方向分布长度信息;

根据所述主方向信息和预先设置的计算公式确定所述目标散射点在主方 向的分布熵信息,根据所述次方向信息和所述计算公式确定所述目标散射点 在次方向的分布熵信息;

根据所述主方向分布长度信息和所述次方向分布长度信息确定所述几何 结构特征信息;

根据所述主分布熵信息和所述次分布熵信息确定所述散射分布特征信息。

进一步地,所述根据所述位置信息和PCA算法确定所述目标散射点的主 方向信息和次方向信息,具体包括:

根据式2确定所述目标散射点的位置协方差矩阵,式2:

其中xi表示第i个目标散射点的位置信息对应的向量,μ表示所有目标散>T表示对向量转置;

根据式3对所述位置协方差矩阵进行特征值分解,得到所述位置协方 差矩阵的特征值与特征向量,式3:

Σ=UΛUT

其中Λ为对角矩阵,Λ对角线上第i个值为位置协方差矩阵Σ的第i个 特征值λi;U的第i列对应于第i个特征值λi的特征向量。

进一步地,所述根据直方图法确定所述主方向信息的主方向分布长度信 息和所述次方向信息的次方向分布长度信息,具体包括:

根据式4得到所述目标散射点在主方向u1上的投影,式4:

u1′=XT·u1

其中,X为目标散射点的位置矩阵,且位置协方差矩阵是位置矩阵的 函数;

当通过将u1′连续分布区间进行均匀离散网格化,统计每个网格内所含>1,且ind>1i为满足f1i>c·N>1i为目标散射点在主方向上的分布f1第i个元素,i=1,2,…,M1,M1为在主方向上离散网格数时,则,根据式5>1,式5:

L1=max(ind1i)-min(ind1i)

其中max(·)表示求最大值,min(·)表示求最小值;

根据式6得到所述目标散射点在次方向u2上的投影,

u′2=XT·u2

其中,X为目标散射点的位置矩阵,且位置协方差矩阵是位置矩阵的 函数;

当通过将u′2连续分布区间进行均匀离散网格化时,统计每个网格内所>2,且ind2i表示>2i>c·N的目标散射点在次方向上的投影值,f2i为目标散射点在次方>2第i个元素,i=1,2,…,M2,M2为在次方向上离散网格数时,>1,>

L2=max(ind2i)-min(ind2i)

其中max(·)表示求最大值,min(·)表示求最小值。

进一步地,所述根据所述主方向信息和预先设置的计算公式确定所述目 标散射点在主方向的分布熵信息,根据所述次方向信息和所述计算公式确定 所述目标散射点在次方向的分布熵信息,具体包括:

根据式8确定所述目标散射点在主方向分布熵对应的分布熵E1,式8:

其中,K1=L1/Δ,Δ1为目标散射点对应的距离向分辨率,Δ2为目标散射点方位向分辨率,通过将u1′连续分布区间进行均匀离散网格化,>1′;

根据式9确定所述目标散射点在次方向分布熵信息对应的分布熵E2,式9:

其中,K2=L2/Δ,K2为次方向离散网格数,Δ1为目标散>2为目标散射点方位向分辨率,通过将u′2连续分>2′。

进一步地,在所述根据采集到的目标ISAR像确定所述目标ISAR像的目 标散射点的强度信息和位置信息之前,所述方法还包括:

从多个ISAR像中确定ISAR像样本集;

选取所述样本集中每个ISAR像的特征向量中的至少一个向量,得到支持 向量和所述支持向量对应的权系数;

根据所述支持向量和所述权系数得到所述分类器。

进一步地,所述根据所述特征向量和预先设置的分类器确定所述目标 ISAR像对应的空间目标类别,具体包括:

将所述特征向量输入所述分类器;

所述分类器根据式10输出所述目标ISAR像对应的空间目标类别标号, 式10:

其中,||·||为范数运算,α为参数,V′为特征向量,Vj为特征向量中的第j>j为第j个向量对应的权系数;

根据式11确定所述目标ISAR像对应的空间目标类别,式11:

C=sign(y(V′))

其中sign(·)为取数值符号,当C=1时,所述空间目标类别为卫星目标, 当C=-1时,所述空间目标类别为空间碎片。

根据本发明实施例的另一个方面,本发明实施例提供了与上述方法相对 应的一种逆合成孔径雷达空间目标分类系统,所述系统包括:存储器、处理 器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,

所述处理器执行所述程序时实现上述任一实施例所述的方法。

本发明实施例的有益效果在于,由于采用了根据采集到的目标ISAR像, 确定目标ISAR像中的目标散射点的强度信息和位置信息;根据位置信息和预 先设置的分布规则,确定目标ISAR像的特征信息,其中,特征信息包括:几 何结构特征信息和散射分布特征信息;根据强度信息、几何结构特征信息和 散射分布特征信息确定特征向量;根据特征向量和预先设置的分类器,确定 目标ISAR像对应的空间目标的类别的技术方案,避免了现有技术中分类识别 效果不佳,局限大的技术问题,实现了对空间目标进行分类的精准性和高效 性的技术效果的技术效果。

附图说明

图1为本发明实施例提供的一种逆合成孔径雷达空间目标分类方法的流 程示意图;

图2为本发明实施例提供的一种逆合成孔径雷达空间目标分类系统的结 构示意图。

具体实施方式

以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接 口、技术之类的具体细节,以便透切理解本发明。然而,本领域的技术人员 应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它 情况中,省略对众所周知的系统、电路以及方法的详细说明,以免不必要的 细节妨碍本发明的描述。

本发明实施例提供了一种逆合成孔径雷达空间目标分类方法及系统。

根据本发明实施例的一个方面,本发明实施例提供了一种逆合成孔径雷 达空间目标分类方法。

请参阅图1,图1为本发明实施例提供的一种逆合成孔径雷达空间目标分 类方法的流程示意图。

如图1所示,该方法包括:

步骤S100:根据采集到的目标ISAR像,确定目标ISAR像中的目标散射 点的强度信息和位置信息;

步骤S200:根据位置信息和预先设置的分布规则,确定目标ISAR像的 特征信息,其中,特征信息包括:几何结构特征信息和散射分布特征信息;

步骤S300:根据强度信息几何结构特征信息和散射分布特征信息确定特 征向量;

步骤S400:根据特征向量和预先设置的分类器,确定目标ISAR像对应 的空间目标的类别。

通过本实施例提供的:根据位置信息和分布规则,确定ISAR像的特征信 息,根据强度信息和特征信息确定特征向量,根据特征向量和分类器,确定 ISAR像对应空间目标的分类的技术方案,一方面,避免了现有技术中基于轮 廓特征识别时,由于遮挡即散射中心分布等因素对ISAR像的识别存影响,从 而限制了目标分类的稳健性的技术弊端;另一方面,实现了精准且高效的对 空间目标分类的技术效果。

在一种可能实现的技术方案中,步骤S100具体包括:

根据目标ISAR像确定初始目标散射点的噪声强度;

从初始目标散射点中,选择噪声强度大于预先设置的检测门限的初始目 标散射点作为目标散射点;

根据目标散射点确定强度信息和位置信息。

在一种可能实现的技术方案中,根据式1确定检测门限,式1:

thr=mean(I)·C

其中mean()为取均值操作,I为目标ISAR像,C为预先设置的大于0 的常数。

在一种可能实现的技术方案中,根据式1-1确定强度信息,式1-1:

其中,σi为第i个目标散射点对应的强度。

在一种可能实现的技术方案中,步骤S200具体包括:

根据位置信息和PCA算法确定目标散射点的主方向信息和次方向信息;

根据直方图法确定主方向信息的主方向分布长度信息和次方向信息的次 方向分布长度信息;

根据主方向信息和预先设置的计算公式确定目标散射点在主方向的分布 熵信息,根据次方向信息和预先设置的计算公式确定目标散射点在次方向的 分布熵信息;

根据主方向分布长度信息和次方向分布长度信息确定几何结构特征信息;

根据主分布熵信息和次分布熵信息确定散射分布特征信息。

在一种可能实现的技术方案中,根据位置信息和PCA算法确定目标散射 点的主方向信息和次方向信息,具体包括:

根据式2确定目标散射点的位置协方差矩阵,式2:

其中xi表示第i个目标散射点的位置信息对应的向量,μ表示所有目标散>T表示对向量转置;

根据式3对位置协方差矩阵进行特征值分解,得到位置协方差矩阵的 特征值与特征向量,式3:

Σ=UΛUT

其中Λ为对角矩阵,Λ对角线上第i个值为位置协方差矩阵Σ的第i个 特征值λi,U的第i列对应于第i个特征值λi的特征向量。

在一种可能实现的技术方案中,根据直方图法确定主方向信息的主方向 分布长度信息和次方向信息的次方向分布长度信息,具体包括:

根据式4得到目标散射点在主方向u1上的投影,式4:

u1′=XT·u1

其中,X为目标散射点的位置矩阵,且位置协方差矩阵是位置矩阵的 函数;

当通过将u1′连续分布区间进行均匀离散网格化,统计每个网格内所含>1,且ind>1i为满足f1i>c·N>1i为目标散射点在主方向上的分布f1第i个元素,i=1,2,…,M1,M1为在主方向上离散网格数时,则,根据式5>1,式5:

L1=max(ind1i)-min(ind1i)

其中,max(·)表示求最大值,min(·)表示求最小值;

根据式6得到目标散射点在次方向u2上的投影,

u′2=XT·u2

其中,X为目标散射点的位置矩阵,且位置协方差矩阵是位置矩阵的 函数;

当通过将u′2连续分布区间进行均匀离散网格化时,统计每个网格内所>2,且ind2i表示>2i>c·N的目标散射点在次方向上的投影值,f2i为目标散射点在次方>2第i个元素,i=1,2,…,M2,M2为在次方向上离散网格数时,>1,式7:

L2=max(ind2i)-min(ind2i)

其中max(·)表示求最大值,min(·)表示求最小值。

在本实施例中,M2取值为32。

在一种可能实现的技术方案中,根据主方向信息和预先设置的计算公式 确定目标散射点在主方向的分布熵信息,根据次方向信息和计算公式确定目 标散射点在次方向的分布熵信息,具体包括:

根据式8确定目标散射点在主方向分布熵对应的分布熵E1,式8:

其中,K1=L1/Δ,Δ1为目标散射点对应的距离向分辨率,Δ2为目标散射点方位向分辨率,通过将u1′连续分布区间进行均匀离散网格化,>1′;

根据式9确定目标散射点在次方向分布熵信息对应的分布熵E2,式9:

其中,K2=L2/Δ,K2为次方向离散网格数,Δ1为目标散>2为目标散射点方位向分辨率,通过将u′2连续分>2′。

在本实施例中,例如:利用利用主分量分析(Principal ComponentAnalysis,PCA)方法估计目标分布主方向与次方向,并估计目标散射点在 主次方向上的特征值、分布长度与散射点分布熵,分别表示为 λ12,L1,L2,E1,E2。计算目标特征值乘积与比值,分别表示为S1=λ1·λ2,>1=λ12;目标分布面积S2=L1·L2,目标主次方向分布长度比R2=L1/L2,目标主次方向散射点分布熵乘积与比值,分别表示为:S3=E1·E2,R3=E1/E2

在一种可能实现的技术方案中,在步骤S100之前,该方法还包括:

从多个ISAR像中确定ISAR像样本集;

选取样本集中每个ISAR像的特征向量中的至少一个向量,得到支持向量 和支持向量对应的权系数;

根据支持向量和权系数得到分类器。

在本实施例中,可以理解的是,分类器包括:线性判决分析、SVM、相 关向量机和k近邻分类器。本实施例以SVM分类器为例,描述分类器的训练 过程。

在本实施例中,现提取13个特征构成的特征向量输入SVM分类器。具 体地,输入至SVM分类器中,得到作为支持向量的一组特征向量{V1,V2,...,VQ}和相应>1,ω2,...,ωQ},其中,Vj为第j个由训练得到的作为支持向量的特征,>j为相应的第j个权系数,j=1,2,...,Q,Q为训练得到的支持向量的个数。

在一种可能实现的技术方案中,步骤S400具体包括:

将特征向量输入所述分类器;

分类器根据式10输出目标ISAR像对应的空间目标类别标号,式10:

其中,||·||为范数运算,α为参数,V′为特征向量,Vj为特征向量中的第j>j为第j个向量对应的权系数;

根据式11确定所述空间目标类别,式11:

C=sign(y(V′))

其中sign(·)为取数值符号,当C=1时,空间目标类别为卫星目标,当 C=-1时,空间目标类别为空间碎片。

根据本发明实施例的另一个方面,本发明实施例提供了与上述方法相对 应的一种逆合成孔径雷达空间目标分类系统。

请参阅图2,图2为本发明实施例提供的一种逆合成孔径雷达空间目标分 类系统的流程示意图。

如图2所示,该系统包括:存储器、处理器及存储在存储器上并可在处 理器上运行的计算机程序,其中,

处理器执行程序时实现上述任一实施例的方法。

通过本实施例提供的技术方案,利用PCA算法估计目标散射点分布方 差最大的主次方向,在目标散射点主次方向上估计目标几何结构特征、散 射特征更能反映目标结构、散射本质特性,增强分类算法对目标轮廓、形 状姿态敏感性的稳健性,提高算法的识别性能。

本发明的效果通过以下对实测数据的实验进一步说明:

1.实验场景:

实测数据包含五种碎片目标与八种卫星目标,卫星目标ISAR像既包含观 测到卫星太阳能帆板的图像,也包含未观测到卫星太阳能帆板的图像,每个 目标的ISAR像至少包含两个圈次的图像(不同时间获取的目标ISAR图像)。

2.实验内容:

对目标ISAR像进行散射点检测,得到目标散射点的强度信息与位置信息, 然后利用PCA计算目标主次方向,根据主次方向提取目标几何结构特征与散 射分布特征。选取训练数据的特征向量训练SVM分类器,得到SVM分类器 参数以及支持向量,将测试数据输入至训练好的SVM分类器中,根据分类器 输出得到目标类别信息。

读者应理解,在本说明书的描述中,参考术语“一个实施例”、“一 些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结 合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的 至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必 针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不 相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施 例或示例以及不同实施例或示例的特征进行结合和组合。

所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上 述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应 过程,在此不再赘述。

在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法, 可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性 的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另 外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略,或不执行。

作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为 单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分 或者全部单元来实现本发明实施例方案的目的。

另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元 中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成 在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用 软件功能单元的形式实现。

集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或 使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本 发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方 案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储 在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人 计算机,服务器,或者网络设备等)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM, Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、 磁碟或者光盘等各种可以存储程序代码的介质。

还应理解,在本发明各实施例中,上述各过程的序号的大小并不意味 着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不 应对本发明实施例的实施过程构成任何限定。

以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易 想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范 围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号