首页> 中国专利> 一种沥青混合料多序列动态蠕变试验数据处理及分析方法

一种沥青混合料多序列动态蠕变试验数据处理及分析方法

摘要

本发明公开了一种沥青混合料多序列动态蠕变试验数据处理及分析方法,通过设计一个巴特沃斯低通滤波器对试验测得的蠕变变形数据进行低通滤波,得到平滑的蠕变曲线,再分别计算每个加载序列的平均永久应变率,然后根据公式计算评价沥青混合料蠕变特性的三个指标:应变率敏感指数SRSI、复合平均永久应变率CAPSR、复合蠕变劲度模量CCSM:SRSI越大,意味着该应力状况对材料蠕变的影响越显著;CAPSR则代表了多种复杂应力状况下的等效应变率,该值越大,表明在材料在一次加载中产生的永久应变越大,材料的高温性能越差;CCSM代表了在蠕变试验结束时材料的抗永久变形能力的强弱,该值越大,证明材料的高温性能越好。

著录项

  • 公开/公告号CN107807055A

    专利类型发明专利

  • 公开/公告日2018-03-16

    原文格式PDF

  • 申请/专利权人 东南大学;

    申请/专利号CN201710918621.1

  • 发明设计人 董尼娅;倪富健;

    申请日2017-09-30

  • 分类号G01N3/32(20060101);

  • 代理机构32204 南京苏高专利商标事务所(普通合伙);

  • 代理人柏尚春

  • 地址 210096 江苏省南京市玄武区四牌楼2号

  • 入库时间 2023-06-19 04:46:58

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-08-20

    授权

    授权

  • 2018-04-10

    实质审查的生效 IPC(主分类):G01N3/32 申请日:20170930

    实质审查的生效

  • 2018-03-16

    公开

    公开

说明书

技术领域

本发明涉及一种沥青混合料多序列动态蠕变试验数据处理及分析方法,属于道路养护领域。

背景技术

美国NCHRP研究计划推荐的动态蠕变试验是目前被广泛应用的探究沥青混合料高温蠕变特性的室内试验,该试验采用半正弦波脉冲加载,被认为是最接近实际路面上车辆荷载的作用形式,基于该试验提出的流变次数是被广泛采用的评价沥青混合料高温性能的指标。许多学者在该试验的基础上提出了一些改进版试验,如基于轴载谱的多级加载蠕变试验、单轴贯入动态蠕变试验等等,而且,改进试验依旧沿用流变次数或者复合流变次数来评价沥青混合料的抗变形能力。

实践经验表明,流变次数并不是一个精度高、变异性小、区分度好的指标。首先,流变次数的变异性较大,比如相同材料的多个平行试件,流变次数的差异可以从几十到几百次不等,因此,只能通过进行多次平行试验获得某种材料流变次数的大致范围然后求平均值,所以平行试验的次数直接影响了指标的精度,而受限于试验条件和精力,本领域绝大多数研究的平行试验在两到三次,对于这种变异性较大的指标来说,是远远不够的。

其次,流变次数的定义较为模糊,没有形成规范的明确的计算方法。沥青混合料的蠕变曲线可以分为三个阶段,第一阶段表现为应变率逐渐减小,第二阶段应变率基本保持恒定,第三阶段应变率快速增长,而流变次数被定义为第二阶段和第三阶段的临界点应对的累积加载次数。虽然沥青混合料的蠕变三阶段曲线分别可以用幂函数、一次函数和指数函数来拟合,但由于材料在向下一阶段转变期间的应变率是渐变的而非突变,因此不同学者对如何确定临界点提出了不同的判断标准,比如有人将应变率的最低点作为材料进入破坏阶段的起点,还有人认为当应变率增至最低点应变率的1.1倍时才意味着材料进入了破坏阶段。由于临界点的判断尚未达成统一标准,导致了对同一组试验数据采用不同的界定标准的计算结果有较为明显的偏差,从而加剧了这个指标的变异性。

另外,现有的动态蠕变的试验程序在每个加载周期内只采集一个变形数据,即采样频率为1,无法获取在整个脉冲荷载加载及卸载时试件的全部变形响应,而且无法得知,这个采样点位于加载周期的哪个位置、是否是固定的,这些未知对于后期分析处理数据造成了不便。所以,提高采样频率,对于准确的全面的获取基于脉冲荷载的材料变形行为是必要的。试验仪器所采集数据中或多或少存在着噪声干扰,在先前采样频率较低时(1Hz),无法体现高频噪声的存在,因此,无法对试验数据进行有效滤波。当采样频率增加,必须要先对采集的数据进行降噪处理,才能进行下一步的指标计算。因此,设置合适的低通滤波器是本方法首要解决的技术问题。

更重要的是,流变次数不能有效的运用于指导实际路面的养护管理。这是由于流变次数代表的是材料何时进入加速破坏阶段,而不能直接体现出材料进入破坏阶段时的累积变形。而路面养护管理者关心的是,路面上目前累积了多少车辙变形,是否达到需要进行养护的标准,即无论材料处于蠕变的哪个阶段,只要车辙超过了安全标准,结构都要面临中修。举例说明,如今江苏省高速公路的车辙量的中修养护标准是10mm,即路面车辙达到10mm时即要进行铣刨或者罩面等养护措施。车辙是路表面横断面内凹陷最低点与隆起最高点的变形量之差,根据已有研究,凹陷与隆起处的变形量接近1:1,即当达到车辙中修标准时,路面凹陷处的流动变形在5mm左右,对于180mm厚度的沥青层来说,约等于2.8万个微应变。大量室内动态蠕变试验数据表明,当试件开始进入加速破坏阶段时,对应的累积永久微应变大致在5~10万,两者对比可以发现,路面对车辙的中修标准要明显高于流变次数对应的累积变形,也即是说,实际路面结构中的沥青层还未能进入加速破坏阶段已经要面临必要的中修养护,因此,获取材料的流变次数,对于指导实际路面养护来说意义不大。

在动态蠕变试验中,通常设置试件达到5~10万次累积微应变或累积加载次数达到10000次时试验停止。在无围压的单轴动态蠕变试验中,轴向应力0.7MPa,流变次数通常在几十到几百次不等,但随着围压的增加,流变次数也明显增加。在三轴或贯入动态蠕变试验中,某些材料在第二阶段的应变率很小,导致加载10000次时材料仍未出现明显破坏,因而无法获得流变次数,也就无从对比不同材料的高温性能的优劣。而且,10000次的加载意味着一次试验时间接近3小时,试验效率较低。

综上所述,流变次数在评价沥青混合料的高温性能时存在着种种弊病,解决这一问题的一种方法是,采用材料在蠕变第二阶段的应变率来判断材料抗变形能力的好坏,这是因为,第二阶段的应变率基本保持恒定,其大小与材料的累积变形有直接正相关,且容易计算,误差较小,精确度高。但由于传统的动态蠕变试验在一次试验中往往只采用单一的荷载作用形式,即一次试验只能得到一种加载状况下的应变率,如要得到多种受力状况下的应变率,则需要进行多次试验,这大大增加了工作量和后期数据处理的难度。因此,开发出可进行多序列加载的局部动态蠕变试验,可以方便、清晰的对比在不同加载状况下应变率的变化,分析对某一条件的敏感程度,并计算出多种状况下的复合应变率、复合蠕变劲度模量等,这种方法可以更科学高效的评价沥青混合料的抗变形能力。

发明内容

技术问题:本发明的目的是提出一种沥青混合料多序列动态蠕变试验数据处理及分析方法,基于该方法提出的分析指标便于计算、精度高,能更全面、有效的反映出复杂应力状况下沥青混合料的蠕变性能。

技术方案:本发明提供了一种沥青混合料多序列动态蠕变试验数据处理及分析方法,该方法包括以下步骤:

1)设置巴特沃斯低通滤波器参数,去除沥青混合料试件蠕变数据中的噪声干扰,得到平缓的蠕变曲线,该曲线分为蠕变第一阶段和蠕变第二阶段;

2)提取试件在受到每个半正弦脉冲荷载作用周期内的第一个和最后一个采样点的变形数据,然后根据下式计算沥青混合料在每个受荷周期内的永久应变率Δε:

式中:Δε——单次受荷周期内试件的永久应变率;

dl——单次受荷周期内最后一个采样点的累积变形值,单位:mm;

df——单次受荷周期内第一个采样点的累积变形值,单位:mm;

h——试件的高度,单位:mm;

t——单个脉冲荷载周期的持续时间,单位:s;

3)每个加载序列包括多个重复的半正弦脉冲加载周期,根据下式计算每个加载序列的平均永久应变率

式中:i——第i个加载序列;

——第i个加载序列内的平均永久应变率,单位:με/s;

Δεj——第i个加载序列中第j次加载周期内的永久应变率,单位:με/s;

Ni——第i个加载序列中半正弦脉冲周期的重复加载次数;

4)根据上一步算出的每个加载序列的平均永久应变率,计算评价沥青混合料抗永久变形能力的三个指标,分别是:应变率敏感指数SRSI、复合平均永久应变率CAPSR、复合蠕变劲度模量CCSM;

①应变率敏感指数SRSI按照下式计算:

式中:i——第i个加载序列;

SRSIi——第i个加载序列的应变率敏感指数;

——所有加载序列的平均永久应变率的叠加之和,单位:με/

n——蠕变试验加载序列的总个数;

②复合平均永久应变率CAPSR按照下式计算:

式中:——复合平均永久应变率,单位:με/s;

Ni——第i个加载序列中半正弦脉冲周期的重复加载次数;

n——蠕变试验加载序列的总个数;

N′——蠕变第二阶段所有加载序列中半正弦脉冲周期重复加载的总次数;

③复合蠕变劲度模量CCSM根据下式计算:

式中:——试件受到的等效应力,单位:MPa;

σi——第i个加载序列的应力级别,单位:MPa;

N——所有加载序列的总共重复加载次数;

Δεp——试验结束时试件累积的永久应变;

n——蠕变试验加载序列的总个数;

Sc——试件的复合蠕变劲度模量,单位:MPa。

其中:

步骤1)中所述的巴特沃斯低通滤波器参数设置分别为:阶数为2~4,截止频率为10~30Hz。

步骤1)所述的蠕变第一阶段为蠕变迁移期,仅包含1个预加载序列作用下的试样变形数据;所述的蠕变第二阶段为蠕变稳定期,包含多个加载序列作用下的试样变形数据。

所述的蠕变稳定期中加载序列的个数根据试验需求进行设置或调整。

步骤1)中所述的蠕变第二阶段中,各加载序列的应力幅值范围在0.3~1.4MPa之间,脉冲宽度在0.1~0.5s之间,间歇时间在0~10s之间。

步骤2)中每个半正弦脉冲荷载作用周期内的采样频率为200~1000Hz。

有益效果:与现有技术相比,本发明具有以下优势:

提出的分析指标便于计算、精度高,能更全面、有效的反映出复杂应力状况下沥青混合料的蠕变性能:

蠕变曲线分为两个阶段,第一阶段为预加载阶段,目的是使试件的永久应变率达到稳定;第二阶段为多序列加载阶段,涵盖了实际路面上所有的轴载级别,以及不同车速对蠕变的影响,最后,计算得到的评价沥青混合料抗变形能力的三大指标:应变率敏感指数SRSI、复合平均永久应变率CAPSR、复合蠕变劲度模量CCSM,较以往指标更全面、直观地反映了复杂应力状况下材料的蠕变性质。

另外,上述指标计算公式明确、精确度高、变异性小,得到的每种受力状况下的平均永久应变率不仅适用于室内试验试件的复合平均永久应变率、复合蠕变劲度模量的计算,还能基于路面实际的轴载谱数据,计算真实路面的复合平均永久应变率和复合蠕变劲度模量。

综上所述,这种分析方法可以使室内试验数据与实际路面养护数据之间建立起有效联系,方便了两种数据互相对比印证,从而使室内试验数据更好地指导路面养护管理实践,帮助路面养护管理单位更方便快捷的对沥青路面的车辙发展进行有效预估。

附图说明

图1为滤波前后沥青混合料在两次荷载作用周期内的蠕变对比图;

图2为第4个加载序列的平均永久应变率及该序列内每次加载对应的永久应变率随加载次数的变化;

图3为所有加载序列的应变率敏感指数分布图;

图4为第二阶段所有加载序列的平均永久应变率及材料的复合平均永久应变率。

具体实施方式

以AC-20型70#沥青混合料的试验结果为例,结合附图和具体实施方式对本发明做进一步说明。

本发明方法包括以下步骤:

1)设计巴特沃斯(Butterworth)低通滤波器参数,去除试件蠕变数据中的噪声干扰,得到平缓的蠕变曲线,其中阶数及截止频率的确定方法:首先确定每个参数的取值范围,然后对两个参数在取值范围内进行不同的组合,对比每种组合下的滤波效果,最终确定最优组合。

如图1所示,该图展示了多序列局部动态蠕变试验中第四个加载序列中(应力大小0.7MPa、脉冲宽度0.4s,间歇时间0.6s)前两个加载周期内(共2s,1000个数据点)滤波前后的累积变形数据对比。本例中采样频率设置为500Hz,因此,1s内采集到的数据点为500个,相邻两点的采样间隔为2ms。从图中可清晰地看到,实线显示的未滤波的数据有较多的波动,即所谓的噪声干扰,噪声的存在将对应变率计算的准确性造成较大影响,必须要先对数据进行降噪处理。

选用Butterworth低通滤波器,经过多次尝试,发现当设置阶数为3、截止频率设为20Hz时的滤波效果最佳。图中的间断线已经基本去除了噪声,较为平滑,且两条曲线较为贴合,间断线基本位于实线波动数据的中值附近,说明滤波较为成功,滤波后的数据可以体现出试件正确的变形特征。需要注意的是,截止频率的设置与试验的采样频率密切相关。此例设置20Hz的截止频率,是基于试验中500Hz的采样频率而定,如果试验中的采样频率有较大变化,则需要调整滤波器的截止频率从而达到满意的滤波效果。

2)提取试件在受到每个半正弦脉冲荷载作用周期内的第一个和最后一个采样点的变形数据,然后根据下式计算沥青混合料在每个受荷周期内的永久应变率Δε:

式中:Δε——单次受荷周期内试件的永久应变率;

dl——单次受荷周期内最后一个采样点的累积变形值,单位:mm;

df——单次受荷周期内第一个采样点的累积变形值,单位:mm;

h——试件的高度,单位:mm;

t——单个脉冲荷载周期的持续时间,单位:s;

由于本例中加载一次的周期为1s,采样频率为500Hz,试件高度为150mm,因此,公式可改写为以加载序列四为例,计算得到的每次加载的永久应变率如图2所示,永久应变率在加载初期较大,随加载次数的增加逐渐减小并趋于稳定。

3)每个加载序列包括多个重复的半正弦脉冲加载周期,根据下式计算每个加载序列的平均永久应变率

式中:i——第i个加载序列;

——第i个加载序列内的平均永久应变率,单位:με/s;

Δεj——第i个加载序列中第j次加载周期内的永久应变率,单位:με/s;

Ni——第i个加载序列中半正弦脉冲周期的重复加载次数;

本例中,除预加载序列外其余每个序列的重复加载次数均为50,将多次加载后的应变率取平均得到的平均永久应变率,则该值可以代表在这一受力状况下材料的平均力学响应。图4中展示了蠕变第二阶段所有加载序列的平均永久应变率。

4)根据上一步算出的每个加载序列的平均永久应变率,计算评价沥青混合料抗永久变形能力的三个指标,分别是:应变率敏感指数SRSI、复合平均永久应变率CAPSR、复合蠕变劲度模量CCSM;

①应变率敏感指数SRSI按照下式计算:

式中:i——第i个加载序列;

SRSIi——第i个加载序列的应变率敏感指数;

——所有加载序列的平均永久应变率的叠加之和,单位:με/s;

n——蠕变试验加载序列的总个数;

该指数是衡量每一种加载状况下的平均永久应变率分别占所有加载序列平均应变率之和的比例;计算得到的值越大,说明对应的加载状态对材料的蠕变影响越显著。图3所示的是包含预加载序列在内的共25个加载序列的SRSI指数分布图。其中,预加载序列的应力级别为0.7MPa,脉冲宽度为0.1s;其余24个序列分别是八种应力级别(0.7MPa~1.4MPa)及三种脉冲宽度(0.1s~0.4s)的组合,试验的加载顺序与图中所示从左到右的柱状图的排列一致。从图3可以清晰的看到当应力级别及脉冲宽度均与永久应变率呈正相关,且二者的叠加作用对应变率的影响更为显著。值得一提的是,虽然预加载序列所受应力状况与序列2一致,但应变率敏感指数却与序列18(1.2MPa_0.2s)接近,说明蠕变第一阶段(或材料的压密阶段)对材料永久变形的影响较为显著,这与实际路面上车辙的累积规律相似,即刚通车后车辙的发展速度较快。

②复合平均永久应变率CAPSR按照下式计算:

式中:——复合平均永久应变率,单位:με/s;

Ni——第i个加载序列中半正弦脉冲周期的重复加载次数;

N′——蠕变第二阶段所有加载序列中半正弦脉冲周期重复加载的总次数;

n——蠕变试验加载序列的总个数;

该步骤将每种受力状况下的平均永久应变率按照加载次数占比进行叠加,得到一个代表多种受力状况的CAPSR,该值越小,则意味着材料的高温性能越好。这个公式不仅适用于室内试验,还可以推广至实际路面进行使用,即将更改为实际路面上轴载谱占比便可,这样就可以方便的对比不同轴载谱路面的高温性能的差异。为方便举例说明,这里仍采用室内试验的数据进行分析,计算得到的CAPSR如图4中箭头所指的横线所示。

③复合蠕变劲度模量CCSM根据下式计算:

式中:——试件受到的等效应力,单位:MPa;

σi——第i个加载序列的应力级别,单位:MPa;

N——所有加载序列的总共重复加载次数;

Δεp——试验结束时试件累积的永久应变;

n——蠕变试验加载序列的总个数;

Sc——试件的复合蠕变劲度模量,单位:MPa。

与CAPSR相比,CCSM引入了轴向应力及蠕变第一阶段的影响,代表了材料在蠕变试验结束时材料的抗永久变形能力的强弱,该值越大,证明材料的高温性能越好。与CAPSR相反,CCSM越大意味着材料的抗变形能力越好。

本例中,试件在蠕变第一阶段的预加载序列中半正弦脉冲荷载重复作用次数为400,因此,计算得到的等效应力为0.9625MPa;试件高度150mm,试验结束时试件的累积永久变形为5.2mm,累积永久应变为3.47%;带入上式得到该材料的CCSM为27.7MPa。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号