首页> 中国专利> 一种基于三维狄拉克材料的隧穿型光电探测器及其制备方法

一种基于三维狄拉克材料的隧穿型光电探测器及其制备方法

摘要

本发明涉及一种基于三维狄拉克材料的隧穿型光电探测器及其制备方法,利用三维狄拉克材料作为导电沟道,表面自然钝化层作为介质层,表面量子点层收集和放大产生的光电流。本发明所述器件从下到上依次为衬底(1)、绝缘层(2)、三维狄拉克材料(3)、金属电极(4)、自然钝化层(5)、量子点材料(6)。相比石墨烯、二硫化钼等二维材料,三维狄拉克材料迁移率和吸收率更高,提高了该光电探测器响应速度和响应率,涂覆在表面的量子点材料与三维狄拉克材料形成遂穿效应,拓宽了响应光谱范围并产生光电流增益。该器件具有响应高、速度快、响应光谱宽等特点。

著录项

  • 公开/公告号CN107731936A

    专利类型发明专利

  • 公开/公告日2018-02-23

    原文格式PDF

  • 申请/专利权人 电子科技大学;

    申请/专利号CN201710985640.6

  • 申请日2017-10-20

  • 分类号H01L31/0216(20140101);H01L31/0232(20140101);H01L31/032(20060101);H01L31/113(20060101);H01L31/18(20060101);B82Y30/00(20110101);

  • 代理机构51223 成都华风专利事务所(普通合伙);

  • 代理人徐丰;张巨箭

  • 地址 611731 四川省成都市高新西区西源大道2006号

  • 入库时间 2023-06-19 04:40:01

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-02-18

    授权

    授权

  • 2018-03-20

    实质审查的生效 IPC(主分类):H01L31/0216 申请日:20171020

    实质审查的生效

  • 2018-02-23

    公开

    公开

说明书

技术领域

本发明属于新型材料光探测器领域,主要涉及一种基于三维狄拉克材料的隧穿型光电探测器及其制备方法。

背景技术

在石墨烯广泛应用的大背景下,新型二维、三维材料的出现也引起了人们的注意,三维狄拉克材料如Cd3As2、Bi2Se3、ZrTe5等是稳定的三维狄拉克半金属,其特性是体系的能带结构在费米能级附近呈现了能量与波矢的线性关系,形成狄拉克锥型结构,其费米面是由重叠的外尔费米子对构成的,并受到晶格对称性的保护。有研究组对ZrTe5单晶进行了红外磁光光谱研究,针对ZrTe5的输运和角分辨光电子能谱测量表明该材料属于三维狄拉克半金属。在零场下,红外光谱的测量发现其光电导在较宽的能量区间都表现出随频率线性增加的行为,而这种现象恰恰是三维狄拉克费米子的标志性行为。三维狄拉克半金属特别是Cd3As2提供了一个很好的可以进行量子相变的平台,通过坏对称性,比如时间反演和中心反演,使得可以拓扑绝缘体,外尔半导体,拓扑超导体之间进行转移。此外,Cd3As2还呈现出了超高的迁移率,在5k无磁场的情况下,迁移率高达9x106cm2V-1S-1这是由于费米速率较高的三维狄拉克费米子后向散射的抑制作用,而且在室温的情况下,迁移率仍然有1.5x104cm2V-1S-1。如此高的迁移率大大的超过了悬浮石墨烯和其他体半导体的性能,并且它还有超高的磁阻。这使得它有极大潜力成为石墨烯的替代品并且能在新的光电子器件中发挥它超好的性能。由于它有无间隙的线性分散无质量的狄拉克费米子,故它几乎囊括了所有二维狄拉克半金属的优越性能。它的无间隙使它能够在THZ波段的应用成为可能,其载流子倍增效应增强了它的内量子效率。

目前的一些隧穿结构的探测器都是基于石墨烯的,较为典型的几种比如两层石墨烯电极中间一层六方氮化硼介质层,这种是沟道包含了介质层的类型,这种器件的特点是暗电流比较低,开关比很高;第二种是两层石墨烯中间夹一层介质层,但是沟道是下层石墨烯并没有包含介质层,而上层石墨烯与介质层起到了对下层石墨烯光调制作用,这种器件增益系数很大,响应提高了很多。或者第二种类型的不是两层石墨烯比如还有石墨烯与其他材料的异质结中间夹了一层介质层,也是那层石墨烯作为沟道,介质层不在其中。并且上述的隧穿类型的器件工艺都较为复杂。

石墨烯量子点型探测器是直接在石墨烯上面涂上量子点材料,2012 年,GerasimosKonstantatos提出了将量子点和石墨烯混合,从而制备处量子点石墨烯混合光探测器,器件响应度很高,不过存在暗电流太大,响应速度慢,开关比低等缺点。量子点材料对一个特定的波长有特别强的响应,与三维狄拉克材料结合拓宽了整体响应光谱。

这种隧穿结构的光电探测器由于介质层的存在,更好的限制了光生载流子的复合,增加了载流子的寿命,大大的提升了光响应。这样的光电探测器在量子点材料与介质层的共同作用下比一般的光电探测器更能限制载流子的复合。

发明内容

为解决上述技术问题,本发明采用的一个技术方案是:一种基于三维狄拉克材料的隧穿型光电探测器,三维狄拉克材料(3)、金属电极(4)、自然钝化层(5)、量子点材料(6)形成了类似顶栅的结构,其中三维狄拉克材料(3)为底部导电沟道,金属电极(4)为源漏电极,自然钝化层(5)作为绝缘介质层,量子点材料(6)作用类似顶部栅极。并且相比以前石墨烯基的探测器,由于三维狄拉克材料(3)的超高迁移率,使得器件的响应速度有很大提升。并且利用了三维狄拉克材料(3)的在暴露空气中被钝化的优点,直接利用形成的自然钝化层(5)作为隧穿的介质层,比传统的隧穿光电探测器工艺简单了许多。这一层自然钝化层(5)可以通过控制在空气中的暴露时间从而调控自然钝化层(5) 的厚度。并且在自然钝化层(5)上涂上了量子点材料,进一步拓宽了器件的响应光谱。为了保证(4a、4b)源、漏电极与三维狄拉克材料(3) 接触良好,使用氢氟酸对其进行复腐蚀。利用(4a、4b)源、漏电极、 (3)三维狄拉克、自然钝化层(5)、量子点材料(6)形成了类似顶栅的结构。类似于于可以用过光响应来调节三维狄拉克材料(3)的情况。整个器件工作原理是在量子点材料与之间由于费米能级的不同,会导致量子点材料(6)中的自由电子隧穿到达三维狄拉克材料(3)从而在两者之间形成了內建电场,这样当光照在器件上面产生的光生空穴会在內建电场的作用下隧穿进入三维狄拉克材料(3)从而在沟道中形成光电流,并且光生电子就会被束缚在量子点材料(6)中如图3所示,这样并且减少了载流子复合、增加了载流子寿命从而提高了光响应。同样,中间自然钝化层(5)作为介质层也起到了对光生载流子的限制作用。总体而言,光生载流子通过隧穿进入三维狄拉克材料(3)实现了对沟道的类似栅极调控作用。

本发明所述一种三维狄拉克材料隧穿型光电探测器的制备流程包含以下步骤:

步骤1:清洗带有绝缘层(2)的衬底片(1),使用洗洁精清洗、丙酮超声、乙醇超声、去离子水超声。

步骤2:拿出带有的三维狄拉克材料(3)母本,将步骤1中清洗好的衬底(1)绝缘层(2)衬底片在三维狄拉克材料(3)母本上轻轻粘连,将三维狄拉克材料转移到衬底(1)绝缘层(2)衬底片上;

步骤3:对步骤2中转移好的样片进行旋涂电子束光刻胶,进行烘烤、电子束光刻、显影、定影。

步骤4:对步骤3中样片中的三维狄拉克材料(3)进行刻蚀,去除电极位置的自然氧化层。

步骤5:对步骤4中刻蚀完成的样片进行电子束蒸镀,在三维狄拉克材料(3)的两端依次镀上金属源漏电极(4a,4b),进行金属剥离,去除电极外多余的金属层和光刻胶。

步骤6:然后完成步骤5的样片在空气中暴露一段时间,使三维狄拉克材料(3)的表面形成纳米级的自然钝化层(5)。

步骤7:在步骤6中已经形成好钝化层的表面涂覆量子点材料溶液,形成量子点材料(6)与钝化层(5)接触,烘干后,完成器件制备。

区别于现有技术的情况,本发明的有益效果是:

相比石墨烯、二硫化钼等二维材料,三维狄拉克材料迁移率和吸收率更高,提高了该光电探测器响应速度和响应率,涂覆在表面的量子点材料与三维狄拉克材料形成遂穿效应,拓宽了响应光谱范围并产生光电流增益。该器件具有响应高、速度快、响应光谱宽等特点。

附图说明

图1为器件的剖面示意图。其中衬底(1)、绝缘层(2)、三维狄拉克材料(3)、金属电极(4)、自然钝化层(5)、量子点材料(6)。

图2为器件的平面示意图。其中衬底(1)、绝缘层(2)、三维狄拉克材料(3)、金属电极(4)、自然钝化层(5)、量子点材料(6)。

图3为隧穿结构示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明提供一种三维狄拉克材料隧穿型光电探测器的结构,如图1、图2所示,器件结构从下到上依次包括:衬底(1)、绝缘层(2)、三维狄拉克材料(3)、金属电极(4)、自然钝化层(5)、量子点材料(6)。其中自然钝化层(5)为三维狄拉克材料(3)暴露空气中形成的钝化层,其厚度在1到10个纳米;

所述三维狄拉克材料(3)、金属电极(4)、自然钝化层(5)、量子点材料(6)形成了类似顶栅的结构,其中三维狄拉克材料(3)为底部导电沟道,金属电极(4)为源漏电极,自然钝化层(5)作为绝缘介质层,量子点材料(6)作用类似顶部栅极;

所述三维狄拉克材料(3)、自然钝化层(5)、量子点材料(6)之间在静电场作用下形成载流子隧穿结构。

本实施例中,三维狄拉克材料使用镉砷(Cd3As2),该材料在暴露的空气中能够在表面形成一层自然钝化层,直接利用自然钝化层作为隧穿所用的介质层,这使得器件工艺上面简单了许多。同时又需要注意的是在器件的两端蒸镀钛与金电极的时候需要将镉砷(Cd3As2)表面的自然钝化层除去,保证钛金电极与镉砷(Cd3As2)的良好接触。然后在空气中暴露30分钟使得镉砷(Cd3As2)表面形成一层纳米级别的自然钝化层,随后在表面钝化层上旋涂钙钛矿量子点溶液,最后烘干。在隧穿结构上面增加了量子点材料,拓宽了器件的响应光谱。量子点材料与隧穿结构同时作用限制载流子复合,增加了载流子寿命,增加了光响应,所述隧穿结构如图3所示。由于三维狄拉克材料超高的迁移率,这使得其器件的光响应速度大大增加。

本发明所述一种三维狄拉克材料隧穿型光电探测器的制备流程包含以下步骤:

步骤1:清洗带有绝缘层(2)的衬底片(1),使用洗洁精清洗、丙酮超声、乙醇超声、去离子水超声。

步骤2:拿出长好的三维狄拉克材料镉砷(3)材料母本放在锡箔纸上,将步骤1中清洗好的衬底(1)氧硅衬底片(2)在生长狄拉克材料材料母本上轻轻粘连,然后将镉砷(Cd3As2)材料转移到衬底(1) 氧硅衬底片(2)上;

步骤3:对步骤2中转移好的样片进行旋涂电子束光刻胶,使用PMMA 与MMA共聚物的双层胶对步骤2中转移好的样片进行旋涂,先涂MMA共聚物,进行烘烤,再涂PMMA,进行烘烤。

步骤4:对步骤3中样片中的三维狄拉克材料镉砷(3)进行电子束光刻,去除电极位置的自然氧化层,然后进行显影、定影。

步骤5:对步骤4中刻蚀完成的样片进行电子束蒸镀,在三维狄拉克材料镉砷(3)的两端依次镀上金属源漏电极(4a,4b),对步骤3中得到的镉砷进行HF刻蚀,去除电极外多余的金属层和光刻胶,刻蚀完成立即进行蒸镀否,在三维狄拉克材料镉砷(3)的两端依次镀上了5nm 厚钛与50nm厚金的源漏(4a,4b)金属电极,这样使得(4a,4b)金属电极与镉砷(3)的完全接触。

步骤6:然后将完成步骤5的样片在空气中暴露一段时间,使三维狄拉克材料镉砷(3)的表面形成数纳米的自然钝化层(5)。

步骤7:在步骤6中已经形成好钝化层的表面涂覆量子点材料溶液,形成量子点材料(6)与钝化层接触,烘干后,完成器件制备。

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号