首页> 中国专利> 用于识别分解器的正弦接收线圈/余弦接收线圈的开路的方法和电路

用于识别分解器的正弦接收线圈/余弦接收线圈的开路的方法和电路

摘要

本发明涉及一种用于识别分解器(16)的接收线圈(17;18)的开路(10)的方法,所述方法包括:在用于所述接收线圈(17;18)的信号线路(13a、13b;14a、14b)的控制设备(1)处,在所述接头(7a、7b;8a、8b)处设置上拉电阻(R

著录项

  • 公开/公告号CN107709932A

    专利类型发明专利

  • 公开/公告日2018-02-16

    原文格式PDF

  • 申请/专利权人 罗伯特·博世有限公司;

    申请/专利号CN201680035292.X

  • 申请日2016-06-07

  • 分类号

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人宣力伟

  • 地址 德国斯图加特

  • 入库时间 2023-06-19 04:35:52

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-12-24

    授权

    授权

  • 2018-03-23

    实质审查的生效 IPC(主分类):G01D5/22 申请日:20160607

    实质审查的生效

  • 2018-02-16

    公开

    公开

说明书

技术领域

本发明涉及一种用于识别分解器的正弦线圈或者余弦线圈的开路的方法和一种用于实现这个方法的电路。

背景技术

分解器用于获取旋转对象、例如马达的驱动轴的角度位置。在背景技术中,存在多种分解器类型。在此原则上借助于至少一个线圈产生变化的磁场,并且借助于至少另一个线圈探测这个场,其中,在所述线圈之间的耦接的强度根据待测量的位置或者角度位置而变化。就“变磁阻式分解器”(VR-Resolver)而言例如仅使用一个激励线圈,并且存在两个测量线圈,所述测量线圈位置相关地产生信号。德国专利申请DE 10 2011 078 583 A1例如公开了车辆中的分解器-传感器信号的分析。分解器为此接收转子的旋转运动,并且处理器元件处理所述分解器的正弦形的或者余弦形的输出信号。

本发明由这种分解器出发,其中所述激励信号是正弦形的并且典型地具有10kHz的频率。所述两个测量线圈通常相互正交地定位,并且被称为正弦线圈和余弦线圈。利用所述两个测量信号能够清楚地确定所述测量对象的角度。

用于所述激励线圈的激励信号例如能够通过两个推挽输出级来提供,每个用于所述激励线圈的所述两个接头。所述两个输出级的输出信号于是以180°为幅度相互相位偏移,并且对于所述激励线圈起作用的激励信号是在所述两个输出级的输出端之间的差电压。

但是也存在下述可能性:激励线圈仅通过一个输出级来运行。所述激励线圈的第二接头于是直接地或者通过电容器置于固定的电势、例如地电势上。

在所述接收线圈处存在交流电压信号,该交流电压信号具有与激励信号相同的频率,该交流电压信号的振幅然而根据所述转子位置进行调制,其中在所述余弦线圈处的信号相对于在所述正弦线圈处的信号以90°为幅度相位偏移。

分解器经常用于永久激励同步电机(PSM)和电激励同步电机(ESM)的调节,所述电机例如作为用于混合动力车辆和电动车辆的驱动器使用。对于这种调节,知道当前的转子角度位置是必要的。在调节异步电机(ASM)时,知道驱动器的当前频率是必要的。

由于其稳健性,优选在机动车中为了这些目的而使用分解器,即使存在替代的传感器、例如数字的角度传感器或者基于涡流效应的传感器。

对于在汽车领域中的传感器而言,可能的故障的诊断可能性是期望的。就分解器而言,如本申请的对象那样,可能的待诊断的故障是通往用于所述正弦信号或者余弦信号的分解器线圈的开路,也就是说就所述两个线圈中的至少一个线圈而言,其两个接头中的一个接头不再具有通往操控电路的电连接,或者在所述两个线圈中的一个线圈内存在线缆断裂。

诊断这种故障的可能性在于,通过相应的硬件电路将所述两个信号线路中的一个信号线路拉进削波区域中,就是说在可能中断的信号线路的端部处的电压被拉进所配属的AD-转换器的过控制区域中。然而这种诊断不是足够可靠的,因为削波也能够由于其他的原因出现。

发明内容

用于识别分解器的接收线圈——能够是正弦接收线圈或者余弦接收线圈——的开路的方法包括:首先在所述分解器的控制设备处,在用于这个信号线路的所述两个接头处设置上拉电阻和下拉电阻。这些电阻以其另外的端部与相对于地不同的直流电压连接。对于所述故障识别来说,以下述方式持续地监视在信号线路之间的、表示分解器信号的差电压,使得所述差电压周期性地在两个对称于激励周期的中心的采样时间点进行检测,在所述两个采样时间点这个电压差基本上具有相同的数值,但是具有不同的符号。

通过形成在所述两个采样时间点的测量值UR和UF的平均值

因此能够获取偏移值,当没有故障存在时,该偏移值在零附近。然而在有故障的情况下,当接收线圈的线路是开路时,则作为在其两个接头之间的电压差以及由此被AD-转换器识别的电压值的是下述电势的差,所述上拉电阻和下拉电阻与所述电势连接。因此如果这个电压差是大的,则存在故障情况,并且通过将所述偏移值与阈值进行比较能够鉴别出该故障。

本发明的另一方面在于一种电路,该电路实现了这个方法。所述电路由下述待研究的电路出发,该电路包括控制设备,该控制设备具有处理器和功率级,所述功率级用于提供用于激励线路的信号,此外,所述电路包括激励线路和待诊断的信号线路,所述激励线路通往所述分解器的激励线圈,所述信号线路用于所述正弦信号和余弦信号,所述信号线路将所述分解器与所述控制设备耦接。所述电路此外不仅对于正弦线路也对于余弦线路分别包括一AD-转换器,所述AD-转换器与用于所述信号线路的接头连接,并且其输出端能够由处理器来读取并且能够尤其用于马达控制来分析。

对于所述故障诊断,所述电路对于每个接收线圈分别包括一上拉电阻和一下拉电阻,所述电阻相对于接收线圈的内电阻而言是高欧姆的,并且所述电阻分别以一端部与用于所述接收线圈的相应接头连接,并且以另外的端部与相对于地固定的电势连接,其中,所述两个对于每个线圈的电势的差具有一电压值,该电压值在所述AD-转换器的测量范围(输入信号范围)内。

发明优点

本发明的优点在于,能够将待诊断的故障准确地与其他故障相区分(PinPointing-Diagnose:精确定位-诊断)。

尤其AD-转换器的削波(Clipping)如背景技术用于诊断的那样能够基于另一故障。所述诊断也是非常快速的,因为在激励信号的、几个典型地持续0.1ms的周期之后,已经存在可靠的故障诊断,并且能够在必要时采取合适的措施。因此尤其对汽车领域内的传感器关于功能安全性方面的以及关于OBD-功能性(OBD=On Board Diagnose:车载诊断)方面的要求也被满足。

此外有利的是,根据本发明的方法能够以分解器操控的常用的硬件的最小的补充来实现。

如果下述电势——所述上拉电阻和下拉电阻与所述电势连接——的差在所述AD-转换器的测量范围内,则待识别的故障情况不产生削波,而是在所述DA-转换器处产生恒定的值,这有利地排除了其他的原因。

如果所述上拉电阻和下拉电阻相比于所述接收线圈的欧姆电阻是高欧姆的,则所述控制设备有利地无法被损坏或者加载。

如果仅仅在仅一个单独的激励周期的所述两个时间点R和F的测量值在所述故障获取时进入到所述偏移值的计算中,则所述结果有利地特别快速地,即在大约0.1ms之后存在。

相反地,如果应当排除不寻常的马达状态、例如极度剧烈的加速导致在所述采样时间点的振幅的不同被识别为故障,则也能够考虑在两个或者更多个激励周期中的采样时间点的测量值。

对于所述电路的制造也有利的能够是,所述上拉电阻和下拉电阻集成到所述控制设备中,或者所述直流电势中的一个直流电势是地电势。

附图说明

图1示出根据本发明的实施例的电路;

图2示意性地阐述用于实施根据本发明的实施例的方法的步骤;并且

图3示出在出现故障情况时电压在时间上的变化过程。

具体实施方式

用于所述分解器15的控制设备1在图1中央,该控制设备能够集成到用于车辆的控制装置中(在此没有示出)。控制设备具有处理器2(或者使用该处理器),该处理器监视所有待控制的分解器功能的正确进行,并且必要时也显示故障功能。

所述控制设备1尤其是控制所述功率级3和4,所述功率级用于为所述分解器15的激励线圈16在所述第一接头5和6处提供正弦形激励信号。在所述第二接头7a、7b和8a、8b处,所述正弦线圈17和余弦线圈18的信号到达控制设备1,所述信号代表所述测量对象(例如所述马达的轴)的瞬时角度位置,并且所述信号能够在所述AD-转换器21和22中转换之后作为数字的信号根据软件地进一步处理。

所述分解器-激励线路11和12是由所述控制设备1的第一接头至所述分解器15、即至其激励线圈16的连接部。由所述分解器15的正弦线圈17和余弦线圈18出发,所述信号线路13a、13b、14a和14通往所述控制设备1的第二接头7a、7b、8a和8b。这些线路适用于关于中断来监视,这在图1中利用可能的中断10来表示。

此外,设置了上拉电阻R1和R3,所述上拉电阻以其一端部与接头7a和8a中的一个接头连接,所述接头用于所述线路13a和14b中的一个线路,所述线路通往所述正弦线圈17和所述余弦线圈18。所述上拉电阻R1和R3以其另外的端部与第一直流电势UH连接。下拉电阻R2和R4以其一端部与用于线路13b和14b的另外的接头7b和8b连接,所述线路通往正弦线圈17和余弦线圈18,并且所述下拉电阻以其另外的端部与第二直流电势UL连接。在此,所述第二直流电势UL小于所述第一直流电势UH,并且所述电压差UH>- UL能够位于AD-转换器21和22的测量范围中。

如在图2中象征性地阐述的那样,用于识别分解器16的接收线圈17或者18的开路10的方法对于两个接收线圈是相同的。由步骤31出发,在用于所述信号线路13a和14a或者13b和14b的控制设备1处,在所述接头7a和8a或者7b和8b处设置已经提及的上拉电阻R1或者R3和下拉电阻R2或者R4。

下一个方法步骤是,在两个对称于所述激励周期的中心的采样时间点R和F测量32在相应的接收线圈的两个信号线路接头7a和7b或者8a和8b之间的电压。这种测量能够利用AD-转换器21或者22附加于所述转子的角度位置的运行测量来进行,或者也能够通过处理器2由这些测量值中选出在所述时间点R和F的测量值。之后通过形成平均值来计算33偏移值UDC

该平均值包括在激励周期的所述两个采样时间点R和F的测量值UR、UF

图3阐述了这个值的意义。示出的是在正弦线圈的所述两个接头7a和7b处的电势U和U在时间上的变化过程,并且更准确地说在该附图的左半边示出了在出现信号线路的开路的故障之前,在该附图的右半边示出了在出现信号线路的开路的故障之后。在所述两个信号线路13a和13b之间的电压差(在图3中标记为“高”和“低”)通过竖直的箭头标出。所述电压差在无故障的运行(左侧)中由所述激励线圈16和其可变的、通过转子的耦接引起。因为所述信号线路的两个接头7a和7b被引导至AD-转换器21,所以这个差只是所述正弦线圈的信号的、由所述处理器进一步处理的测量值。所述两个线路接头7a和7b相对于地的电势附加地由上拉电阻R1和下拉电阻R2和电势UH和UL确定,所述上拉电阻和下拉电阻与所述电势连接。这些电阻起分压器作用,并且导致用于所述电势(在图3中所述电势被称为U和U)的偏移,其中所述偏移值在图3中示出的例子中例如是2.1V。所述接收线圈17的相对较低的欧姆电阻在这个分压器方面起短路作用,并且阻止在U和U之间超过测量信号的值得注意的电压差的形成。

如果现在对于所述故障识别添加了在时间点R和F之间的、连接到所述AD-转换器上的电压差(通过左边的两个箭头示出),则产生接近零的值。如果仅仅所述分解器信号的振幅改变,这在某些运行条件下能够出现,则这个总和从零偏移;但是这个总和仍然是小的,并且尤其是小于预先给定的阈值CS。此外,存在下述可能性:将之前的激励周期中的一个或者多个激励周期的时间点R和F的测量值考虑到平均值形成中,以便排除这种错误诊断的风险。

如果现在出现信号线路的开路的故障(在图3中右边),则省略接收线圈17的短路作用,从而使得不再有分压器通过所述上拉电阻R1和下拉电阻R2形成。所述两个线路接头7a和7b或者8a和8b的电势更确切地说现在通过上拉电阻R1或者下拉电阻R2拉到所述直流电势UH或者UL上,并且由AD-转换器检测的、在所述接头7a(高)和7b(低)之间的电压差(在图4中例如为:2.8V-1.6V=1.2V)(在此在图3中也通过箭头表明)是固定的正值UH-UL,该值在任何情况下都超过所述阈值CS。所述正弦线圈的信号线路13a、13b中的一个信号线路的开路的鉴别34(参见图2)因此通过观察在配属的AD-转换器21处的偏移值UDC是否超过阈值CS来进行,而不必进行AD-转换器的削波。对应地适用于所述余弦线圈18的信号线路14a和14b。

基于确定所述偏移值UDC是否超过阈值CS,并且因此确定是否诊断出了信号线路10的开路,能够非常快速地进行所需的措施;尤其是所述故障的确定利用显示和/或存储装置9进行显示或者存储。在此,所述开路例如利用其颜色或者参考号码进行标注。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号