首页> 中国专利> 基于多波束的多路径并行ICCP水下地形匹配方法

基于多波束的多路径并行ICCP水下地形匹配方法

摘要

本发明公开了一种基于多波束测深数据的多路径并行ICCP水下地形匹配方法,该方法在传统ICCP算法基础上,充分利用多波束测深数据特性,选取测深条带中央和两边缘的三条路径,设定相应权值和位置约束,采用并行ICCP算法辅助惯导实现导航定位。本发明有效解决了传统ICCP算法在初始误差较大时匹配失败的问题,且算法匹配精度更高。

著录项

  • 公开/公告号CN107643082A

    专利类型发明专利

  • 公开/公告日2018-01-30

    原文格式PDF

  • 申请/专利权人 东南大学;

    申请/专利号CN201710789066.7

  • 申请日2017-09-05

  • 分类号

  • 代理机构南京苏高专利商标事务所(普通合伙);

  • 代理人向文

  • 地址 210018 江苏省南京市玄武区新街口街道四牌楼2号

  • 入库时间 2023-06-19 04:28:55

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-03-31

    授权

    授权

  • 2018-02-27

    实质审查的生效 IPC(主分类):G01C21/20 申请日:20170905

    实质审查的生效

  • 2018-01-30

    公开

    公开

说明书

技术领域

本发明属于惯性导航技术领域,具体涉及一种基于多波束测深数据的多路径并行ICCP水下地形匹配方法。

背景技术

水下地形匹配导航是利用地形匹配技术来实现水下精确定位的自主、全天候的导航方式,对于水下航行器长时间水下航行时的精确定位具有重要的作用。海底地形测量作为测绘科学研究的重要组成部分,其测量结果在水下地形匹配导航中具有重要的作用。随着计算机科学技术、数字信号处理技术和声呐技术的进步,海洋地形测量技术发生了深刻的变化。20世纪60年代中期,在美国Woods Hole Oceanography Institution(WHOI)诞生了世界上第一部多波束测深声呐,从此海底地形测量的作业模式从传统单波束回声测深仪的“点线”测量模式转变为多波束条带状“线面”测量模式。

惯性导航系统具有无源性和自主性,因此水下航行器一般采用以惯导为核心的导航系统来实现水下自主隐蔽导航。但惯性导航系统存在误差随时间累积而发散的缺陷,需要其它导航方式实时或定期修正来抑制其累积误差,从而保证水下航行器长航时和高精度的要求。海底地形辅助导航通过水下地形特征传感器测量出水下载体经过海底的地形特征,结合导航设备估算出地形特征的位置,在数字海图存储装置中搜索出与测得的地形特征有最佳拟合的地形特征,该海底地形特征在数字地形海图中所处的位置就是对水下载体位置的最佳匹配点,并利用最佳匹配位置对推算导航设备进行修正。如此不断循环,便可提高推算导航设备的精度,从而获得精确的导航信息。

在海底地形辅助导航系统中,合适的匹配算法是核心技术之一,这也是当前相关领域的重点和热点研究问题。经典的匹配算法由地形轮廓匹配方法(TERCOM)、桑迪亚惯性地形辅助导航方法(SITAN)和基于等值线的最近点迭代方法(ICCP)。ICCP算法最初来源于图像配准的ICP算法,它不需要事前确定对应估计,只是不断重复运动变换、确定最近点的过程,逐步改进运动估计。尽管ICCP匹配算法易于实现,但由于算法仅通过惯性导航系统指示航迹进行刚性旋转和平移变换来实现最近等深点的迭代配准,因此在初始位置误差较大情况下容易出现匹配失败的问题。

发明内容

发明目的:为了克服现有技术中算法在原理上的缺陷,通过充分利用多波束测深数据特性,有效解决传统ICCP算法在初始误差较大时匹配失败的问题且算法匹配精度更高的一种基于多波束测深数据的多路径并行ICCP水下地形匹配方法。

技术方案:为实现上述目的,本发明提供一种基于多波束测深数据的多路径并行ICCP水下地形匹配方法,包括如下步骤:

步骤一:通过多波束测深仪进行条带数据的采集,选取条带数据中的多个数据点组成多条路径作为初始序列,并且通过数字地图提取等深线;

步骤二:设定路径匹配权值;

步骤三:计算不同路径同一扇面测量点相关距离值;

步骤四:通过惯导系统指示位置设置迭代初始值,并且对初始序列在测量水深值对应的水深等值线上寻找最近点;

步骤五:求解刚性变换T;

步骤六:判断刚性变换T是否收敛,如果没有收敛,返回步骤四进行下一步迭代,直至收敛,即T停止显著变化;

步骤七:进行精度评估,判断匹配是否可靠。如果可靠,则经过迭代后获得的校正集合即为校正后的最优参考航迹点。

根据上述步骤,本发明的具体步骤为:

步骤一:首先导入水下航行器n个航迹中多波束测深仪采集到的条带数据,选取条带数据中央和两侧边缘的数据点组成三条路径作为初始序列(k=1,2,3;i=1,2,...,n),其中P1为测深条带中央数据组成的路径,P2和P3为测深条带两侧边缘数据组成的路径;

步骤二:依据多波束测深数据中央波束基准原则,即多波束入射角在零度附近的测量精度最高,其精度随入射角增大而降低,设定三条路径匹配权值ωk(k=1,2,3),其中ω1>ω2,3且ω123=1;

步骤三:为确保不同路径同一扇面的测量点在匹配前后保持距离一致性,计算(i=1,2,...,n),分别表示P2和P3在同一扇面的测量点与P1中测量点的距离;

步骤四:对在测量水深值对应的水深等值线上寻找最近点,记为(k=1,2,3;i=1,2,...,n);

步骤五:求解刚性变换T,使得集合Y与集合P之间欧氏平方距离最小,公式如下:

其中集合X为真实航迹点集合

即寻找刚性变换T使得上式表示的距离最小,且集合Y同一扇面测量点满足步骤三中的距离约束D;

步骤六:将集合P变换到TP,将新的集合TP作为起始集合,返回步骤四进行下一步迭代,直至收敛,即T停止显著变化;

步骤七:进行精度评估,判断匹配是否可靠。如果可靠,则经过迭代后获得的校正集合TP即为校正后的最优参考航迹点。

有益效果:本发明与现有技术相比,克服了现有算法在原理上的缺陷,充分利用多波束测深数据特性,在传统ICCP算法基础上,选取测深条带中央和两边缘的三条路径,设定相应权值和位置约束,采用并行ICCP算法辅助惯导实现导航定位,有效解决了传统ICCP算法在初始误差较大时容易出现匹配失败的问题,且算法匹配精度也有了大幅的提升。

附图说明

图1为本发明的流程示意图;

图2为多波束水下地形测量示意图;

图3为测深条带多路径选择方法的示意图;

图4为多路径并行ICCP水下地形匹配仿真图。

具体实施方式

下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。

传统的ICCP算法仅通过惯性导航系统指示航迹进行刚性旋转和平移变换来实现最近等深点的迭代配准,因此在初始位置误差较大情况下容易出现匹配失败的问题。随着计算机科学技术、数字信号处理技术和声呐技术的进步,多波束测深声呐使海底地形测量作业能够得到多波束条带状“线面”测量数据,如图2所示为多波束水下地形测量示意图,本发明充分利用多波束测深数据特点,在传统ICCP算法基础上提供一种基于多波束测深数据的多路径并行ICCP水下地形匹配方法,如图1所示,包括如下具体步骤:

步骤一:首先导入水下航行器n个航迹中多波束测深仪采集到的条带数据,选取条带数据中央和两侧边缘的数据点组成三条路径作为初始序列(k=1,2,3;i=1,2,...,n),其中P1为测深条带中央数据组成的路径,P2和P3为测深条带两侧边缘数据组成的路径,如图3所示;

步骤二:依据多波束测深数据中央波束基准原则,即多波束入射角在零度附近的测量精度最高,其精度随入射角增大而降低,设定三条路径匹配权值ωk(k=1,2,3),其中ω1>ω2,3且ω123=1;

步骤三:为确保不同路径同一扇面的测量点在匹配前后保持距离一致性,计算(i=1,2,...,n),分别表示P2和P3在同一扇面的测量点与P1中测量点的距离;

步骤四:对在测量水深值对应的水深等值线上寻找最近点,记为(k=1,2,3;i=1,2,...,n);

步骤五:求解刚性变换T,使得集合Y与集合P之间欧氏平方距离最小,公式如下:

其中集合X为真实航迹点集合

即寻找刚性变换T使得上式表示的距离最小,且集合Y同一扇面测量点满足步骤三中的距离约束D;

步骤六:将集合P变换到TP,将新的集合TP作为起始集合,返回步骤四进行下一步迭代,直至收敛,即T停止显著变化;

步骤七:进行精度评估,判断匹配是否可靠。

匹配结果为可靠,则经过迭代后获得的校正集合TP即为校正后的最优参考航迹点,得到如图4所示的多路径并行ICCP水下地形匹配仿真图。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号