首页> 中国专利> 一种降低镁电解用熔体氯化镁中杂质含量的方法

一种降低镁电解用熔体氯化镁中杂质含量的方法

摘要

本发明属于有色金属冶炼领域,具体涉及一种降低镁电解用熔体氯化镁中杂质含量的方法。本发明要解决的技术问题是提供一种降低镁电解用熔体氯化镁中杂质含量的方法,该方法包括以下步骤:(1)将熔体氯化镁放入净化炉中加热至750±10℃,搅拌,静置沉降至上部澄清熔体MgO质量百分比含量≦0.10%;(2)从净化炉上部将澄清熔体抽出并连续加入净化电解槽中,电解槽采用KCl‑NaCl‑CaCl

著录项

  • 公开/公告号CN107587163A

    专利类型发明专利

  • 公开/公告日2018-01-16

    原文格式PDF

  • 申请/专利权人 攀钢集团研究院有限公司;

    申请/专利号CN201710860214.X

  • 发明设计人 苗庆东;朱福兴;马尚润;李开华;

    申请日2017-09-21

  • 分类号

  • 代理机构成都虹桥专利事务所(普通合伙);

  • 代理人梁鑫

  • 地址 610000 四川省成都市高新区西部园区创新组团攀钢集团研究院有限公司

  • 入库时间 2023-06-19 04:16:27

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-05-24

    授权

    授权

  • 2018-02-09

    实质审查的生效 IPC(主分类):C25C3/02 申请日:20170921

    实质审查的生效

  • 2018-01-16

    公开

    公开

说明书

技术领域

本发明属于有色金属冶炼领域,具体的属于与海绵钛生产过程配套的镁电解领域,更具体的是一种降低镁电解用熔体氯化镁中杂质含量的方法。

背景技术

钛及钛合金具有熔点高、耐腐蚀、比强度高、高低温力学性能优良和生物相容性好等优点,广泛应用于航空航天、海洋开发、石油化工、临床医疗和体育休闲等领域。海绵钛作为金属钛及钛合金制备的初始原料,工业生产由镁热还原-真空蒸馏法制得。镁热法全流程生产海绵钛工艺主要包括氯化精制、还原蒸馏和镁电解三大工序。工艺流程为:首先将富钛原料氯化制备粗四氯化钛,粗四氯化钛经精制得到精四氯化钛,精四氯化钛输送至还蒸工序与液镁反应生产钛和氯化镁,氯化镁定期排放送至镁电解工序产生镁和氯气,镁输送至还蒸工序,氯气输送至氯化工序,从而实现全流程的镁氯循环。

海绵钛生产根据炉型分为“I”型炉和倒“U”型炉。按照排料方式分为氯化镁上排式生产技术和氯化镁下排式生产技术,无论采用哪种排料技术,氯化镁中均含有杂质(钛颗粒、氧化镁、Fe、Ti的离子等),其中氯化镁下排式生产技术产生的氯化镁熔体中杂质含量更高,对后续的镁电解工艺的正常生产和电流效率的提高影响更大。

杂质的危害:氧化镁:氧化镁可以使阴极钝化,析出鱼子状的细小镁粒,这种镁粒不易汇合长大,导致镁的损失量增大。同时氧化镁容易被镁粒吸附,导致镁粒密度增大而沉入槽底,增大镁损失。另外氧化镁在阳极附近会和氯气、石墨阳极反应,生成CO2或CO造成电解质沸腾,同时造成石墨阳极消耗量大幅度增大。钛的危害:熔体中的钛主要以直径为0.05mm~0.3mm的细小钛颗粒和未反应完全的低价钛氯化物存在。由于钛的低价氯化物在700℃时的分解电解为1.817V(TiCl3-)和1.825V(TiCl2),低于氯化镁的分解电压(2.61V),电解过程中钛会在阴极优先析出,造成阴极钝化,同时钛会吸附在镁粒表面,造成镁粒密度增大,沉入槽底,镁损失增大。铁的影响:氯化镁熔体中的铁主要以FeCl3、Fe和FeCl2的形式存在。其会在阴极析出,导致阴极钝化,同时会导致生成的镁粒呈鱼子状而难以汇集长大,会增大镁的损失。

目前,采用全流程生产海绵钛的企业,来自还蒸工序的氯化镁熔体均没有采取系统性的净化除杂操作而直接加入电解槽,直接影响电解过程和电解经济技术指标的提高。国内某大型海绵钛厂采用镁钛联合生产技术,实现了全流程的镁氯循环。其采用氯化镁下排式生产技术,杂质可以及时从还原反应器中排出,但副产的氯化镁熔体中杂质含量较高,影响电解过程的顺利进行和经济技术指标的提高。

发明内容

本发明针对氯化镁熔体中杂质含量较高的技术问题,提出了一种降低镁电解用熔体氯化镁中杂质含量的方法。

一种降低镁电解用熔体氯化镁中杂质含量的方法,包括以下步骤:

A、将熔体氯化镁加热至750±10℃,搅拌,静置沉降至上部澄清熔体MgO质量百分比含量≦0.10%;

B、将澄清熔体抽出并连续加入净化电解槽中,电解槽采用KCl-NaCl-CaCl2熔盐体系,熔体温度为690~730℃,石墨阳极和钢阴极,电解电压为2.8~5.5V,电极极距为30~60mm,电流密度为0.2~0.8A/cm2

其中,上述方法中,步骤A中,所述的氯化镁熔体中杂质按质量百分含量为MgO:0.50~1.50%,全铁:0.05~0.50%,全钛:0.10~0.50%。

其中,上述方法中,步骤A中,静置沉降至上部澄清熔体MgO质量百分比含量≦0.08%。

其中,上述方法中,步骤B中,所述的KCl-NaCl-CaCl2熔盐体系的成分按质量百分含量为KCl:45~60%,NaCl:10~30%,CaCl2:1~5%,MgCl2:10~25%,及不可避免的杂质,以上成分百分数之和为100%。

其中,上述方法中,步骤B中,所述的电解电压为2.8~5.0V,电极极距为30~60mm,电流密度为0.2~0.4A/cm2

其中,上述方法中,步骤B中,电化学除杂控制指标为MgO质量百分比含量≦0.05%,Fe质量百分比含量≦0.01%,Ti质量百分比含量≦0.008%。

本发明的有益效果是:

本发明方法首先通过重力沉降除去熔体氯化镁中的固相杂质,如MgO、细小钛颗粒和铁屑等,操作更安全;然后通过电化学方法进一步降低海绵钛生产过程中镁电解用熔体氯化镁中MgO、Fe、Ti杂质含量,可将杂质含量控制在MgO质量百分比含量≦0.05%,Fe质量百分比含量≦0.01%,Ti质量百分比含量≦0.008%,极大提高了熔体氯化镁的纯度,更有利于后续电解过程的顺利进行,显著提高了经济技术指标。

具体实施方式

一种降低镁电解用熔体氯化镁中杂质含量的方法,包括以下步骤:

A、将熔体氯化镁加热至750±10℃,搅拌,静置沉降至上部澄清熔体MgO质量百分比含量≦0.10%;

B、将澄清熔体抽出并连续加入净化电解槽中,电解槽采用KCl-NaCl-CaCl2熔盐体系,熔体温度为690~730℃,石墨阳极和钢阴极,电解电压为2.8~5.5V,电极极距为30~60mm,电流密度为0.2~0.8A/cm2

本发明方法可针对以氯化镁为主要成分采用电解法生产金属镁的镁电解用熔体氯化镁进行纯化,熔体氯化镁一般含有较多如MgO、细小钛颗粒和铁屑等固相杂质,高温下部分固相杂质还溶解在熔体氯化镁中,严重影响了电解过程的顺利进行和经济技术指标的提高;熔体氯化镁中杂质按质量百分含量一般为MgO:0.50~1.50%,全铁:0.05~0.50%,全钛:0.10~0.50%。

本发明方法步骤A采用重力沉降法,主要除去熔体氯化镁中的固相杂质,如MgO、细小钛颗粒和铁屑等,静置沉降前,可选择搅拌3~10min。

熔体沉降效果对氯化镁中杂质含量影响较大,要求澄清熔体中MgO质量百分比含量≦0.10%,一般需要沉降1~2h,若不合格则延长沉降时间30~60min,直至熔体中MgO质量百分比含量≦0.10%。进一步降低澄清熔体中MgO质量百分比含量有利于步骤B中电化学除杂,提高电解除杂效率,更能确保净化后熔体的纯度,优选的,步骤A中,静置沉降至上部澄清熔体MgO质量百分比含量≦0.08%。

步骤B采用电化学除杂法,主要除去熔体氯化镁中的溶解状态的Fe、Ti等金属及其化合物杂质,所采用的KCl-NaCl-CaCl2熔盐体系的成分按质量百分含量为KCl:45~60%,NaCl:10~30%,CaCl2:1~5%,MgCl2:10~25%,及不可避免的杂质,以上成分百分数之和为100%;优选的,电解电压为2.8~5.0V,电极极距为30~60mm,电流密度为0.2~0.4A/cm2

本发明方法首先通过重力沉降除去熔体氯化镁中的固相杂质,如MgO、细小钛颗粒和铁屑等;然后通过电化学方法进一步降低海绵钛生产过程中镁电解用熔体氯化镁中MgO、Fe、Ti杂质含量,电化学除杂控制指标为MgO质量百分比含量≦0.05%,Fe质量百分比含量≦0.01%,Ti质量百分比含量≦0.008%。

优选的,一种降低镁电解用熔体氯化镁中杂质含量的方法,包括以下步骤:

A、将熔体氯化镁加热至750±10℃,搅拌,静置沉降至上部澄清熔体MgO质量百分比含量≦0.08%;

B、将澄清熔体抽出并连续加入净化电解槽中,电解槽采用KCl-NaCl-CaCl2熔盐体系,熔盐体系的成分按质量百分含量为KCl:45~60%,NaCl:10~30%,CaCl2:1~5%,MgCl2:10~25%,及不可避免的杂质,以上成分百分数之和为100%,熔体温度为690-730℃,石墨阳极和钢阴极,电解电压为2.8~5.0V,电极极距为30~60mm,电流密度为0.2~0.4A/cm2;电化学除杂控制指标为MgO质量百分比含量≦0.05%,Fe质量百分比含量≦0.01%,Ti质量百分比含量≦0.008%。

下面通过实施例对本发明作进一步详细说明,但并不因此将本发明保护范围限制在所述的实施例范围之中。

实施例1

A、来自还蒸工序的氯化镁熔体中杂质含量(质量百分含量)分别为:MgO:1.25%,全铁:0.035%,全钛:0.046%。重力沉降净化炉中熔体温度为752.9℃,搅拌5min后静置沉降2h,沉降结束后,对上部澄清液取样化验MgO含量为0.10%(质量百分比),延长沉降时间60min后,上部澄清液中MgO含量为0.05%(质量百分比);

B、从净化炉上部将澄清熔体抽出并连续加入净化电解槽中,电解槽采用KCl-NaCl-CaCl2熔盐体系,熔盐成分(质量百分含量)为KCl:58%、NaCl:25%、CaCl2:3.0%,MgCl2:14%,熔体温度为725℃,采用石墨阳极和钢阴极,电解电压为4.9V,电极极距为40mm,电流密度为0.3A/cm2。得到的净化后熔体中杂质含量(质量百分比)分别为:MgO含量:0.045%,Fe含量:0.008%,Ti含量:0.005%。

实施例2

A、来自还蒸工序的氯化镁熔体中杂质含量(质量百分含量)分别为:MgO:1.06%,全铁:0.05%,全钛:0.22%。重力沉降净化炉中熔体温度为756.5℃,搅拌5min后静置沉降1.6h,沉降结束后,对上部澄清液取样化验MgO含量为0.06%(质量百分比);

B、从净化炉上部将澄清熔体抽出并连续加入净化电解槽中,电解槽采用KCl-NaCl-CaCl2熔盐体系,熔盐成分(质量百分含量)为KCl:55%、NaCl:28%、CaCl2:2.0%,MgCl2:15%,熔体温度为713℃,采用石墨阳极和钢阴极,电解电压为4.8V,电极极距为40mm,电流密度为0.3A/cm2。得到的净化后熔体中杂质含量(质量百分比)分别为:MgO含量:0.042%,Fe含量:0.01%,Ti含量:0.007%。

由实施例1、2可知,本发明方法能够显著降低镁电解用熔体氯化镁中MgO、Fe、Ti杂质含量,可将杂质质量百分比含量控制在MgO≦0.05%,Fe≦0.01%,Ti≦0.008%,极大提高了熔体氯化镁的纯度,更有利于后续电解过程的顺利进行,显著提高了经济技术指标。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号