首页> 中国专利> 具有布置在车辆的多个独立部分中的多个驱动单元的电动或混合动力车辆

具有布置在车辆的多个独立部分中的多个驱动单元的电动或混合动力车辆

摘要

本发明涉及一种铰接式车辆,其具有相对于彼此连接并铰接的至少两个车辆部分。所述车辆包括前车辆部分以及关于所述车辆的纵向方向布置在该前车辆部分之后的至少一个后车辆部分。该前车辆部分具有至少包括电动机和第一蓄能系统的第一驱动单元;并且所述至少一个后车辆部分具有至少包括电动机和蓄能系统的驱动单元。每个后车辆部分都包括至少在正常驱动状况下彼此电气隔离且与前车辆部分电气隔离的独立电气系统。

著录项

  • 公开/公告号CN107206887A

    专利类型发明专利

  • 公开/公告日2017-09-26

    原文格式PDF

  • 申请/专利权人 沃尔沃卡车集团;

    申请/专利号CN201480081182.8

  • 发明设计人 佩尔·威德科;

    申请日2014-08-14

  • 分类号

  • 代理机构中原信达知识产权代理有限责任公司;

  • 代理人陆弋

  • 地址 瑞典哥德堡

  • 入库时间 2023-06-19 03:23:15

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-05-26

    授权

    授权

  • 2017-10-27

    实质审查的生效 IPC(主分类):B60K6/52 申请日:20140814

    实质审查的生效

  • 2017-09-26

    公开

    公开

说明书

技术领域

本发明涉及包括多个驱动单元的电动或混合动力车辆,这些驱动单元布置在车辆的多个独立部分中。所述多个驱动单元被布置成驱动车辆中的各个车轮或轮轴。

背景技术

本发明能够应用于重型车辆,例如卡车、大客车、建筑设备和其它作业车辆。虽然将针对铰接式大客车来描述本发明,但本发明不限于这种特殊的车辆,而是也可用在其它车辆中,例如使用了位于车辆的多个不同部分中的多个驱动单元的铰接式或非铰接式卡车和建筑设备。

包括多个电动驱动单元和数量渐增的电气部件的电动或混合动力道路车辆的问题涉及电极-底盘电容(pole-chassis capacitance)。期望使该电极-底盘电容保持为低于预定值。在这种背景下,存在对电极-底盘设置限制的标准;例如,ISO6469-3要求能量低于0.2焦耳(J)。作为示例,在包括高压电动系统的车辆中,750伏特(V)下的0.2J能量对应于750V下700*10-9法拉(nF)的电极-底盘电容。

电气系统中的每个额外部件都为该系统增加了额外电容。典型的混合动力系统能够包括电池、电动机、DC/DC转换器、压缩机和空调单元,它们中的每一个都能够贡献约100nF的电容。另外,诸如接线盒和接触器的部件也每个都贡献10nF的电容,而电缆增加约1nF/m的电容。这对能够增加至该电气系统的最大部件数量产生了限制。

类似问题涉及电极-底盘绝缘电阻(pole-chassis isolation resistance)。例如,牵引电压系统电路的任何部分与另一电气系统或底盘的任何暴露部分之间的电阻可以被选择为对于DC部件大于或等于100Ω/V且对于AC部件大于或等于500Ω/V。

而且,牵引电压系统电路的任何部分与另一电气系统或底盘的任何暴露部分之间的总电阻可以被选择为大于或等于5000kΩ。500Ω/V的系统要求将在750V的系统电压下产生375Ω的总电阻,这将允许最多13个部件。

本发明的目的在于提供一种消除了上述问题或者至少最小化了上述问题的、一种改进的车辆电气系统。

发明内容

本发明的目的在于提供一种解决上述问题的电动或混合动力车辆。通过根据权利要求1所述的装置来实现该目的。

通过提供包括多个电动驱动单元或推进单元(它们设有根据本发明的电气架构)的电动或混合动力道路车辆,一个优点是能够在不超过所述电极-底盘电容的预定值的情况下增加电气部件的数目。

根据本发明的第一方面,通过根据权利要求1所述的电动或混合动力车辆来实现该目的。

根据本发明,该电动或者混合动力车辆具有位于车辆的多个不同部分中的多个驱动单元,其中,第一驱动桥由至少一个电动驱动单元驱动,并且至少一个另一驱动桥由至少一个电动驱动单元驱动。电动驱动单元包括用于驱动车桥或驱动该车桥上的每个车轮的一个或多个电动机,以及用于控制所述一个或多个电动机的电动机驱动器(EMD)。每个驱动桥各自具有至少一个电动驱动单元,所述至少一个电动驱动单元连接至接线盒和至少一个蓄能系统以形成电气系统。该接线盒通过高压DC总线连接至电动机驱动器、蓄能系统、和所述独立电气系统中的其它电气部件。

根据一个示例,根据本发明的车辆能够具有位于车辆的多个不同部分中的多个电动驱动单元。该车辆包括前可转向桥和一个或多个另外的车桥,其中两个或更多个车桥被驱动。例如,位于车辆的一个部分内的车桥能够具有至少包括电动机和第一蓄能系统的第一驱动单元。车辆的独立部分中的至少一个另外的车桥能够具有包括蓄能系统和至少一个另外的电动机的第二驱动单元。由此,其改进在于每个驱动单元都包括至少在正常驱动状况下与其它驱动单元的电气系统电气隔离(galvanically isolated)的独立电气系统。

根据进一步的示例,根据本发明的车辆能够具有彼此连接且相对彼此铰接的至少两个车辆部分。该车辆包括:布置在车辆的前端处的前车辆部分,该前车辆部分具有前可转向桥和后驱动桥;和具有单个车桥的至少一个后车辆部分,该后车辆部分关于车辆的纵向方向布置在前车辆部分之后。该前车辆部分具有至少包括电动机和第一蓄能系统的第一驱动单元。至少一个后车辆部分具有至少包括电动机和蓄能系统的驱动单元。由此,其改进在于:包括独立电气系统的每个后车辆部分至少在正常驱动状况下彼此电气隔离且与前车辆部分电气隔离。

上述示例都能够使用具有用于每个驱动桥或用于驱动驱动桥上的每个车轮的独立电气系统的一个驱动单元。而且,每个驱动桥都能够由包括一个或多个电动机的电动驱动单元或包括电动机和内燃机的混合驱动单元驱动。为了联合控制每个车桥的驱动单元,设有电子控制单元。

在上下文中,术语“正常驱动状况”被定义为在消耗来自相关的电源的电力的牵引模式下或者在向车辆内的蓄能单元供电的再生模式下使用包括内燃机和/或电动机的牵引系统来驱动车辆的状况。

根据本发明,布置在车辆的不同部分中的多个独立电气系统可在从外部电源对至少一个蓄能系统充电期间连接。能够从充电器经由导电装置(例如,插座或电弓)或感应装置(例如,道路表面中的感应线圈)提供外部电源。

优选地,所述独立电气系统连接至公共的外部充电单元。在上述示例中,所述独立电气系统中的蓄能系统主要意图于在车辆静止的时段内被充电。然而,通过使用例如架空受电弓或道路表面中的感应线圈,则允许车辆在行驶的同时被充电。

所述公共的外部充电单元能够经由至少一个接触器,优选对每个电气系统使用一个接触器而连接至电气系统的蓄能系统。所述充电单元布置成控制被供应至正在充电的单个蓄能单元或多个蓄能单元的电压。所述接触器被布置成中断流经电路的电流或中断对电路的供电,以便将一部分电路与电源隔离。用于此目的的一种适当的接触器是充电开关单元(CSU)。

根据一个示例,所述多个独立电气系统可由DC/DC转换器连接,DC/DC转换器本身能够在各个电气系统中在DC电压总线之间提供电气隔离(galvanic isolation)。DC/DC转换器能够连接在各个电气系统中的接线盒之间。DC/DC转换器能够操作,以在从外部电源对至少一个蓄能系统充电期间调节到达每个DC电压总线的电压。例如,如果充电器和要充电的电气系统之间的电压差太大,则不可能闭合充电器和电气系统之间的接触器。在这种情况下,充电电流能够穿过DC/DC转换器,从而供应适当电压。

根据进一步的示例,所述多个独立电气系统可由包括至少一个接触器的DC总线连接。优选地(但并非必须),接触器被设置在连接每个包括蓄能系统的车辆部分的DC总线中。这允许一个车辆部分中的独立电气系统中的DC总线与连接其它车辆部分中的独立电气系统的DC总线电气隔离。例如,公共充电器能够连接至处于一个位置的车辆,之后,其DC总线被分成多个DC总线,每个独立电气系统用一个DC总线。来自充电器的每个DC总线都连接至各独立电气系统的接线盒。对每个独立电气系统都提供接触器,以便在不执行从外部电源充电时能够断开所分开的DC总线,并且所述独立电气系统被电气隔离。

如上所述,每个驱动桥都能够由包括一个或多个电动机的电动驱动单元驱动。仅由电动机驱动的车辆通常称为纯电动车辆(FEV)。替选地,至少一个车桥能够由包括电动机和内燃机的混合驱动单元驱动。内燃机能够用于通过变速箱来驱动车桥,或者产生用于电动机或蓄电系统的动力。当充电器为插电式时,这种车辆通常被称为插电式混合动力车辆(PHEV)。

根据本发明的车辆包括每个均具有一个蓄能系统的多个独立电气系统。该蓄能系统能够包括至少一个电池、至少一个超级电容器、和/或至少一个机械能量源和/或液压能量源。在本发明的范围内,一个蓄能系统能够被能量最优化,包括电池单元,而进一步的系统能够被功率最优化,包括超级电容器、机械能量源和/或液压能量源。

在下文的说明和从属权利要求中,公开了本发明进一步的优点和有利特征。

附图说明

参考附图,下文是作为示例给出的本发明实施例的更详细说明。在附图中:

图1A-1D示出了适合与根据本发明的推进系统一起使用的示意性车辆;

图2示出了根据本发明的第一实施例的示意性车辆;并且

图3示出了根据本发明的第二实施例的示意性车辆。

具体实施方式

图1A-1D示出了适合与根据本发明的推进系统一起使用的示意性车辆。图1A示出了具有两个驱动桥102、104的示意性车辆101,其中,每个驱动桥都能够由包括一个或多个电动机的第一电动驱动单元103和第二电动驱动单元105驱动。因此,一个电动机能够布置成驱动一个车桥,或者一个电动机能够布置成驱动车桥上的每个车轮。在该示例中,第一电动驱动单元103和第二电动驱动单元105分别位于车辆101的前部和后部中。替选地,至少一个车桥能够由包括电动机和内燃机的混合动力驱动单元驱动。

图1B示出了具有三个驱动桥112、114、116的示意性车辆111,其中,每个驱动桥都能够由包括一个或多个电动机的电动驱动单元113、115驱动。如上所述,一个电动机能够布置成驱动一个车桥,或者一个电动机能够布置成驱动车桥上的每个车轮。在该示例中,第一电动驱动单元113位于铰接车辆的前部中,并且第二电动驱动单元115和第三电动驱动单元117位于铰接车辆101的后部中。替选地,至少一个车桥能够由包括电动机和内燃机的混合动力驱动单元驱动。这种布置适合建筑机器,例如铰接式翻斗车。

图1C示出了具有两个驱动桥122、124的示意性车辆121,其中,每个驱动桥都能够由包括一个或多个电动机的电动驱动单元123、125驱动。替选地,至少一个车桥能够由包括电动机和内燃机的混合动力驱动单元驱动。一个电动机能够布置成驱动一个车桥,或者一个电动机能够布置成驱动车桥上的每个车轮。在该示例中,第一电动驱动单元123位于铰接式卡车的前部中,该前部也包括可转向桥126。第二电动驱动单元125位于车辆121的后部中,该后部也包括后车桥128。这种布置结构适合包括牵引车-拖车组合体的卡车。

图1D示出了具有两个驱动桥132、134的示意性车辆131,其中,每个驱动桥都能够由包括一个或多个电动机的电动驱动单元133、135驱动。替选地,至少一个车桥能够由包括电动机和内燃机的混合动力驱动单元驱动。一个电动机能够布置成驱动一个车桥,或者一个电动机能够布置成驱动车桥上的每个车轮。

在该示例中,第一电动驱动单元133位于铰接式大客车的前部中,该前部也包括可转向桥136。第二电动驱动单元135位于车辆131的后部中,该后部连接至包括非驱动桥138的中间部分。这种布置结构适合包括其中至少两个铰接部分具有驱动桥的多个铰接部分的大客车。

在图1A-1D所示的示例中,每个驱动桥各自具有至少一个电动驱动单元,该至少一个电动驱动单元连接至接线盒和至少一个蓄能系统以形成电气系统。下面将结合图2和3更详细地描述这种电气系统。当不从外部电源对车辆中的一个或多个蓄能系统充电时,这些独立电气系统在正常运行期间彼此电气隔离。

这仅是适合与本发明一起使用的车辆的所选示例。在本发明的范围内,可以构思出具有安装在前车辆部分和/或后车辆部分以及一个或多个中间车辆部分中的可替选位置上的驱动桥的其它车辆。

图2示出了根据本发明的第一实施例的示意性车辆。对于该特殊示例,选择了图1D所示类型的铰接式车辆。该车辆包括相对于彼此连接并铰接的前车辆部分201、中间车辆部分202和后车辆部分203。前车辆部分201布置在车辆的前端处并具有前可转向桥210和后驱动桥211。中间车辆部分202具有单个非驱动桥221,并且后车辆部分203具有单个驱动桥231。

前车辆部分201具有牵引电压系统形式的第一驱动单元。该牵引电压系统包括连接至变速箱214以于驱动所述驱动桥211的电动机/发电机212。电动机/发电机212能够向驱动桥211供应推进扭矩,或者能够被驱动桥211驱动以在再生期间发电。电动机/发电机212连接至向电动机/发电机212供应三相AC电流的电动机驱动器(EMD)213,该电动机驱动器(EMD)213也称为电力电子转换器(PEC)。三相AC电流由斜叉该电压总线的三根并联线路表示。在当前示例中,三相电流仅被供应至电动机/发电机。两相电流由斜叉该电压总线的两根并联线路表示。电动机驱动器(EMD)213进而通过高压接线盒216连接至第一蓄能系统,在该情况下,此第一蓄能系统是高压电池组215。牵引电压系统包括组成运行高压总线的多个高压DC总线205、206、207、208、209,这些总线由连接器(未示出)连接至高压接线盒216。在图2所示的示例中,高压接线盒216也能够用于将这些高压总线结合并分配至多个不同的电气部件。

第一DC总线205将高压接线盒216连接至电动机驱动器(EMD)213,并最终经由第二总线206连接至电动机/发电机212。第一DC总线205也被称为高压牵引总线,而第二总线206为三相AC总线。电动机驱动器(EMD)213包括用于控制电动机/发电机212的电力电子装置,包括电动机控制单元(MCU)。类似地,变速箱214由变速箱电子控制单元(未示出)控制。在该示例中,电动机/发电机212是由电动机驱动器(EMD)213供电的AC电动机。然而,在本发明的范围内,也可使用DC电动机。

第三DC总线207将接线盒216连接至高压电池组215。高压电池组215具有电池管理单元(BMU),其包括功率连接器和用于控制电池组215以及组成电池组的单元电池的电子装置(未示出)。该功率连接器通常包括具有用于控制负荷的通电的预充电模块的预充电电路。该预充电模块能够是固态式的,并且被配置为与预充电电阻器(例如10欧姆预充电电阻器)串联并跨接触器或继电器的触点而连接在一起的固态模块。该继电器是用于接通和中断所述负荷的电力的主继电器或主接触器。例如,所述负荷能够是电动机驱动器(EMD)213或功率输出(PTO)负荷。被该继电器接通和中断的电力是来自高压电池组215的电力。该继电器的通/断状态由BMU控制。

还能够设置有另外的DC总线,以将接线盒连接至DC/DC转换器和低电压DC总线(未示出)。这里将不更详细描述这种DC/DC转换器的操作和对低电压DC的供电。所述接线盒也能够连接至一个或多个电力输出负荷(ePTO:s)或者高压电负荷(未示出)。在图2中,仅示出了用于后车辆部分的这些总线。实际上,一个DC总线能够供应多个负荷,和/或几个DC总线能够供应多个单独负荷。

接线盒216和每个控制单元也能够连接至线束,以便例如通过CAN总线与中央电子控制单元(未示出)通信。该线束能够连接至中央电子控制单元,并且用于将控制信号和/或传感器信号发送至控制单元/从控制单元接收这些信号。该中央电子控制单元能够是独立单元,或者能够布置成邻近接线盒216或在接线盒216中。

第四DC总线208将接线盒216连接至充电开关单元217。充电开关单元217布置成将前车辆部分201中的牵引电压系统与车辆的其余部分202、203断开。以这种方式,前车辆部分201至少在正常驱动状况下与中间车辆部分202和后车辆部分203电气隔离。在下文所述的后车辆部分203中设置有相应的充电开关单元。

第五DC总线209将充电开关单元217连接至充电接口适配器220,该充电接口适配器220经充电器254连接至电网。充电接口适配器220是接线盒,其在图2的示例中用于将来自充电器254的DC总线分为相应的前车辆部分201和后车辆部分203的DC总线。

替选地,该充电接口适配器能够被DC/DC转换器和用于控制对车辆的前部和后部的相应牵引电压系统的输出电压的控制单元代替。这种DC/DC转换器能够直接地连接至车辆的前部和后部的相应接线盒,从而消除了对充电开关单元的需求。在正常(非充电)运行状况期间,DC/DC转换器将前车辆部分201保持为与中间车辆部分202和后车辆部分203电气隔离。

以与前车辆部分201相同的方式,后车辆部分203具有牵引电压系统形式的第一驱动单元。该牵引电压系统包括电动机/发电机232,该电动机/发电机232连接至变速箱234以驱动所述驱动桥231。电动机/发电机232能够向驱动桥231供应推进扭矩,或者能够被驱动桥231驱动以在再生期间发电。后车辆部分203还具有内燃机230,该内燃机230连接至变速箱234,以单独地或者与电动机/发电机232一起驱动所述驱动桥231。内燃机230能够由电子发动机控制单元(未示出)控制。电动机232能够充当外部起动器交流电动机,该外部起动器交流电动机能够作为内燃机230的起动器电动机而运行。电动机232通过变速箱234或者通过诸如驱动皮带的适当变速装置以机械方式联接至内燃机230。

电动机/发电机232连接至电动机驱动器(EMD)233,该电动机驱动器(EMD)233则经由高压接线盒236连接至高压电池组235形式的第一蓄能系统。牵引电压系统包括组成运行高压总线的多个高压总线243、244、245、246、247、248、249,这些总线由连接器(未示出)连接至高压接线盒236。在图2所示的示例中,也称为混合接线盒的高压接线盒236也能够用于将这些高压总线结合并分配至多个不同的电气部件。

第一DC总线245将高压接线盒236连接至电动机驱动器(EMD)233,并最终经由第二总线246连接至电动机/发电机232。第一DC总线245是两相高压牵引总线,而第二总线246是三相AC总线。电动机驱动器233包括用于控制电动机/发电机232的电力电子装置,包括电动机控制单元(MCU)。如前车辆部分201中一样,变速箱234由变速箱电子控制单元(未示出)控制。在该示例中,电动机/发电机232是由上述电动机驱动器(EMD)233供电的三相AC电动机。然而,在本发明的范围内,也可使用DC电动机和第二DC总线。

第三DC总线247将接线盒236连接至高压电池组235。高压电池组235具有电池管理单元(BMU),包括功率连接器和用于控制电池组235以及组成电池组的单元电池的电子装置(未示出)。该功率连接器通常包括具有用于控制到达负荷的功率的预充电模块的预充电电路。该预充电模块能够是固态式的,并且被配置成与预充电电阻器(例如10欧姆预充电电阻器)串联并跨接触器或继电器的触点而连接在一起的固态模块。该继电器是用于接通和中断所述负荷的电力的主继电器或主接触器。所述负荷能够是布置在电动机驱动器233内的逆变器。被该继电器接通和中断的电力是来自高压电池组235的电力。该继电器的通/断状态由BMU控制。

第四DC总线248将接线盒236连接至充电开关单元237。充电开关单元237布置成将后车辆部分203中的牵引电压系统与车辆的其余部分201、202断开。以这种方式,后车辆部分203至少在正常驱动状况下与前车辆部分201和中间车辆部分202电气隔离。

第五DC总线249将充电开关单元237连接至与电网连接的充电接口适配器220。在该示例中,充电接口适配器220是上文已经描述过的接线盒。

还设置有另外的DC总线243、244,以将接线盒236连接至DC/DC转换器238和一个或多个电功率输出负荷(ePTO:s)239。DC/DC转换器238对诸如12/24V总线的低电压DC总线(未示出)供电。这里将不更详细地描述这种DC/DC转换器的操作和对低电压DC的供电。在图2中,仅对后车辆部分指示了这些总线。实际上,一个DC总线能够对多个负荷供电,和/或几个DC总线能够对多个单独负荷供电。低电压DC总线能够连接至各种12V或24V负荷(未示出)以及辅助的12V或24V蓄电池。低电压DC总线经由DC/DC转换器238连接至高压总线,以保持DC总线电压。

如上所述,前牵引总线和后牵引总线分别经由DC总线209和249连接至公共充电接口适配器220。这种布置结构允许每个车辆部分中的牵引电压系统在正常驱动状况下彼此电气隔离。当期望对一个或多个蓄能系统215、235充电时,则将充电接口适配器220连接至外部能量源。过外部能量源能够经由导电装置(例如受电弓251或插电装置252)或感应装置253连接至车辆。这些外部能量源也包括充电器254。

当充电接口适配器220已经连接至外部能量源时,则可在DC总线209、249中获得到达前车辆部分201和后车辆部分203中的相应牵引电压系统的电力。然后能够控制一个或两个充电开关单元217、237,以将充电电流供应至相应的蓄能系统215、235。当充电完成时,充电开关单元217、237断开且充电电流中断,以便确保前牵引总线和后牵引总线彼此电气隔离。

图3示出了根据本发明第二实施例的示意性的双铰接式车辆。该车辆包括相对于彼此于连接并铰接的前车辆部分301、中间车辆部分320和后车辆部分303。前车辆部分301布置在车辆的前端处并具有前可转向桥310和后驱动桥311。中间车辆部分302具有单个非驱动桥321,并且后车辆部分303具有单个驱动桥331。

前车辆部分301具有牵引电压系统形式的第一驱动单元。该牵引电压系统包括电动机/发电机312,该电动机/发电机312连接至变速箱314以驱动所述驱动桥311。电动机/发电机312能够向驱动桥311供应推进扭矩,或者能够被驱动桥311驱动以在再生期间发电。电动机/发电机312连接至也称为电力电子转换器(PEC)的电动机驱动器(EMD)313,电动机驱动器(EMD)313进而经由高压接线盒316连接至第一蓄能系统,在本示例中,该第一蓄能系统是高压电池组315。牵引电压系统包括组成运行高压总线的多个高压DC总线305、306、307、308、309,这些总线通过连接器(未示出)连接至高压接线盒316。在图3所示的示例中,高压接线盒316也能够用于将这些高压总线结合并分配至多个不同的电气部件。

第一DC总线305将高压接线盒316连接至电动机驱动器(EMD)313,并最终经由第二总线306连接至电动机/发电机312。第一DC总线305是两相DC电压牵引总线的一部分,而第二总线306是三相AC总线。电动机驱动器(EMD)313包括用于控制电动机/发电机312的电力电子装置,包括电动机控制单元(MCU)。类似地,变速箱314由变速箱电子控制单元(未示出)控制。在该示例中,电动机/发电机312是由逆变器供电的AC电动机。然而,在本发明的范围内,也可使用DC电动机。

第三DC总线307将接线盒316连接至高压电池组315。高压电池组315具有电池管理单元(BMU),包括功率连接器和用于控制电池组315以及组成电池组的单元电池的电子装置(未示出)。该功率连接器通常包括具有用于控制到达负荷的功率的预充电模块的预充电电路。该预充电模块能够是固态式的,并且被配置成与预充电电阻器(例如10欧姆预充电电阻器)串联并跨接触器或继电器的触点而连接在一起的固态模块。该继电器是用于接通和中断所述负荷的电力的主继电器或主接触器。所述负荷能够是布置在电动机驱动器313中的逆变器。被该继电器接通和中断的电力是来自高压电池组315的电力。该继电器的通/断状态由BMU控制。

还能够设置有另外的DC总线,以将接线盒连接至DC/DC转换器和低电压DC总线(未示出)。这里将不更详细描述这种DC/DC转换器的操作和对低电压DC的供电。该接线盒也能够连接至一个或多个电功率输出负荷(ePTO:s)或高压电负荷(未示出)。在图3中,仅示出了用于后车辆部分的这些总线。实际上,一个DC总线能够供应多个负荷,和/或几个DC总线能够供应多个单独负荷。

接线盒316和每个控制单元也能够连接至线束,以便例如通过CAN总线而与中央电子控制单元(未示出)通信。该线束能够连接至中央电子控制单元,并且用于将控制信号和/或传感器信号发送至控制单元/从控制单元接收这些信号。该中央电子控制单元能够是独立单元,或者能够布置成邻近接线盒316或在接线盒316中。

第四DC总线308将接线盒316连接至第一充电开关单元317。第一充电开关单元或前充电开关单元317布置成将前车辆部分301中的牵引电压系统与车辆的其余部分302、303断开。第五DC总线309将第一充电开关单元317连接至后车辆部分303中的相应的第二充电开关单元或后充电开关单元337。出于所有实际的目的,充电开关单元317、337中的一个是冗余的。然而,为了安全起见,可能希望在前车辆部分301和后车辆部分303的每一个中设置一个充电开关单元317、337,从而确保当不是正从外部电源对车辆充电时,第五DC总线309没有一部分是通电的。以这种方式,前车辆部分301至少在正常驱动状况下与中间车辆部分302和后车辆部分303电气隔离。

替选地,充电开关单元317、337能够被DC/DC转换器341(以虚线示出)和用于对到达车辆的前部和后部的相应牵引电压系统的输出电压进行控制的控制单元代替。这种DC/DC转换器能够直接地连接至车辆的前部和后部的相应接线盒,从而消除对充电开关单元的需求。在正常操作期间,DC/DC转换器将前车辆部分301保持为与中间车辆部分302和后车辆部分303电气隔离。

以与前车辆部分301相同的方式,后车辆部分303具有牵引电压系统形式的第一驱动单元。该牵引电压系统包括连接至变速箱334以驱动驱动桥331的电动机/发电机332。电动机/发电机332能够向驱动桥331供应推进扭矩,或者能够被驱动桥331驱动以在再生期间发电。后车辆部分303也具有内燃机230形式的第二驱动器,其连接至变速箱334以单独地驱动或者与电动机/发电机332一起驱动所述驱动桥331。内燃机330能够由电子发动机控制单元(未示出)控制。电动机332能够充当外部起动器交流电动机,该外部起动器交流电动机能够作为内燃机333的起动器电动机而运行。电动机332通过变速箱334或通过诸如驱动皮带的适当变速装置以机械方式联接至内燃机330。

电动机/发电机332连接至电动机驱动器(EMD)333,该电动机驱动器(EMD)333则经由高压接线盒336连接至高压电池组335形式的第一蓄能系统。牵引电压系统包括组成运行高压总线的多个高压总线342、343、344、345、346、347、348、349,这些总线由连接器(未示出)连接至高压接线盒336。在图3所示的示例中,也被称为混合接线盒的高压接线盒336也能够用于将这些高压总线结合并分配至多个不同的电气部件。

第一DC总线345将高压接线盒336连接至电动机驱动器(EMD)333,并最终经由第二总线346连接至电动机/发电机332。第一DC总线345是高压牵引总线,而第二总线346是三相AC总线。电动机驱动器333包括用于控制电动机/发电机332的电力电子装置,包括电动机控制单元(MCU)。以与第一车辆部分301相同的方式,变速箱334由变速箱电子控制单元(未示出)控制。在该示例中,电动机/发电机332是AC电动机,但是在本发明的范围内,也可使用DC电动机。

第三DC总线347将接线盒336连接至高压电池组335。高压电池组335具有电池管理单元(BMU),包括功率连接器和用于控制电池组335以及组成电池组的单元电池的电子装置(未示出)。该功率连接器通常包括具有用于控制到达负荷的功率的预充电模块的预充电电路。该预充电模块能够是固态式的,并且被配置成与预充电电阻器(例如10欧姆预充电电阻器)串联并跨接触器或继电器的触点而连接在一起的固态模块。该继电器是用于接通和中断所述负荷的电力的主继电器或主接触器。该负荷能够是布置在电动机驱动器333内的逆变器。被该继电器接通和中断的电力是来自高压电池组335的电力。该继电器的通/断状态由BMU控制。

第四DC总线348将接线盒336连接至充电开关单元337,并进一步连接至第一车辆部分301的牵引电压系统。第五DC总线349将接线盒336连接至与电网连接的充电器354。

替选地,充电开关单元117、337能够被DC/DC转换器341(以虚线示出)和用于对到达车辆的前部和后部的相应牵引电压系统的输出电压进行控制的控制单元(未示出)代替。这种DC/DC转换器能够直接连接至车辆的前部和后部的相应接线盒316、336,从而消除对充电开关单元的需求。在正常(非充电)运行期间,DC/DC转换器使前车辆部分201保持与中间车辆部分202和后车辆部分203电气隔离。这种布置结构将要求设置有另外的DC总线343、344以将接线盒336连接至DC/DC转换器338和一个或多个电功率输出负荷(ePTO:s)339。DC/DC转换器338对低电压DC总线(未示出)供电。这里将不更详细描述这种DC/DC转换器的操作和对低电压DC的供电。在图3中,仅对后车辆部分指示了这些另外的总线。实际上,一个DC总线能够对多个负荷供电,和/或几个DC总线能够对多个单独负荷供电。低电压DC总线能够连接至各种12V或24V负荷(未示出)以及辅助的12V或24V蓄电池。低电压DC总线经由DC/DC转换器338连接至高压总线,以保持DC总线电压。

如上所述,后牵引总线经由DC总线349连接至公共充电器354。前牵引总线经由DC总线349、后接线盒336、充电开关单元337以及将前车辆部分301和后车辆部分302连接的DC总线309连接至公共充电器354。

这种布置结构允许每个车辆部分中的牵引电压系统在正常驱动状况下彼此电气隔离。当希望对一个或多个蓄能系统315、335充电时,则充电器354从外部能量源供电。外部能量源能够经由导电装置(例如,受电弓351或插电装置352)或感应装置353连接至车辆。这些外部能量源也包括充电器254。

当充电器354已经连接至外部能量源时,则可在DC总线249中获得电力,并且前车辆部分301和后车辆部分303中的相应牵引电压系统能够被连接以进行充电。后车辆部分303的牵引电压总线经由后接线盒336连接至DC总线349,从而将充电电流供应至后蓄能系统335。通过进一步控制后牵引电压总线中的第二充电开关单元337和前牵引电压总线中的第一充电开关单元317来连接前车辆部分301的牵引电压总线,从而将充电电流供应至前蓄能系统315。当充电完成时,相应的充电开关单元317、337断开,以便确保前牵引总线和后牵引总线彼此电气隔离。

上述实施例允许这些被电气隔离的牵引总线彼此独立运行,由此,它们例如能够以不同牵引电压运行。进一步替选的方案是一个系统(前部或后部的系统)被能量最优化,而其它系统被功率最优化。被能量最优化的系统将包括具有被最优化以在更长的连续时段供应或回收能量的电池组的蓄能系统。被功率最优化的系统将包括一个或多个超级电容器、液压蓄能器和/或飞轮,以允许在启动/停车操作期间或短暂加速期间快速回收或再生能量。除了用于快速能量回收的单元之外,被功率最优化的系统还可以具有电池组。

应当理解,本发明不限于上文所述和附图中所示的实施例;而是,本领域技术人员应明白,在不偏离所附权利要求的范围的情况下,可以进行许多修改和变型。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号