首页> 中国专利> 产生用于音频振动的阻尼电磁致动平面运动的系统和方法

产生用于音频振动的阻尼电磁致动平面运动的系统和方法

摘要

提出了一种用于将振动牵引施加到佩戴者皮肤的振动模块。示出了在耳机中使用振动模块,以提供针对音乐的用于按摩的低频触感,以及对佩戴者的电记录及刺激。在理论上提出了活动磁体类型的阻尼、平面、电磁致动的振动模块并付诸实践,并且示出了在40‑200Hz的范围内以最少的不必要声音提供基本上均匀的频率响应。

著录项

  • 公开/公告号CN107135665A

    专利类型发明专利

  • 公开/公告日2017-09-05

    原文格式PDF

  • 申请/专利权人 泰克宣技术有限公司;

    申请/专利号CN201580063995.9

  • 发明设计人 西尔蒙·詹姆斯·比格斯;

    申请日2015-09-24

  • 分类号H01F7/06(20060101);

  • 代理机构11002 北京路浩知识产权代理有限公司;

  • 代理人王莹;张晶

  • 地址 美国加利福尼亚

  • 入库时间 2023-06-19 03:12:05

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-02-18

    授权

    授权

  • 2017-09-29

    实质审查的生效 IPC(主分类):H01F7/06 申请日:20150924

    实质审查的生效

  • 2017-09-05

    公开

    公开

说明书

相关申请的交叉引用

本申请要求于2014年9月24日提交的申请号为62/054712,题目为“用于音频振动的阻尼电磁致动平面运动”的美国临时专利申请以及于 2015年1月10日提交的申请号为62/101985,题目为“提供用于音频振动的阻尼电磁致动平面运动的系统和方法”的美国临时专利申请的优先权,其中的每一个的全部内容通过引用并入本申请。

技术领域

本发明涉及产生用于通过触摸感知的低音频率振动的触觉传感器。

背景技术

低于约200Hz时,声音的频率越低,则其不仅通过耳鼓的振动被感知得越多,而且也通过皮肤中的触觉感受器被感知得越多。这种感觉对于具有在胸中或通过坐在椅子上“感受到强烈舞蹈音乐的节奏”的任何人或对于仅仅将手放在钢琴上的人来说熟悉。自然刺激兼备听觉和触觉,只有当皮肤的机械振动伴随着通过空气传播到耳鼓的声波时,才能真实地再现它。

音频触觉传感器中的现有技术主要采用轴向振动器。图1示出了现有技术的耳机装置10的分解图,其包括轴向振动器100,该轴向振动器100包括悬置在螺旋切割弹簧112上的运动块(moving mass)114、定子116以及音圈118。这种轴向振动器的构造模拟传统的音频驱动器,其中使用更重的块代替轻纸锥,并且提供了更坚固的悬架,其通常为螺旋切割金属弹簧。

这种结构的缺点是产生不必要的噪声。发生这种的原因是轴向振动器安装在耳机耳罩中,其运动轴指向耳道的开口。图2A示出了现有技术的耳机设备20的立体图,其包括沿Z轴振动的轴向振动器,并通过将耳罩插入用户头部的侧面来刺激皮肤。块的轴向运动导致通常密封在耳廓上的整个耳罩本身的反向运动。因此,刺激耳罩垫下方皮肤的力也不幸地将空气塞入收听者的耳道中,淹没了音频驱动器的输出并产生多余的不必要的噪音。

图2B示出说明了由图2A的现有技术的耳机产生的多余的明显的低音音频的曲线图。特别地,图2B说明当打开惯性振动器至逐渐增强的水平(迹线标记为“开”)时,耳机的相对扁平的声频响应单独地受到削减(迹线标记为“关”)。在这个例子中,显著的音频被添加到声频响应,导致在50-100Hz范围内的10-20dB的不期望的冲击(bump)。结果是其中高频不足的重低音,并且用户感觉的是一种含混、混乱的声音。

不均匀频率响应的问题通常由于缺乏机械阻尼而变得更为糟糕。使系统欠阻尼意味着靠近机械谐振的稳态信号获得高振幅,导致峰值响应,并且在激励后系统铃声停止,进一步降低音频保真度。这种冲击在现有技术的频率响应(图2B)中是显而易见的,其中致动触觉传感器将耳机的声音输出增加到比由“0”参照线所指示的90dB声压级高 10-20dB。

现有技术中的另一种也存在疑问的方法是使用非阻尼偏心旋转电机(“ERM”)和非阻尼线性谐振驱动器(“LRA”)。小型非阻尼的ERM 与高保真音频不兼容,原因如下。首先,通常需要大约20毫秒,将 ERM“提升”到产生足够大到能被感觉的的加速度的频率。到那时,脉冲信号(例如,一个底鼓(kick drum)的打击)将已经通过。第二,在ERM中,可被比作“触觉音量”的加速度和可被比作“触觉音调”的频率相关联,不能独立变化。这种连接从根本上与声音保真度不兼容。

LRA的主要缺点在于对“谐振”的依赖,即名称所暗示的。装置被设计用于触觉警报,而非保真度,因此它们在单个频率下产生共振,并仅在该频率下产生可感知的振动。例如,典型的LRA可能在 175±10Hz处产生高达1.5g的加速度,但在该20Hz范围之外可能产生低于0.05g的加速度。这种高Q因子使得这种装置对于在15-120Hz范围内的低频触觉效果的高保真度再现是无用的。虽有这些问题,但已经考虑到将LRA垂直安装在耳机弓形部的上衬垫中。

除了LRA的有限频率范围之外,将LRA用作音频触觉传感器还存在另一个问题,即垂直安装在耳机弓形部和颅骨顶部之间的传感器使弓形部弯曲。在一精密尺度上,这种弯曲使得弓形翼片像鸟的翅膀,耳罩位于每个翼尖处。翼片的向内-向外部件将耳罩插入抵靠佩戴者的头部的侧面,同时产生与耳罩中的音频驱动器的声响应相竞争并使其扭曲的非期望的音频。

为了避免这种不必要的音频,一种方法是构造在平面内(即在图 2A的x-y平面)移动块的下部轮廓(low-profile)振动模块。这种方法使被确定会引起存疑的轴向声频辐射的表面面积降至最低。当安装在耳罩中时,这种平面内振动模块产生平行于头部侧面的运动。这种运动有效地剪切皮肤,产生触觉,对处在耳罩和耳鼓之间的空气体积影响不大。因此,噪声被降至最低。考虑在桌面上滑动玻璃(本发明的平面运动)和捅马桶(如现有技术中使用的轴向运动)之间的区别。虽然已经考虑了这种平面内方法,但是为此提出的介电弹性体驱动器是需要高压电子器件的昂贵且复杂的装置。这种方法的另一个缺点是没有规定对这些传感器进行严格的阻尼。因此,触觉加速度频率响应欠阻尼,所声称的Q因子为1.5至3。

在电磁致动方面,已经公开了一种产生平面运动的线圈和两个磁体的相对薄的扁平布置。特别地,振动模块包括单相电磁致动器,其具有可移动构件,该可移动构件由沿相反方向横向磁化并通过磁体支架连接的两个平行薄磁体以及用于引导磁体支架的装置构成。

虽然尚未在耳机中应用这种提供电磁致动的常规方法,但是它已经应用于在诸如操纵杆的计算机输入设备中提供触觉反馈的问题。这样的一种装置包括致动器,其包括具有中心突起的芯构件、围绕中心突起缠绕的线圈、定位成在芯构件和磁体之间提供间隙的磁体以及附接到芯构件和磁体的柔性构件。在这种设计中,由平行的一对挠曲部引导运动。

这种引导方法的缺点是当通过纵向压缩加载时挠曲部对屈曲的脆弱性。由使挠曲部骑乘到线圈侧的铁磁通引导件的磁体对的吸引力自然地引起挠曲部上的压缩纵向负载,例如提供支撑线圈的中心突起的 E型芯。因此,挠曲部必须足够厚以抵抗这种负载而不产生欧拉屈曲。该厚度是以在运动方向上增加的刚度为代价而得到的,这可能非期望地阻碍运动。

尽管有这个缺点,但常规方法已经在其它地方进行应用。例如,已将承载磁体的挠曲引导表面考虑作为按摩元件的表面使用。减轻屈曲问题的一种方法是承受诸如泡沫的弹性构件上的压缩负载。然而,用弹性元件来支撑负载具有一些非期望的缺点。因为泡沫层必须足够厚以使得最大剪切应变(通常<100%)允许适当的行进,所以泡沫在行进方向上增加了刚度,并且可显著增加组件的厚度。

悬置运动元件的替代方法将挠曲部的长轴布置在基本平坦的传感器的平面中。由于细长挠曲部比纵向压缩负载更有效地抵抗横向剪切负载,所以可以使用对运动阻碍较小的较薄挠曲部。

因此,存在对新型音频触觉传感器及装置的需求。

发明内容

在一些实施例中,本文提出了一种薄的平坦振动模块,其带有受电磁致动以在平面内产生运动的移动构件。移动构件的运动可被抑制使得以不同频率施加到模块的稳态正弦电压产生在40-200Hz的范围内基本均匀的移动构件的加速度响应。模块可被安装在耳机中使得运动轴线基本上平行于佩戴者头部的矢状平面,从而该运动不会将耳罩推向佩戴者的耳道而产生不期望的音频和/或失真。

在一些实施例中,模块可由通过其厚度极化的块和薄磁体组成,其中块和磁体可移动地悬置在壳体内。例如,悬架可包括挠曲部、衬套、滚珠轴承或铁磁流体层。壳体可包括携带用于振动移动部分的电流的一个或多个导电线圈。为了便于将模块安装在耳机的耳罩中,块、线圈和壳体的几何形状可以基本是平坦的(例如其厚度小于长度或宽度的三分之一)。运动部分的振动可使用合适的方法来抑制,例如剪切铁磁流体层、油、油脂、凝胶或泡沫、或空气通过孔口的通道。

在一些实施例中,使块和磁体悬置的挠曲部可以模制到壳体中。在另一个实施例中,挠曲部可具有接合壳体中的接收孔的突片。

在一些实施例中,块可具有为磁体和线圈提供空间的中心凹口 (pocket)。在其它实施例中,块可邻近磁体。在其它实施例中,块可以是用于为模块供电的电池。

在一些实施例中,挠曲部可以从中心毂径向延伸以引导磁体和块的扭转。安装在与佩戴者的矢状平面平行的平面中的耳罩中,这些实施例使耳罩衬垫相对佩戴者的皮肤扭转。可使用多个磁体和线圈代替单个电磁元件。

在一些实施例中,模块可由适于直接接触皮肤的顺应材料制成。壳体面向皮肤的部分可由可伸缩的盖构成。这个盖下方的磁体可嵌入到一个包含顺应弹性体的圆盘中。圆盘可悬置在铁磁流体层上。可在周边将上盖密封到下盖,以提供将圆盘和铁磁流体保持在线圈附近的不可渗透的顺应壳体。底层线圈本身可嵌入到顺应弹性体材料中使得整个模块顺应。

模块的平面运动可通过磁体和线圈的各种布置来提供。在一些实施例中,块可由沿着运动轴线极化的磁体横向推动。为了减小模块的厚度,磁体的横向尺寸可以是细长的、装配有磁通引导件,并且可由细长的在由磁通引导件限定的气隙内工作的椭圆形线圈驱动。在其它实施例中,该块可由位于该块的一个边缘上并排排列并沿着运动轴线极化的若干磁体横向推动。在其它实施例中,通过厚度方向极化的长薄磁体可位于线圈内。线圈内的磁体的运动可通过支架联接到块,并且磁体在管内的运动可由铁磁流体轴承引导。

在一些实施例中,模块可以设有可以观察其中的运动的透明板。模块可安装在具有窗口的耳罩中,能够通过该窗口观察模块内的运动。耳罩可包括用于模块的保持元件(retaining element)。

在一些实施例中,顺应模块可直接集成在耳机弓形部上的垫中,以便向皮肤施加振动剪切牵引。在其它实施例中,一个或多个模块可安装在固定到耳罩和/或耳机弓形部的移动衔铁上。衔铁可包括旋转和柱状自由度,并且可以经弹簧加载以将模块抵置于皮肤上,并且还可经机电驱动以在头皮或面部的皮肤上产生按摩运动。衔铁可包括用于线圈的电引线和/或与皮肤接触的电极的布线。电极可提供记录身体表面电势和/或用于佩戴者的电刺激的方法。

本发明的其它目的和优点将从说明书中将是部分地显而易见的。

因此,本发明包括全部如本文所阐述的结构中所例示的结构、元件的组合和零件的布置的特征,并且本发明的范围将在权利要求中予以说明。

附图说明

为了更全面地了解本发明的实施例,参照以下结合附图进行的描述,其中:

图1示出了具有悬置在螺旋切割弹簧上的轴向振动器的现有技术耳机设备的分解图;

图2A示出说明了通过将耳罩推到头部侧面来刺激皮肤的轴向振动器定向的现有技术耳机的立体图;

图2B示出说明了由图2A的现有技术耳机产生的多余的明显的低音音频的曲线图;

图3A示出说明了由平移块的可用空间限制和线圈的有限的力输出引起的在电磁振动模块的力输出上的两个物理界限的图表;

图3B示出了根据一些实施例的包括线圈、磁体和遵循图3A所示的约束的悬置惯性块的布置的示例性模块的横截面图;

图3C示出了根据一些实施例的具有叠加在其上的示例性磁通线的图3B的模块的横截面图;

图4A示出了根据本文所述的各个实施例的示例性阻尼平面电磁模块的立体图;

图4B示出了根据本文所述的各个实施例的图4A的模块的分解图;

图5A示出了根据本文所述的各个实施例的示出耳罩中模块的定向的示例性耳机的分解图;

图5B示出了根据本文所述的各个实施例的佩戴图5A的耳机的用户的立体图,并且示出了运动轴如何处于平行于用户头部的侧面;

图5C示出了根据本文所述的各个实施例的在各种频率下测量的图 5A的示例性耳机的加速度在40-200Hz的范围内大致均匀;

图6A示出了根据本文所述的各个实施例的示例性悬架的分解图;

图6B示出了根据本文所述的各个实施例的图6A的示例性悬架的一部分的详细立体图;

图7示出了根据本文所述的各个实施例的示例性模块的一部分的立体图;

图8A示出了根据本文所述的各个实施例的示例性扭转模块的分解图;

图8B示出了根据本文所述的各个实施例的示出了其自身挠曲部的动作的图8A的扭转模块的示意图;

图8C示出了根据本文所述的各个实施例的佩戴结合有图8A的扭转模块的耳机的用户的立体图,并且示出了在平行于用户头部侧面的平面中的示例性旋转运动;

图9A示出了根据本文所述的各个实施例的示例性顺应振动模块的分解图;

图9B示出了根据本文所述的各个实施例的图9A的顺应振动模块的横截面图;

图10A示出了根据本文所述的各个实施例的承载由单个磁体和磁通引导件形成的磁隙中的电流的线圈的示例性二维有限元分析;

图10B示出了根据本文所述的各个实施例的具有驱动联接到惯性块的磁体的圆形磁隙中的多个圆柱形线圈的示例性模块的立体图;

图11示出了根据本文所述的各个实施例的驱动细长磁体和块的示例性细长形式的线圈和间隙的立体图;

图12示出了根据本文所述的各个实施例的具有块和磁体在一端被线圈驱动时引导它们横向平移的元件的示例性壳体的横截面图;

图13A示出了根据本文所述的各个实施例的示例性振动模块的立体图;

图13B示出了根据本文所述的各个实施例的示出了悬置和附接到壳体的图13A的模块的分解图;

图14A示出了根据本文所述的各个实施例的具有用于振动模块的保持特征的示例性耳机耳罩的立体图;

图14B示出了根据本文所述的各个实施例的图12A的耳机耳罩的分解图;

图14C示出了根据本文所述的各个实施例的佩戴包括图12A的耳机耳罩的耳机的用户的立体图;

图15A示出了根据本文所述的各个实施例的佩戴具有位于耳机上的多个振动垫的示例性耳机的用户的立体图;

图15B示出了根据本文所述的各个实施例的图15A的耳机的一部分的剖开横截面图;

图16A示出了根据本文所述的各个实施例的佩戴具有定位振动元件的衔铁的示例性耳机的用户的立体图;

图16B示出了根据本文所述的各个实施例的示出了由衔铁的示例提供的自由度的图16A的衔铁的分解图;

图16C示出了根据本文所述的各个实施例的具有振动元件和电极的示例性定位部的分解图;并且

图17示出了根据本文所述的各个实施例的另一示例性定位部的立体图。

具体实施方式

本文公开了用于为音频振动提供阻尼电磁致动平面运动的各个实施例。用于此目的的横穿触觉传感器的频率范围的力输出受到可用于使内部块运动的空间和引起该运动的致动器的峰值力的限制。图3A 示出了说明由平移块的可用空间限制和线圈的有限的力输出引起的在电磁振动模块的力输出上的这两个物理界限的图表30。对于电磁致动器,这些限制可分别称为行程限制31和线圈限制32。如果系统没有欠阻尼,则传感器的输出可以通过低于这些限制31和32的区域33中的曲线来描述。

行程限制符合以下等式:

Fmax=mxmax(2πf)2>

其中:

Fmax=[N],最大力

xmax=[m],凹口中位移的可用空间

m=[kg],运动中的质量

f=[Hz],频率

图3B示出了根据一些实施例的遵循图3A所示的约束的示例性振动模块300。特别地,图3B示出了如何将行程限制31和线圈限制32应用于本发明的实施例,其通常可包括移动块304、反向极化的磁体 302a和302b(统称为反向极化磁体302)、线圈307、磁通引导件308以及壳体305。

在一个具体示例中,对于可以在接触壳体305的壁之前经历最大位移为±0.002m(xmax)的具有质量为0.015kg的移动块304,可计算出振动模块300的行程限制31。在这个例子中,块和可用位移的乘积为>-5kg·m。为了使力最大化,应该使质量和可用行程的乘积最大化。所关注的频率越高,可能的加速度越大,直到驱动器施加的某种限制。对于电磁致动器,该线圈限制32通常反映可以穿过铜绕组的最大电流I。还存在与电源相关联的瞬时限制和与使线圈过热相关联的长期限制(通常为几分钟)。在一些实施例中,质量乘以位移可以是例如1×10-5kg·m或更大。

图3C示出了影响线圈限制的参数。特别地,反向极化磁体302产生截断由长度l的导线形成的线圈307的磁场B。由截断磁场的电流引起的洛伦兹力F是:

其中:

Fmax=[N],最大力

imax=[Amp],电源的电流限制,或热限制

l=[m],导线长度

B=[Tesla],磁场强度

通过布置线圈308、磁体302和磁通引导件308可使力输出最大化,以引导最大磁通量B通过承载电流I的线圈307的横截面,并且为了使线圈散热而提供低电阻路径,使得电流Imax不会产生不可接受的温度升高。为了说明,在图3A中假设实际的线圈限制为1N的力。行程限制和线圈限制一起限定了临界阻尼传感器的最大稳态力输出。

图4A和4B分别示出了根据本文所述的各个实施例的示例性阻尼平面电磁振动模块(振动模块400)的立体图和分解图。在一些实施例中,振动模块400通常可以是平坦的或平面的,使得其可以容易地结合到耳机的耳罩中,并且沿着与振动模块的最薄尺寸正交的轴线401 提供往复力。

如图4B所示,一对反向极化磁体402可以由保持部403保持在形成于块404中的凹口或凹陷部中,其可悬置在框架或壳体405内的挠曲部 406上。挠曲部406提供惯性块404和磁体402沿着轴线401的运动,该运动可与振动模块的最薄尺寸正交。可以借助于通过将电流通过在图 4B中描绘为导线的细长线圈的线圈407而产生的洛伦兹力向磁体402施加横向力。可以是一块铁或其它合适的铁磁材料的粘附或以其它方式放置在线圈407附近的上部磁通引导件408可以引导磁通量并用作散热器以及将线圈407保持在壳体405内的适当位置的装置。例如,磁通引导件408可以将线圈407保持在形成于壳体405的顶板405a中的槽409中,使得线圈407相对于框架405固定。在一些实施例中,支撑线圈 (例如线圈407)的壳体的一部分(例如,图4所示实施例中的顶板 405a)可以是印刷电路板,其具有提供音频信号和/或功率放大的低通滤波用以驱动线圈的部件。

在一些实施例中,块404和磁体402的运动可由保持在磁体402和壳体405的底板405b之间的间隙中的粘性铁磁流体410薄层抑制。额外的下部磁通引导件408b可被提供以抵消朝上部磁通引导件408a吸引磁体402的吸引力。可使用导电引线407将电流沿布线流入线圈407。在一些实施例中,导电引线407a可焊接到形成在壳体405的可接近表面上的焊盘405aa上(例如,如图4B所示的顶板405a的顶面或任何其它外表面)。来自电源(未示出)的引线也可附接到焊盘405aa,以将电源电联接到线圈407。

图5A示出了根据本文所述的各个实施例的示出了耳罩中振动模块500的定向的示例性耳机设备50的分解图。描述了安装振动模块500 以占用耳罩51相对较小的厚度,并且在与振动模块的最薄尺寸基本正交的轴线501上提供往复力。振动模块500可以位于音频驱动器52和声音挡板53之后,该声音驱动器52和声音挡板53可安装在耳机弓形部54 上。提供产生用于音频振动的阻尼电磁致动平面运动的振动模块可以有利地通过向由耳机设备提供的音频增加触感来加速用户的反应时间。振动还可以通过降低用户倾向的声学听觉水平来帮助保护用户的听力。

图5B示出了根据本文所述的各个实施例的佩戴图5A的耳机的用户的立体图,并且示出了运动轴如何处于平行于用户头部的侧面。如图5B所示,虽然技术人员将理解的是,沿着例如基本上位于同一平面中的诸如标记为“y”的轴线的不同轴线的力和加速度也可适用于在产生最小的多余声音的同时提供可感知为振动的皮肤牵引,但是随时间变化的电压可以在与耳机佩戴者的头部平行的平面中沿着标有“x”的轴线501产生力和加速度。

图5C示出了根据本文所述的各个实施例的图5A的示例性耳机的测量加速度的实验结果的图表50c。特别地,图50c示出了在40-200Hz 范围内,耳罩的测量加速度沿着轴线501基本上均匀。为表征频率响应,如图5A所示,将范围为20至200Hz的正弦电压(Vvibrate)施加到附接在振动模块500的线圈的导电引线55之一,同时其它导线保持在接地电位(GND)。

在低于约40Hz的次共振频率502中,因为随着电压的增加,块(例如图3B的块304)行进的更远,并且将电压增加得太高将导致行程超过 xmax并且引起块与框架(例如,图3B的壳体305)接触,产生非期望的声学敲击声,所以振动模块500的输出受到“行程限制”(例如,图3A>

对本领域技术人员来说显而易见的是,图3A至图4B中提供的振动模块的实施例是特定的非限制性示例,其意图仅仅是为了说明可以根据本发明的各个实施例采用的示例性振动模块。现在将呈现额外的示例性振动模块实施例,如图5A至5C所示,每个示例性振动模块可被配置为在耳机中产生适当定向的运动。

图6A示出了根据本文所述的各个实施例的振动模块600的分解图。除了振动模块600配备有用于准确地定位和间隔在壳体内的悬置块的可替换的悬架系统之外,它基本上类似于振动模块400。特别地,振动模块600包括块604,挠曲部606粘合在块的相对端部上,以便将块悬置在壳体605内。挠曲部606分别接合顶板605a和底板605b中的孔 605ab和孔605bb。块604中的凹口可配备有在图6A中体现为粘合到块上的薄板的底部608。在这种情况下,为了清楚起见,省略了磁体对和壳体的部分。

图6B示出了根据本文所述的各个实施例的挠曲部606的一部分的详细立体图。挠曲部606可包括突出的突片606a,其接合顶板和底板中的孔605ab和孔605bb,以提供板的对齐并设置它们之间的间隙的尺寸。挠曲部606还可具有肩606b,其为挠曲构件606c提供间隙以防止当块604在壳体605内行进时,挠曲构件606c与顶板605a和底板605b之间接触。

图7示出了根据本文所述的各个实施例的示例性振动模块700的一部分的立体图。振动模块700包括联接到(例如,利用粘合剂固定到) 悬架基座构件711的反向极化磁体702。挠曲部706可与悬架基座构件 711一体形成或以其它方式联接到悬架基座构件711。块704可布置并联接到悬架基座构件711(例如,在悬架基座构件711的与磁体702相对的端部处)。在一些实施例中,块704可以是或包括用于为振动模块 700供电的电池。图7所示的振动模块700的部分可封闭在未示出的壳体(例如,图4的壳体405)中。

图8A示出了根据本文所述的各个实施例的示例性扭转振动模块 800的分解图。振动模块800是迄今公开的线性行进振动模块示例的旋转模拟。如图8A所示,两对反向极化磁体802和两个惯性块804可联接到悬置在挠曲部806上的盘812,这允许盘绕中心毂812a扭转旋转。毂的端部可联接到前壳体构件805a和后壳体构件805b。线圈807可以被保持在前壳体构件805a的槽中并被联接到磁通引导件808a或紧靠磁通引导件808a。磁通引导件808b也可设置在后壳体构件805b上。

图8B示出了根据本文所述的各个实施例的示出了挠曲部806的动作的扭转振动模块800的示意图。特别地,图8B示出了当盘812围绕毂 812a旋转时,挠曲部806从最初直的位置806-1偏转到偏转位置806-2时的动作。

图8C示出了根据本文所述的各个实施例的佩戴结合有扭转振动模块800的耳机设备80的用户的立体图,并且示出了在平行于用户头部的平面中的示例性旋转运动。中心盘812上的块的旋转产生耳罩关于毂的轴线沿着标记为“θ”的旋转路径801的反向旋转。该运动位于与用户头部侧面平行的平面上,产生可感知为振动的皮肤牵引,而不会改变耳罩内的空气体积,从而使不期望的声音最小化。旋转系统的该具体实施例的线圈和磁体的数量是先前示出的线性系统的线圈和磁体的数量的两倍,但是产生了相同的总体效果。因此,本领域技术人员可以理解的是,任何数量(N=1,2,3…)的致动器元件可以提供等效或相似的结果。同样地,对于技术人员来说显而易见的是,壳体块 804和磁体802区域的特定形状可以变化,使得诸如半圆形的其它形状的区域可以与所明确公开的实施例等效或相似的方式执行。

迄今,已经公开了根据本发明的几个刚性实施例。然而,适合于直接皮肤接触的顺应结构也应认为处于本发明的范围内。图9A示出了根据本文所述的各个实施例的示例性顺应振动模块900的分解图。振动模块900可包括嵌入在支撑在铁磁流体层911上的顺应盘904中的平面的一对反向极化磁体902,其中盘904和铁磁流体911都处在两个不可渗透的弹性膜之间。用于形成顺应振动模块900的顺应材料可具有小于50兆帕的弹性模量。

下隔膜905b提供用于移动的固定平台,而上隔膜905a随着盘904 移动,并且可以可选地成波纹状以容易地提供盘904的横向移动。上隔膜和下隔膜可在圆周处例如通过用于热塑性弹性体的热密封工艺、通过粘合剂或溶剂粘合或任何其它合适的粘合方法来密封。如前所述,磁体通过经线圈907的电流而被横向推动。在该实施例中,线圈 907可以封闭在顺应台905c中以便为盘904的运动提供支撑台。

关于引线907b对线圈907的引线907a应用时变信号在圆盘904上产生时变力,以及产生联接到其上的上隔膜905b的相应的横向加速度。上隔膜905b反过来又可被放置成与佩戴者的皮肤直接接触,或者可与佩戴者皮肤接触的衬垫织物一体化。

图9B示出了根据本文所述的各个实施例的顺应振动模块900的横截面图。如图9B所示,电流I流过线圈907,横向推动磁体902。通过铁磁流体层911促进顺应上隔膜905a和台905c之间的相对运动。振动模块900的圆周的密封是明显的,其中下隔膜905b接触上隔膜905a。

尽管迄今为止的示例已经集中在结合了平面磁体对的振动模块上,但本发明的实施例也被认为具有磁体和线圈之间的可替换的布置。图10A至图13中示出了几个示例性实施例。

图10A示出了根据本文所述的各个实施例的承载由单个磁体1002 和磁通引导件1008形成的磁隙中的电流的线圈1007的示意性二维有限元分析。磁体1002具有由磁通引导件1008通过在其中线圈1007承载电流I的气隙引导的磁通量。所产生的洛伦兹力在方向1001a上推动线圈 1007,并且在与方向1001a相反的方向1001b上推动图10所示的其余部件。

图10B示出了根据本文所述的各个实施例的示例性振动模块1000 的立体图。振动模块100可以包括多个驱动器,其包括驱动联接到惯性块1004的磁体的圆形磁隙中的圆柱形线圈。在一些实施例中,这些驱动器中的一个或多个可沿着块1004的一个边缘设置,使得对线圈 1007施加时变电压在磁体1002和磁通引导件1008上产生洛伦兹力,从而推动块1004沿着基本上位于振动模块的平面中的轴线1001移动。如果线圈1007固定到壳体(为了视觉清晰,已省略),磁体、磁通引导件和惯性块关于壳体平移。

图11示出了根据本文所述的各个实施例的具有关于振动模块1000 的线圈和间隙结构是整体的和细长的线圈和间隙结构,并驱动细长磁体1102和块1104的示例性振动模块1100的立体图。所得到的几何形状使用布置在细长磁通引导件1108的气隙中的细长椭圆形线圈1107。与先前公开的实施例一样,通过线圈1107的时变电压扫描电流沿着模块平面中的轴线1101横向推动磁体、磁通引导件和惯性块。

图12示出了根据本文所述的各个实施例的具有当块1204和磁体 1202在一端被线圈1207驱动时引导它们横向平移的元件1206的示例性壳体1205的横截面图。壳体1205可以是适合用于图10B和11中示出的振动模块1000和振动模块1100的壳体。线圈1207可固定到壳体1205的壁上。当电流通过线圈1207时,磁体1202、磁通引导件1208和惯性块 1204沿着位于振动模块的平面内的轴线1201被横向推动。在该实施例中,惯性块1204的运动可以例如由线性滑动件1206引导而非挠曲部引导。然而,本领域技术人员将认识到,各种悬架处于本发明的范围内,并且将认识到,在假定它们被预加载并填充满粘性润滑脂以便在 20-200Hz范围内的频率上往复运动时不会发出可听见的声响时,可以利用挠曲部、铁磁流体、衬套以及甚至是滚珠轴承实现可比较的结果。

图13A示出了根据本文所述的各个实施例的另一示例性振动模块 1300的立体图。振动模块1300包括沿着薄轴极化的薄磁体1302。它在具有椭圆形横截面1307的长线圈的中心运转。椭圆的扁平侧面承载横向流到磁体1302的通量的电流I,因此产生垂直于电流和磁通量两者的力。也就是说,洛伦兹力在与其长轴1301对齐的方向上推动磁体 1302,并在相反方向上推动线圈1307。同心地设置在线圈1307外的磁通引导件1308可以改善磁通量的定向。支架1303可以将磁体1302的移动联接到惯性块1304。

图13B示出了根据本文所述的各个实施例的示出了示例性悬置并附接到壳体1305的振动模块1300的分解图。挠曲部1306可以附接到惯性块1304,使得惯性块1304可关于壳体1305运动。在一些实施例中,壳体可设置有配合表面1305a,其可联接到设置在线圈1307周围的磁通引导件1308,使得线圈1307关于壳体固定。示出了用于将磁体1302 的运动转移到惯性块1304的第二支架1303b。还示出了惯性块1304的运动轴线1301。

图14A示出了根据本文所述的各个实施例的具有用于保持振动模块的保持特征142的示例性耳机耳罩141的立体图。虽然在图14A中描绘了夹部,但是例如可替代成其它合适的诸如粘合剂和紧固件的保持特征。

图14B示出了根据本文所述的各个实施例的耳机耳罩141的分解图。特别地,图14B示出了本发明的实施例,其中惯性块的移动通过耳机耳罩141的壁是可见的。在本实施例中,振动模块1400的背板 1405例如由诸如玻璃或透明塑料的透明材料制成,并且耳机耳罩141 设置有透明窗口141a。背板1405和透明窗口141a一起提供查看运动惯性块1404的视野。

图14C示出了根据本文所述的各个实施例的佩戴包括耳机耳罩141 的耳机设备140的用户的立体图。如图14C所示,在其上可选择地显示视觉设计141b的窗口141a的边缘、惯性块1404和/或振动模块1400的其它部件的运动是可见的。也就是说,可以为观察者提供清晰的光通道,使得当振动模块被佩戴在用户头部上时,耳罩141内的振动模块 1400的振动是可见的。

图15A示出了根据本文所述的各个实施例的佩戴具有多个振动垫 152的示例性耳机设备150的用户的立体图。特别地,振动垫152设置在耳机弓形部153上,以在佩戴者的皮肤上的多个位置处产生切向牵引。

图15B示出了根据本文所述的各个实施例的耳机设备150的一部分的剖开横截面图。图15B示出了耳机弓形部153和顺应振动模块1500,其可类似于嵌入在由泡沫构件154和盖155形成的衬垫中的图9A和图 9B的顺应振动模块900。衬垫可(例如,用粘合剂156)附接到耳机弓形部153。在该实施例中,顺应盘在振动模块1500内的运动导致位于佩戴者的皮肤或头发上的衬垫盖的剪切运动1501。

图16A示出了根据本文所述的各个实施例的佩戴具有定位振动元件162的衔铁166的示例性耳机设备160的用户的立体图。如图16A所示,一个或多个定位部166可被设置以调节振动元件162相对于耳机弓形部164和耳罩161的位置,以便在佩戴者的皮肤上的各个位置处提供振动。

图16B示出了根据本文所述的各个实施例的示出了由衔铁的示例提供的自由度的图16A的衔铁166的分解图。这里,诸如顺应振动模块1600等振动元件(其可以与图9A和图9B的顺应振动模块900类似或相同)被定位成在佩戴者的皮肤上施加切向剪切牵引。可将振动轴选择为主要平行于用户的矢状平面(即,与用户的头部侧面平行但不一定与用户的头部侧面重合),以最小化不期望的朝向和远离用户耳朵的运动,从而使不期望的声音最小化。

如图16B进一步所示,衔铁166可提供表面166a,其支撑振动模块1600并且还例如通过关于由旋转基座166b所提供的旋转自由度的旋转 1601a提供在用户皮肤表面上的横向移动1601。衔铁166还可以通过衔铁166和衔铁基座166b之间的铰接连接166c来提供关于第二自由度的旋转1601b,铰链连接允许关于连接到耳机160的定位部基座16b来适应用户皮肤的可变高度的运动。

图16C示出了根据本文所述的各个实施例的定位部166的分解图。特别地,图16C示出了振动元件1600的电引线如何穿过其布线,以及它如何为可选的皮肤接触电极166e提供安装点和电连接166d。电极 166e可通过独立的电引线166f提供电流或吸收独立于施加到振动元件的引线166g的任何时变电压的电流。

皮肤接触电极由此提供刺激佩戴者的方法,例如提供经颅直流刺激。因为振动掩盖了疼痛,所以可以避免通过皮肤电刺激的疼痛。电极还可以提供用于记录在佩戴者身体表面上的电势的一个或多个传感器,例如记录由佩戴者的指示脑活动的脑电流产生的信号、或指示眼睛方向的眼电流产生的信号、或佩戴者的指示面部肌肉的收缩的肌电流产生的信号、指示出汗的用户皮肤的导电性、或佩戴者身体表面上的任何其它电势。

图17示出了根据本文所述的各个实施例的另一示例性定位部176 的立体图。定位部176可以具有关于定位部基座176b提供皮肤接触点的径向定位的拉伸自由度1701。通过将振动元件的支撑件连接到定位部的弹性柱176g,可选地给予皮肤接触点的定位额外的灵活性。本领域技术人员清楚的是,定位部中的这些各种自由度可以是无源的、弹簧加载的或机电驱动的,以通过将振动模块定位在用户身体上的期望位置来提供按摩运动。

应当理解的是,有效地获得了从上述变得明显的特征和优点,由于在不脱离本发明的精神和范围的情况下可在所公开的发明实施例中进行某些改变,所以本文包含的所有内容应被解释为说明性的而非限制性的。

还应当理解的是,权利要求旨在覆盖本文所述的本发明的所有一般的和特定的特征,并且在语言上,本发明范围的所有陈述可以说是处于这两者之间。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号