首页> 中国专利> 具有高的Z方向电导率的复合材料

具有高的Z方向电导率的复合材料

摘要

一种具有高的z方向电导率的可固化复合材料。该可固化复合材料包括已经用可固化基质树脂灌注或浸渍的两层或更多层的增强碳纤维和至少含有导电纳米尺寸颗粒(例如碳纳米管)和轻质碳遮蔽物的层间区域。根据另一个实施例,该层间区域进一步含有聚合物增韧颗粒。还披露了用于制造复合材料和结构的方法。

著录项

  • 公开/公告号CN107107537A

    专利类型发明专利

  • 公开/公告日2017-08-29

    原文格式PDF

  • 申请/专利权人 塞特工业公司;

    申请/专利号CN201580051194.0

  • 申请日2015-09-21

  • 分类号

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人林毅斌

  • 地址 美国新泽西州

  • 入库时间 2023-06-19 03:10:37

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-03-10

    授权

    授权

  • 2017-09-22

    实质审查的生效 IPC(主分类):B32B7/02 申请日:20150921

    实质审查的生效

  • 2017-08-29

    公开

    公开

说明书

本申请要求于2014年9月22日提交的美国临时专利申请号62/053,469的权益,将所述申请的披露内容以其全文通过援引方式并入本申请。

背景

在航空航天工业中,纤维增强的聚合物复合物在航空器的主要和次要结构中的使用变得更为普遍。复合结构在传统上是通过在模具表面上铺放多个层(或板层)的树脂浸渍的纤维增强材料(成为预浸料)、随后通过固结和/或固化来制造。纤维增强的聚合物复合物的优点包括高的强度与重量比、优异的耐疲劳度、抗腐蚀性和挠性、允许组成部件的显著减少、以及减少对于紧固件和接合件的需求。然而,由于基质树脂的介电性质,将这些材料应用于现代航空器的主要和次要结构呈现特殊的挑战。尽管在复合材料中使用碳纤维作为增强纤维可以由于其石墨性质沿着其纵向方向赋予一定程度的电导率,基质树脂在这些复合材料中的介电特性降低了这些复合材料的整体电导率。

附图简要说明

图1示出了在雷击事件期间在复合机翼盒上产生“边缘辉光”现象的典型的电流路径。

图2示出了施用于复合机翼的典型构造的翼梁帽边缘处的密封剂。

图3示意性地说明了根据本披露的实施例具有含有聚合物增韧颗粒、导电纳米颗粒和碳遮蔽物(veil)的层间区域的可固化复合材料。

图4示意性地说明了根据本披露的实施例的含颗粒的树脂膜和被层压到碳纤维层的每一侧上的碳遮蔽物。

图5是各种复合层压件的电导率数据的图形概要,示出了没有增韧颗粒的多壁碳纳米管(MWCNT)和碳遮蔽物的协同效应。

图6是各种复合层压件的电导率数据的图形概要,示出了具有增韧颗粒的MWCNT和碳遮蔽物的协同效应。

图7是各种复合层压件的电导率数据的图形概要,示出了炭黑和碳遮蔽物的协同效应。

图8是各种复合层压件的冲击后压缩(CAI)数据的图形概要,示出了碳遮蔽物和导电纳米颗粒的效应。

详细说明

希望增加纤维增强的聚合物复合物的电导率,以便满足航空器的雷击保护的要求并避免称为“边缘辉光”的现象,特别是对于复合机翼组件。边缘辉光现象本身表现为在复合蒙皮/翼梁组件中的具有足以成为燃料蒸气的潜在点火源的能量的明亮辉光或火花。

这种边缘辉光现象可在雷击事件期间出现,尤其在具有低的z方向电导率的复合层压件上。在雷击事件期间,具有高强度电流的瞬时电荷由于连接两个复合部件的紧固件行进通过蒙皮并且然后进入机翼下部结构(例如结构翼梁或肋)。所以,典型地,在复合蒙皮/翼梁组件中,电流部分地在蒙皮上行进并且部分地通过代表燃料箱壁之一的翼梁。

电流从紧固件横向穿过翼梁的相邻复合板层并且由于与树脂基质相比更高的电导率趋于沿着这些纤维行进。该路径可在翼梁/肋帽边缘处产生典型的明亮辉光或火花,这被本领域技术人员称为“边缘辉光”现象。

图1示出了在雷击事件期间复合机翼盒上的潜在的关键电流路径。当纤维增强板层之间的树脂是高电阻性的时候,边缘辉光现象显得更为关键,并且因此,电流趋向于不在相邻板层之间流动。如果z方向电导率太低,在雷击期间可以在板层之间产生显著的电压降,从而增加边缘辉光的风险。

边缘辉光现象与复合边缘处的电子表面喷射或等离子体产生相关,并且常常表现为一种树脂爆炸。关于这种现象的性质的不确定性已经提出了关于在雷击事件期间燃料蒸气的点火能力的若干关注。

常规的解决方案是在燃料箱处施加密封剂(参见图2)。这种燃料箱密封剂的实例是来自法国Le Joint Francais的PR 1776B类密封剂。然而,这种方法导致额外的重量,并且由于缺乏标准化和在密封剂施加中的困难而不总是有效的。随着时间的推移,密封剂由于老化而变得无效,或者可以被箱中的燃料完全洗掉。此外,雷击可能导致在切割边缘处产生高压气体,这可能破坏边缘密封。对于一种多功能复合材料仍然存在需要,其可以解决以上所讨论的边缘辉光问题,同时提供良好的机械特性如耐冲击性和耐分层性。

在航空航天工业中广泛接受的是用于航空器复合结构的两个主要设计驱动因素(driver)是它们对特定冲击的耐受性以及在这种事件之后的损害的传播。

分层是复合材料的重要的失效模式。当两个层压的层彼此脱粘时发生分层。重要的设计限制因素包括引发分层所需的能量和传播分层所需的能量。

改进复合结构(尤其是航空器主要结构)的抗冲击性能的需要已经引发了新一代用层间增韧颗粒增韧的复合材料的发展,通常被定义为“第三代复合材料”。这种技术解决方案为碳纤维增强复合物提供了高抗冲击性,但也在相邻板层之间产生电绝缘层间区域,导致整个复合结构(尤其在z方向上)的电导率的显著减小。“z方向”是指与在复合结构中安排的增强纤维所在的平面或穿过复合结构的厚度的轴正交的方向。

复合材料的电导率可以通过在纤维增强的聚合物复合物的基质树脂中或在多层复合结构(例如预浸料叠层)的层间区域中掺入不同的导电材料(如导电颗粒)来改进。例如,可以以高负载量添加金属填充剂以增加树脂电导率,但是这导致显著的重量增加和耐冲击性相关的特性如冲击后压缩强度(CSAI或CAI)和层间断裂韧性的降低。因此,现有技术水平的解决方案是使得可以改进复合物的z方向电导率,但不同时改进其机械性能。具有改进的冲击性能的固化复合物是具有改进的CAI和断裂韧性的复合物。CAI测量复合材料耐受损伤的能力。在用于测量CAI的试验中,固化的复合物经受给定能量的冲击并且然后在压缩下装载。在冲击之后和压缩试验之前测量损伤面积和凹痕深度。在该试验期间,限制复合材料以确保不发生弹性不稳定性并且记录复合材料的强度。

断裂韧性是描述含有裂纹的材料避免断裂的能力的特性,并且是用于航空航天应用的材料的最重要的特性之一。断裂韧性是当存在裂纹时表示材料对脆性断裂的耐受性的定量方式。

断裂韧性可以被量化为应变能释放率(Gc),其为在断裂期间每单位新产生的断裂表面积所消散的能量。Gc包括GIc(模式1-张开模式)或GIIc(模式II-平面内剪切)。下标“Ic”表示在垂直于裂纹的法向拉伸应力下形成的模式I裂纹张开,并且下标“IIc”表示由平行于裂纹平面并垂直于裂纹前缘作用的剪切应力产生的模式II裂纹。分层的引发和生长可以通过检查模式I断裂韧性来确定。

在一些实施例中,在多层复合材料的层间区域处的导电纳米颗粒和轻质碳遮蔽物的组合产生协同效应,其导致z方向电导率的改进。此外,通过添加特定的聚合物增韧颗粒,还可以获得CAI和GIc的改进。在一些情况下,已经发现,导电纳米颗粒和碳遮蔽物的组合导致与未改性版本的相同复合材料相比超过2个数量级的更高的z方向电导率,而没有包括CAI和模式I(GIc)中的抗分层性的机械性能的任何减少并且不会负面地影响材料制造能力和加工能力。此外,由具有导电纳米颗粒和碳遮蔽物的组合所获得的导电效果远大于它们的单独导电效果的总和。

本披露的一个实施例针对一种由两层或更多层已经用可固化或可热固树脂灌注或预浸渍的增强纤维构成的可固化复合材料。在相邻的增强纤维层之间的层间区域含有遍及可固化基质树脂分散的导电纳米颗粒、聚合物增韧颗粒和嵌入在相同基质树脂中的碳遮蔽物。与聚合物增韧颗粒相比,导电纳米颗粒在尺寸上是显著更小的。聚合物增韧颗粒在复合材料固化时可以基本上不溶于基质树脂中,并且在固化后在层间区域保持为离散颗粒(在此称为“不可溶的”颗粒)。在一些实施例中,这些聚合物增韧颗粒是可溶胀颗粒,其在加热周围树脂时尺寸增加。在一些实施例中,这些聚合物增韧颗粒包括不可溶的颗粒和“可溶的”热塑性颗粒二者。“可溶的”热塑性颗粒是指当加热其混合物时或在基质树脂的固化循环期间溶解到周围基质树脂中的固体颗粒,并且不在固化树脂基质中保持为离散颗粒。

在层间区域处的树脂(没有导电纳米颗粒、碳遮蔽物或增韧颗粒)可以与浸渍增强纤维的基质树脂相同或不同。在一些实施例中,浸渍增强纤维的基质树脂还含有分散在其中的导电纳米颗粒。

图3示意性地说明了根据本披露的实施例的可固化复合材料20。复合材料20含有在已经用可固化基质树脂灌注或浸渍的增强纤维的层22、23、24之间形成的层间区域21a和21b。每个层间区域21a和21b含有具有分散在其中的导电纳米颗粒25的可固化基质树脂、聚合物增韧颗粒26和嵌入在相同基质树脂中的碳遮蔽物27。层间树脂的组成(没有导电纳米颗粒25、增韧颗粒26、和碳遮蔽物27)可以与浸渍纤维层22、23、24的基质树脂的组成相似或不同。当层间树脂与浸渍纤维层22、23、24的基质树脂的组成相似时,这些树脂基质含有一种或多种共同的热固性树脂。聚合物增韧颗粒26可以并排放置,并且一起形成单层颗粒。以这种方式,层间区域的深度由颗粒的尺寸决定。在一些实施例中,增韧颗粒26在尺寸上是相似的(例如,具有大致相同直径的球形颗粒),并且层间区域的深度与增韧颗粒26的平均直径大致相同或比其略大。

在一些实施例中,在层间区域中含有导电纳米颗粒、聚合物增韧颗粒和碳遮蔽物的组合的固化复合材料具有以下特性:如根据4探针测试方法在DC条件下测量的至少约10S/m(西门子/米)、例如从约10S/m至约100S/m的在z方向上的电导率,如根据ASTM-D7137测量的在270in-lbs(或30.5J)下至少约35Ksi、例如从约35Ksi(或约241Mpa)至约55Ksi(或约379MPa)的CAI,以及如根据ASTM-D5528测量的至少约1.7in-lb/in2、例如从约1.7in-lb/in2(或约296J/m2)至约5in-lb/in2(或约870J/m2)的在模式I(GIc)下的层间断裂韧性。

在替代实施例中,在相邻的增强纤维层之间的层间区域含有遍及基质树脂分散的导电纳米颗粒和嵌入在相同基质树脂中的碳遮蔽物的组合,但不存在聚合物增韧颗粒。作为实例,可以改性如图3所示的可固化复合材料,使得层间区域21a和21b含有具有分散的导电纳米颗粒25和碳遮蔽物27的可固化基质树脂,但是不含聚合物增韧颗粒26。在此实施例中,层间区域的深度由碳遮蔽物的厚度决定。

在一些实施例中,在多层复合材料的层间区域处的导电纳米颗粒和轻质碳遮蔽物的组合产生协同效应,其导致z方向电导率的改进。在一些情况下,已经发现,导电纳米颗粒和碳遮蔽物的组合导致与未改性版本的相同复合材料相比超过1个数量级的更高的z方向电导率,但是没有包括CAI和模式I(GIc)中的抗分层性的机械性能的减少。此外,由具有导电纳米颗粒和碳遮蔽物的组合所获得的导电效果远大于它们的单独导电效果的总和。

在一些实施例中,在层间区域中含有导电纳米颗粒和碳遮蔽物的组合但没有聚合物颗粒的固化复合材料具有以下特性:如根据4探针测试方法在DC条件下测量的至少约10S/m(西门子/米)、例如从约10S/m至约100S/m的在z方向上的电导率,如根据ASTM-D7137测量的在270in-lbs(或30.5J)下至少约25Ksi、例如从约25Ksi(或约172Mpa)至约45Ksi(或约310MPa)的CAI,以及如根据ASTM-D5528测量的至少约1.2in-lb/in2、例如从约1.2in-lb/in2(或约210J/m2)至约3in-lb/in2(或约522J/m2)的在模式I(GIc)下的层间断裂韧性。

在此披露的复合材料是多功能材料,其可以成功地用于其中需要高机械性能和高电导率的那些航空器应用中。在固化状态下,复合材料的改进的电导率可起到在由复合材料产生的复合结构的较大区域上传播或消散电流(如由雷击产生的电流)的作用,由此降低对复合结构的局部部分的灾难性损害的可能性。因此,使用这种多功能复合材料可以是用于减轻雷击的直接影响和用于防止以上所讨论的复合物中的边缘辉光现象的有效解决方案。此外,固化的复合材料提供电磁屏蔽的额外益处。

导电纳米颗粒

如在此使用的术语“纳米颗粒”是指具有至少一个小于约0.1微米(<100纳米)的尺寸和从约50:1至约5000:1的纵横比的材料。纳米颗粒的尺寸可以通过动态光散射(DSL)技术来确定。例如,可以使用如来自Horiba的SZ-100的纳米颗粒分析仪。

纳米颗粒可以具有任何合适的三维形状,包括例如球形、椭圆形、球状、盘状、树枝状、棒状、圆盘、长方体或多面体。

如在此使用的术语“纵横比”是指三维物体的最长尺寸与最短尺寸的比率。当关于球形或基本上球形的颗粒使用该术语时,相关比率将是球形体的最大横截面直径与最小横截面直径的比率。作为实例,完全球形的颗粒将具有1:1的纵横比。

在一个实施例中,纳米颗粒是完全或主要由在分子尺度上以五边形或六边形或两者安排的碳原子构成的碳纳米颗粒。出于在此的预期目的的合适的碳纳米尺寸结构包括但不限于碳纳米管、碳纳米纤维、碳纳米绳、碳纳米带、碳纳米纤丝、碳纳米针、碳纳米片、碳纳米棒、碳纳米锥、碳纳米卷(卷状形状)和碳纳米欧姆(nano-ohm)、炭黑、石墨纳米片或纳米点、石墨烯和其他类型的富勒烯材料。任何这些富勒烯材料可以具有部分或全部金属涂层。

优选的碳纳米颗粒是碳纳米管(CNT)。典型地,CNT是具有在约0.4nm至约100nm范围内的外径的管形、股状结构,例如,外径可以是小于约50nm或小于约25nm。

这些CNT可以具有任何手性。考虑了扶手椅式纳米管。此外,CNT可以是半导体纳米管或显示导电性的任何其他类型。合适的CNT可以包括单壁碳纳米管(SWCNT)、双壁碳纳米管(DWCNT)和多壁碳纳米管(MWCNT)。在一个实施例中,碳纳米材料是MWCNT。

在另一个实施例中,导电纳米颗粒可以包括具有大于约5×103S/m的电导率的金属纳米颗粒、金属或碳涂覆的纳米颗粒及其组合。合适的金属纳米颗粒包括任何已知金属的颗粒,包括但不限于银、金、铂、钯、镍、铜、铅、锡、铝、钛、其合金和混合物。在一些实施例中,金属材料具有约1×107S/m或更高、或约3×107S/m或更高、例如在从约1×107S/m至约7×107S/m的范围内的电导率。碳或金属固体材料的电导率可以根据DIN>

可以被金属涂覆的合适的有机或无机纳米颗粒包括但不限于纳米粘土、碳纳米管、碳纳米纤维、富勒烯、碳纳米绳、碳纳米带、碳纳米纤丝、碳纳米针、碳纳米片、碳纳米棒、碳纳米锥、碳纳米卷和碳纳米欧姆、以及相应的氮化硼组分、无机纳米颗粒或纳米纤维(诸如玻璃纳米球、二氧化硅纳米球、二氧化硅纳米管、纳米二氧化钛、中空纳米颗粒)、聚合物纳米颗粒或纳米纤维(如聚醚砜纳米纤维、聚醚砜纳米球、聚醚醚砜纳米纤维、聚醚醚砜纳米球、聚醚酰亚胺纳米纤维、聚酰亚胺纳米球、聚酰亚胺纳米纤维、聚酰亚胺纳米纤维、聚酰胺纳米纤维、聚酰胺纳米球、弹性体纳米球、聚芳醚酮(PAEK)纳米纤维、聚芳醚酮纳米球、聚苯硫醚纳米纤维、聚酰胺酰亚胺纳米纤维、液晶聚合物纳米纤维)。

导电纳米颗粒可以具有任何合适的形状和形态,并且可以具有高比表面积,诸如,单独或组合地,薄片、粉末、纤维、球体、树枝状、圆盘或具有纳米尺寸的任何其他三维物体。在一些实施例中,导电纳米颗粒可以具有如通过标准布鲁诺尔-埃米特-特勒(Brunauer–Emmett–Teller)法(BET)测量方法测量的至少0.1m2/g、优选10m2/g或更高、例如从约10m2/g至约500m2/g的比表面积(SSA)。例如,可以使用用具有标准氮气系统的Micro-meriticsTriStar>

用于在此的预期目的的导电纳米颗粒可以以复合材料中的总树脂含量的约0.1wt%至约10wt%的范围存在。在一个实施例中,导电纳米颗粒是碳纳米管(CNT),其以在总树脂含量的约0.5wt%至约2.0wt%范围内的量存在。在另一个实施例中,导电纳米颗粒是炭黑(CB),其以在总树脂含量的约1.0wt%至约6.0wt%范围内的量存在。如在此使用的,“wt%”是指重量百分比。

碳遮蔽物

碳遮蔽物是具有从约1gsm(g/m2)至约30gsm、包括从约2gsm至约10gsm、并且在一些实施例中从约2gsm至约6gsm的面积重量的随机安排的纤维的轻质的非织造遮蔽物。

遮蔽物的纤维是碳纤维,其可以是金属涂覆的。金属涂层可以是任何合适的金属,包括但不限于银、金、铂、钯、镍、铜、铅、锡、铝、钛、其合金和混合物。

该非织造遮蔽物由掺杂的、随机安排的纤维和用于将这些纤维保持在一起的少量的聚合物粘合剂构成。希望提供具有足够量的粘合剂的非织造遮蔽物以便将这些纤维保持在一起,但是该粘合剂量是足够小的以使所产生的遮蔽物对于流体(如液体树脂)是可渗透的/多孔的。为此,粘合剂的量是基于该遮蔽物的总重量小于30wt%。典型的粘合剂包括聚乙烯醇(PVA)、聚酯、聚酯、苯乙烯丙烯酸、乙烯基丙烯酸、环氧树脂、苯氧基、聚氨酯、聚酰胺、丙烯酸酯、其混合物及共聚物。合适的碳遮蔽物的实例是由技术纤维产品公司(Technical Fiber Products Ltd.)(TFP,英国)供应的OptiveilTM

在一些实施例中,该非织造遮蔽物是柔性的并且是自支撑的,意指该非织造遮蔽物不需要支撑载体。此外,该非织造遮蔽物是不附接到另一层纤维上的单层材料。该非织造遮蔽物的纤维可以是短切的或连续的纤维长丝或其组合。

遮蔽物中的大部分非织造纤维可以具有在约0.01至约15微米范围内的横截面直径。在一些实施例中,纤维的主要部分的直径是在约4至约7微米的范围内。

作为实例,以上讨论的非织造碳遮蔽物可以通过常规湿铺法产生。在湿铺法中,将湿的短切纤维分散在水浆料中,该水浆料含有一种或多种粘合剂和其他化学试剂,如一种或多种表面活性剂、一种或多种粘度改性剂、一种或多种消泡剂等。一旦将这些短切纤维引入该浆料中,剧烈搅拌该浆料,这样这些纤维变得分散。将含有这些纤维的浆料沉积到移动筛上,其中除去相当大一部分的水以形成网。任选地,然后将液体粘合剂施加到该网上。干燥所产生的遮蔽物以去除任何残留的水并且如果需要的话固化这种或这些粘合剂。所产生的非织造遮蔽物是以随机取向安排的分散的、单独的纤维长丝的集合。当希望纤维和/或重量的均匀分布时,典型地使用湿铺法。

在一个实施例中,如在以美国公开号2011/10159764公开的美国专利申请(将其通过援引方式并入本申请)中描述的,在至少一侧上用薄层的金属金属化碳遮蔽物。可替代地,任何其他现有技术的金属化工艺也可用于生产金属涂覆的遮蔽物,这些金属化工艺包括物理沉积(例如溅射、烧结)和电解沉积。在一个实施例中,金属涂覆的碳遮蔽物具有从约2gsm至约30gsm、或从约2gsm至约15gsm的面积重量,以及基于遮蔽物的总重量按重量计从约5%至约50%或从约10%至约70%的金属含量。

聚合物增韧颗粒

适用于在此的目的的聚合物增韧颗粒包括热塑性或弹性体颗粒。这些聚合物增韧颗粒不具有导电涂层诸如金属。

在一些实施例中,聚合物增韧颗粒包括在其固化期间基本上不可溶于复合材料的热固性基质树脂中的颗粒,并且在固化后在固化的基质树脂中保持为离散颗粒。在某些实施例中,不可溶的聚合物颗粒也是在固化期间的复合材料的热固性基质树脂中的可溶胀颗粒。如以上所讨论的,不可溶的聚合物颗粒可以与可溶的热塑性颗粒组合作为附加的增韧剂使用。

在一些实施例中,增韧颗粒以基于包含在复合材料中的基质树脂的总重量的按重量计约2%至约20%、包括约5%至约15%以及约8%至约12%的含量均匀地分散在形成于相邻的增强纤维层之间的层间区域中。

聚合物增韧颗粒可以具有任何三维形状,并且在一些实施例中,它们基本上是球形的。在一些实施例中,这些增韧颗粒具有小于5:1的纵横比,例如,纵横比可以为约1:1。关于增韧颗粒,术语“纵横比”是指颗粒的最大横截面尺寸与颗粒的最小横截面尺寸的比率。

对于球形颗粒(纵横比约为1:1),平均粒径是指其直径。对于非球形颗粒,平均粒径是指颗粒的最大横截面尺寸。

为了在此所披露的目的,聚合物增韧颗粒可以具有小于约100μm、例如在约10μm至约50μm的范围内、或在约15μm至约30μm的范围内的平均粒径(d50)。如在此所披露的平均粒径可以通过激光衍射技术测量,例如使用在0.002纳米-2000微米范围内操作的MalvernMastersizer 2000。“d50”表示粒径分布的中值,或可替代地是使得50%的颗粒具有该值或更小的粒径的分布值。

在一些实施例中,与导电纳米颗粒相比,聚合物增韧颗粒的尺寸更大。例如,聚合物增韧颗粒的平均粒径(d50)可以比导电纳米颗粒的最小尺寸大至少100倍。

作为实例,当导电纳米颗粒是碳纳米管时,增韧颗粒的平均粒径(d50)比碳纳米管的直径大至少100倍、或者大1000倍。

确定某些颗粒是否是不可溶的或可溶的与颗粒在它们所存在的特定树脂体系中的溶解度有关。该树脂体系可以包括一种或多种热固性树脂、固化剂和/或催化剂以及少量的用于改性未固化的或固化的基质树脂的特性的任选的添加剂。

热台显微镜可用于确定颗粒在树脂体系中是否是不可溶的、部分可溶的或可溶胀的。首先,通过显微镜来表征干聚合物颗粒(其不与树脂组合)的样品,并使用来自从国家卫生研究院(National Institutes of Health)(美国马里兰州贝塞斯达)的ImageJ软件分析图像以确定平均粒径和体积。其次,通过机械混合将颗粒样品分散在所希望的基质树脂中。第三,将所得混合物的样品置于显微镜载玻片上,然后将其置于显微镜下的热台装置中。然后,将样品以所希望的斜坡速率加热至所希望的固化温度,并且以10帧/秒连续记录颗粒的尺寸、体积或形状的任何变化。通常测量球形颗粒的直径,而在非球形颗粒的情况下测量最长侧以便使用Image J软件确定尺寸和体积的变化。所有热台测试可以在不含固化剂或催化剂的基质树脂中以10wt%的颗粒负载量进行。

当增韧颗粒经受上述热台显微镜分析并且颗粒的直径或体积与初始“干燥”颗粒相比的变化为零或小于5%时,则该颗粒被认为是不可溶的,并且不可溶胀的。当增韧颗粒经受上述热台显微镜分析并且颗粒的直径或体积增加超过5%时,则该颗粒被认为是“可溶胀的”以及不可溶的。溶胀是由周围树脂灌注到颗粒的外表面中引起的。

在一些实施例中,不可溶的颗粒包括在热台显微镜分析期间熔融但与基质树脂不相容的颗粒,并且因此在冷却时再形成为离散颗粒。仅为了分析目的,不可溶的颗粒可以在热台显微镜分析期间流动并且结晶度也可改变。

在其中直径或体积可能难以确定的情况下,可以使用替代分析。可以根据固化时间表制造由单向预浸料带制成并且含有基于在富含树脂的层间区域中的总基质树脂的重量的10%的颗粒负载量的16板层准各向同性复合面板,并且然后从横截面切割固化面板用于通过显微镜学进行评价。如果颗粒在固化后保持为可辨别的离散颗粒,则这些颗粒被认为是不可溶的颗粒。如果颗粒完全溶解在层间区域和纤维床周围的基质二者中,并且在冷却时不是作为离散颗粒可辨别的,则颗粒不被认为是不可溶的层间颗粒。

对于环氧基基质树脂,不可溶的聚合物颗粒的组合物可以含有至少一种选自以下的聚合物:脂肪族聚酰胺(PA)、环脂族聚酰胺,芳香族聚酰胺、聚邻苯二甲酰胺(PPA)、聚芳醚酮(PAEK)(如聚醚醚酮(PEEK)和聚醚酮酮(PEKK))、聚苯硫醚(PPS)、聚酰胺酰亚胺、液晶聚合物(LCP)、其共聚物及其衍生物。在一些实施例中,聚合物颗粒的组合物含有至少一种选自以下的弹性体聚合物或材料:交联的聚丁二烯、聚丙烯酸、聚丙烯腈、聚苯乙烯、其共聚物及其衍生物(例如,由瑞翁化工公司(Zeon Chemicals Inc.)出售的DuoMod DP5045)。

在一些实施例中,不可溶的颗粒是不可溶的热塑性颗粒,其在固化过程期间不溶解并且作为离散颗粒保留在固化复合材料的层间区域内。合适的不可溶的热塑性颗粒的实例包括在其固化周期期间不溶于环氧树脂体系的聚酰胺酰亚胺(PAI)颗粒和聚酰胺(PA)颗粒(例如尼龙)和聚邻苯二甲酰胺(PPA)颗粒。

某些等级的聚酰亚胺颗粒可以适合作为不可溶的增韧颗粒。例如,由二苯甲酮四羧酸二酐(BTDA)、4,4'-亚甲基二苯胺(MDA)和2,4-甲苯二胺(TDA)制备的并且具有含有在90%与92%之间的芳香族碳的非邻苯二甲酰亚胺碳含量的聚酰亚胺。

已经发现不可溶的热塑性颗粒作为层间增韧剂对于避免热/湿性能的损失是有效的。因为这些热塑性颗粒即使在固化后仍保持不溶于基质树脂,它们赋予固化树脂改善的韧性、耐受损伤、热/湿性能、加工性、抗微开裂性和降低的溶剂敏感性。

在此所述的制造不可溶的颗粒的方法可以以任何顺序包括乳化、沉淀、乳液聚合、洗涤、干燥、挤出、碾磨、研磨、冷研磨、喷射研磨和/或筛分颗粒。本领域技术人员将理解,这些步骤可以通过本领域已知的许多方法中的任何一种来实现。

用于在此的预期目的的不可溶的颗粒包括交联的热塑性颗粒。根据一个实施例,交联的热塑性颗粒由通过使一种或多种具有一个或多个反应性基团的可交联热塑性聚合物与对这些反应性基团是化学反应性的交联剂反应而产生的交联网络构成,其中交联剂直接通过反应性基团使聚合物链彼此交联。这些反应性基团可以是在聚合物主链上的端基或侧基。该实施例的直接交联反应可以被描述为通过使用一个或多个反应性基团直接使聚合物链交联来“捆绑”聚合物分子。

上述交联的热塑性颗粒可以通过在2010年12月2日公开的公开号为2010/0304118的美国专利申请中描述的方法产生,将其通过援引方式并入本申请。此方法包括将具有反应性官能团的热塑性聚合物、交联剂和催化剂溶解在与水不混溶的常用溶剂中。然后通过使用非离子表面活性剂在水中产生乳液,由此形成乳化颗粒。随后将乳化的颗粒干燥并且固化,使得聚合物链变得化学交联。反应条件和交联剂的类型将决定颗粒的最终特性。反应条件如温度导致更大的交联。优选具有两个或更多个反应性位点(即官能团)的交联剂。所得的交联热塑性颗粒是可以加入到可固化树脂中的离散的、自由移动的颗粒。这些交联的热塑性颗粒在固化期间也可在可固化树脂中溶胀。

具有易于交联的反应性基团的合适的热塑性聚合物的实例包括但不限于以下各项中的一种或多种:聚醚、聚碳酸酯、聚醚酰亚胺(PEI)、聚酰胺、聚酰亚胺、聚砜、聚醚砜(PES)、聚苯醚(PPO)、聚醚酮、聚芳醚酮(PAEK)(如聚醚醚酮(PEEK)和聚醚酮酮(PEKK))、聚苯硫醚(PPS)、聚羟基醚、苯乙烯-丁二烯、聚丙烯酸酯、聚丙酮醇、聚对苯二甲酸丁二酯、聚酰胺-酰亚胺、聚醚醚砜(PEES)、其共混物、或其共聚物、PES均聚物(如来自住友化学公司(Sumitomo Chemical Co.)的SUMIKAEXCEL 5003P或来自苏威公司(Solvay)的PES)、或PEES均聚物。PES共聚物的具体实例包括具有各种重复单元比的PES/PEES共聚物。上面列出的热塑性塑料可以用作单一组分以形成颗粒,或者当使用多于一种热塑性聚合物时,形成混合结构或混合颗粒。

在其他实施例中,交联的热塑性颗粒由热塑性聚合物的共混物形成。在还其他实施例中,在此所述的交联颗粒可以由其中使用两种或更多种热塑性聚合物的混合结构形成。

可交联的热塑性聚合物上的反应性基团可以是以下的一种或多种:胺;羟基;酸酐;缩水甘油基;羧酸;马来酰亚胺;异氰酸酯;酚醛树脂;纳迪酰亚胺(nadimide);氰酸酯;乙炔;乙烯基;乙烯基酯;二烯;或其衍生物。在一些情况下,聚合物链上的不饱和度可以用作交联点(对于丙烯酸和甲基丙烯酸族以及一些不饱和橡胶、乙烯基酯或不饱和聚酯)。反应性基团的数目可以是每条链最少一个反应性基团,并且在一些实施例中,被认为是产生连接的聚合物主链所必需的最低比例;优选约或大于一的数以产生紧密交联的聚合物或互穿网络。具有大于2的官能度的聚合物将容易产生高度反应的凝胶。

取决于热塑性聚合物的端基/官能团的化学性质,可以选择具有多个反应性位点的合适的多官能交联剂。此类交联剂的实例是:烷基化三聚氰胺衍生物(例如303)、酰氯(例如1,3,5-苯三甲酰氯)、多官能环氧树脂(例如 MY0500、MY721)、羧酸(例如苯四甲酸)。

在另一个实施例中,交联的热塑性颗粒由互穿聚合物网络(IPN)构成,其由与独立交联网络缠结的热塑性聚合物链构成。IPN通过使一种或多种具有一个或多个反应性基团的化合物(例如可交联单体或聚合物)在热塑性聚合物存在下与对这些反应性基团是化学反应性的交联剂反应而产生。反应(其在某些交联或固化条件下发生)使得化合物通过反应性基团交联,从而形成独立的交联网络。因此,热塑性聚合物链在分子水平上与独立的交联网络缠结以形成IPN。该方法可以被描述为通过形成单独的和独立的交联网络“捆绑”热塑性聚合物链,从而产生互穿网络。因此,在该实施例中,热塑性聚合物不需要在其上具有反应性基团。这种类型的交联颗粒可以通过在美国专利号8,846,818中描述的方法产生,该专利的内容通过援引方式并入本申请。所得的交联热塑性颗粒是可以加入到可固化树脂中的离散颗粒。这些交联的热塑性颗粒在固化期间也可在可固化树脂中溶胀。

作为实例,具有IPN的交联颗粒可以通过以下产生:(i)形成含有热塑性聚合物、多官能环氧树脂和能够交联环氧树脂的胺固化剂的乳液;(ii)从该乳液中除去溶剂并收集呈固体颗粒形式的浓缩物;(iii)干燥颗粒,接着固化(例如通过加热),使得环氧树脂变得交联。由于固化的结果,交联的环氧树脂与每个颗粒中的热塑性聚合物形成IPN。

可溶胀的、交联的热塑性颗粒还与在固化期间它们存在于其中的周围的基质树脂形成“梯度界面”。如在此使用的术语“梯度界面”是指每个颗粒与周围基质树脂之间的渐变的并且强的界面。梯度界面通过使用与热固性树脂(例如环氧树脂)热力学相容的工程交联的热塑性颗粒实现。交联的热塑性颗粒的芯中的热塑性聚合物的浓度在中心处最大,并且随着基质树脂从外表面进入颗粒并朝向芯移动,朝向颗粒的外表面逐渐减小。这种从热塑性颗粒的芯到外表面的热塑性塑料浓度的逐渐降低在每个热塑性颗粒与周围基质树脂之间形成梯度界面。因此,在热固性树脂与热塑性颗粒之间没有明显的界限或过渡。如果存在明显的界限或过渡,与含有梯度界面的复合材料相比,在热塑性与热固性树脂之间的界面在复合材料中将弱得多。因此,这些交联的热塑性颗粒被认为是“可溶胀的”,因为当加热树脂时围绕颗粒的树脂通过颗粒外表面扩散到颗粒中并且其粘度降低,从而导致粒径的增加。然而,交联的颗粒在树脂固化后将保持为离散并且可辨别的颗粒。

在此描述的交联的热塑性颗粒是可以加入到可热固树脂诸如环氧基树脂中的离散的、自由移动的颗粒(即,呈分离状态),并且使它们化学交联以防止在树脂的固化周期期间它们完全溶解在树脂中。此外,它们被设计为与热固性树脂热力学相容的。

如在此使用的“离散颗粒”是指在基质树脂中可辨别的并且可以通过使用扫描电子显微镜(SEM)、光学显微镜或微分干涉相差显微镜(DIC)检测的颗粒。

当使用时,可溶的热塑性颗粒包括选自以下的微粒热塑性聚合物:聚芳砜(例如聚醚砜(PES)、聚醚醚砜(PEES))、聚醚酰亚胺(PEI)和聚酰亚胺(PI)。如前所述,这些可溶的热塑性颗粒是固体颗粒(例如粉末),当加热其混合物时或在基质树脂的固化周期期间,这些固体颗粒溶解到周围树脂基质中,并且不作为固化基质树脂中的离散颗粒保留。如在此使用的,“溶解”到周围树脂中意指与树脂形成均匀或连续的相。

基质树脂

用于浸渍/灌注增强纤维的可固化基质树脂(或树脂组合物)是含有一种或多种未固化的热固性树脂的可硬化或可热固树脂,其包括但不限于环氧树脂、酰亚胺(诸如聚酰亚胺和双马来酰亚胺)、乙烯基酯树脂、氰酸酯树脂、异氰酸酯改性的环氧树脂、酚醛树脂、苯并噁嗪、甲醛缩合树脂(诸如脲、三聚氰胺和苯酚)、不饱和聚酯、其混合物、共混物及组合。

合适的环氧树脂包括芳族二胺、芳族单伯胺、氨基苯酚、多元酚、多元醇、多元羧酸的多缩水甘油基衍生物。合适的环氧树脂的实例包括双酚诸如双酚A、双酚F、双酚S和双酚K的多缩水甘油醚;和基于甲酚和苯酚的酚醛清漆的多缩水甘油醚。

具体实例是4,4'-二氨基二苯基甲烷(TGDDM)的四缩水甘油基衍生物、间苯二酚二缩水甘油醚、三缩水甘油基-对-氨基苯酚、三缩水甘油基-间-氨基苯酚、溴双酚F二缩水甘油基醚、二氨基二苯基甲烷的四缩水甘油基衍生物、三羟基苯基甲烷三缩水甘油基醚、苯酚-甲醛酚醛清漆-的多缩水甘油醚、邻甲酚酚醛清漆的多缩水甘油醚或四苯基乙烷的四缩水甘油醚。

适用于基质树脂中的可商购的环氧树脂包括N,N,N',N’-四缩水甘油基二氨基二苯基甲烷(例如来自亨斯迈公司(Huntsman)的MY 9663、MY 720和MY 721);N,N,N',N'-四缩水甘油基-双(4-氨基苯基)-1,4-二异丙基苯(例如来自迈图公司(Momentive)的EPON1071);N,N,N',N'-四缩水甘油基-双(4-氨基-3,5-二甲基苯基)-1,4-二异丙基苯(例如来自迈图公司的EPON 1072);对氨基苯酚的三缩水甘油醚(例如来自亨斯迈公司的MY 0510);间氨基苯酚的三缩水甘油醚(例如来自亨斯迈公司的MY 0610);基于双酚A的材料,诸如2,2-双(4,4'-二羟基苯基)丙烷的二缩水甘油醚(例如来自陶氏公司(Dow)的DER 661或来自迈图公司的EPON 828,以及优选在25℃下的粘度为8-20Pa·s的酚醛清漆树脂;苯酚酚醛清漆树脂的缩水甘油醚(例如来自陶氏公司的DEN 431或DEN 438);二环戊二烯基酚醛清漆(例如来自亨斯迈公司的Tactix 556);1,2-邻苯二甲酸二缩水甘油酯(例如GLY CEL A-100);二羟基二苯基甲烷(双酚F)的二缩水甘油基衍生物(例如来自亨斯迈公司的PY 306)。其他合适的环氧树脂包括环脂族化合物,诸如3',4'-环氧环己基-3,4-环氧环己烷羧酸酯(例如来自亨斯迈公司的CY 179)。

通常,可固化基质树脂含有一种或多种热固性树脂,并且可以与其他添加剂组合,诸如固化剂、固化催化剂、共聚单体、流变控制剂、增粘剂、无机或有机填充剂、作为增韧剂的热塑性和/或弹性体聚合物、稳定剂、抑制剂、颜料、染料、阻燃剂、反应性稀释剂、以及本领域技术人员熟知的用于改性固化之前或之后的基质树脂的特性的其他添加剂。

用于可固化基质树脂组合物的合适的增韧剂包括但不限于单独或与以下各项组合的均聚物或共聚物:聚酰胺、共聚酰胺、聚酰亚胺、芳族聚酰胺、聚酮、聚醚酰亚胺(PEI)、聚醚酮(PEK)、聚醚酮酮(PEKK)、聚醚醚酮(PEEK)、聚醚砜(PES)、聚醚醚砜(PEES)、聚酯、聚氨酯、聚砜、多硫化物、聚苯醚(PPO)和改性的PPO、聚环氧乙烷(PEO)和聚环氧丙烷、聚苯乙烯、聚丁二烯、聚丙烯酸酯、聚甲基丙烯酸酯、聚丙烯酸化物、聚苯砜、高性能烃聚合物、液晶聚合物、弹性体和链段弹性体。

在可固化基质树脂中加入一种或多种固化剂和/或一种或多种催化剂是任选的,但是如果需要,使用它们可以增加固化速率和/或降低固化温度。固化剂适当地选自已知的固化剂,例如芳香族或脂肪族胺或胍衍生物。优选芳香族胺固化剂,优选每分子具有至少两个氨基的芳香族胺,并且特别优选二氨基二苯基砜,例如其中氨基相对于砜基在间位或对位。具体的实例是3,3'-和4,4'-二氨基二苯基砜(DDS);亚甲基二苯胺;双(4-氨基-3,5-二甲基苯基)-1,4-二异丙基苯;双(4-氨基苯基)-1,4-二异丙基苯;4,4'-亚甲基双-(2,6-二乙基)-苯胺(来自龙沙公司(Lonza)的MDEA);4,4'-亚甲基双-(3-氯-2,6-二乙基)-苯胺(来自龙沙公司的MCDEA);4,4'-亚甲基双-(2,6-二异丙基)-苯胺(来自龙沙公司的M-DIPA);3,5-二乙基甲苯-2,4/2,6-二胺(来自龙沙公司的D-ETDA 80);4,4'-亚甲基双-(2-异丙基-6-甲基)-苯胺(来自龙沙公司的M-MIPA);4-氯苯基-N,N-二甲基-脲(例如Monuron);3,4-二氯苯基-N,N-二甲基-脲(例如DIURON TM)和二氰基二酰胺(例如来自Pacific AnchorChemical的AMICURE TM CG 1200)。

合适的固化剂还包括酸酐,特别是多元羧酸酐,诸如纳迪克酸酐、甲基纳迪克酸酐、邻苯二甲酸酐、四氢邻苯二甲酸酐、六氢邻苯二甲酸酐、甲基四氢邻苯二甲酸酐、内亚甲基四氢邻苯二甲酸酐、和偏苯三酸酐。

层间区域处的可固化基质树脂也是含有一种或多种以上讨论的类型的未固化热固性树脂的可硬化或可热固树脂。在某些实施例中,层间区域处的可固化基质树脂与含有增强纤维的区域中的基质树脂相同。在其他实施例中,层间区域处的树脂不同于含有增强纤维的区域中的基质树脂。

增强纤维

用于在此的目的的增强纤维包括具有高拉伸强度,例如大于500ksi(或3447MPa)的碳或石墨纤维。增强纤维可以呈由多根长丝构成的连续束形式,作为连续单向或多向纤维,作为织造织物或多轴向织物。单向纤维是指仅在一个方向上伸展(或延伸)的纤维。多轴向织物包括非卷曲织物。在一些实施例中,增强纤维呈单向纤维或织造织物的形式,而不是非织造层。此外,碳纤维可以是上胶的或未上胶的。

对于结构应用,预浸料或复合材料中的增强纤维的含量可以是按体积计在30%至70%的范围内,在一些实施例中是按体积计在50%至70%的范围内。

复合预浸料和层压件的制造

如在此使用的术语“预浸料”是指在至少一部分纤维体积内用可固化树脂组合物浸渍的纤维片或层。用于制造航空航天结构的预浸料通常是单向增强纤维(例如,碳纤维)的树脂浸渍片,其通常被称为“带”或“单向带”。预浸料可以是完全浸渍的预浸料或部分浸渍的预浸料。浸渍增强纤维的基质树脂可以处于部分固化或未固化的状态。如在此使用的术语“浸渍的”是指已经经受浸渍过程的纤维,由此这些纤维至少部分地被基质树脂包围或嵌入基质树脂中。

典型地,预浸料是呈柔韧或柔性的形式,其准备好用于铺放并且模制成三维构造,随后固化成最终的复合零件/结构。这种类型的预浸料特别适用于制造承重结构零件,诸如航空器的机翼、机身、舱壁和操纵面。固化的预浸料的重要特性是高强度和刚度与减少的重量。

为了形成复合结构,可以以堆叠顺序将多个预浸料板层铺放在工具上以形成“预浸料叠层”。叠层内的预浸料板层可以相对于彼此以选定的取向定位,例如,0°、±45°、90°等。通过可以包括但不限于手工铺放、自动带铺放(ATL)、先进纤维放置(AFP)、和长丝卷绕的技术制造预浸料叠层。

根据一个实施例,在浸渍碳增强纤维之前(即在预浸料制造之前),将特定量的导电纳米颗粒和聚合物增韧颗粒与可固化树脂组合物混合。在此实施例中,首先通过将含颗粒的树脂组合物涂覆到离型纸上来制造树脂膜。接着,在热和压力的帮助下,将一个或两个这样的树脂膜层压到碳纤维层的一侧或两侧上以浸渍纤维,从而形成具有特定纤维面积重量和树脂含量的树脂浸渍的纤维层(或预浸渍板层)。在层压过程期间,由于颗粒的尺寸大于纤维长丝之间的间距,增韧颗粒被过滤出来并保留在纤维层的外部。随后,将其中含有增韧颗粒的两个或更多个预浸料板层一个在另一个之上铺放以形成复合叠层,其中在相邻的预浸料板层之间放置非织造碳遮蔽物。作为铺放过程的结果,聚合物增韧颗粒和碳遮蔽物位于两个相邻碳纤维层之间的层间区域中。当通过施加压力固结叠层时,由于碳遮蔽物的厚度和多孔特性,至少一些聚合物增韧颗粒和至少一些导电纳米颗粒渗透通过碳遮蔽物。固化时,碳遮蔽物变得嵌入层间区域处的基质树脂中。在此实施例中,层间区域处的基质树脂与浸渍增强纤维的基质树脂相同,并且遍及基质树脂均匀地分散导电纳米颗粒。

在图4中示意性地说明的另一个实施例中,将含有导电纳米颗粒和聚合物增韧颗粒的可固化树脂膜41和碳遮蔽物42层压在碳纤维层43的每一侧上,使得遮蔽物42夹在每个树脂膜41与碳纤维层43之间。在热和压力的帮助下进行层压以浸渍纤维,从而形成具有特定纤维面积重量和树脂含量的预浸料板层。在层压过程期间,聚合物颗粒被过滤出来并保留在碳纤维层的外部,并且至少一些聚合物颗粒和至少一些导电纳米颗粒渗透通过该遮蔽物。铺放多个这样的预浸料板层以形成具有嵌入在层间区域中的碳遮蔽物、导电纳米颗粒和聚合物颗粒的复合层压件。

在替代实施例中,改变参见图4描述的方法,使得可固化的树脂膜41含有分散的导电纳米颗粒,而非聚合物增韧颗粒。然后所得复合层压件含有嵌入在层间区域中的碳遮蔽物和导电纳米颗粒。

根据另一个实施例,在浸渍碳增强纤维之前(即在预浸料制造之前),将特定量的导电纳米颗粒与可固化树脂组合物混合。在此实施例中,首先通过将含颗粒的树脂组合物涂覆到离型纸上来制造树脂膜。接着,在热和压力的帮助下,将一个或两个这样的树脂膜层压到碳纤维层的一侧或两侧上以浸渍纤维,从而形成具有特定纤维面积重量和树脂含量的树脂浸渍的纤维层(或预浸渍板层)。随后,铺放两个或更多个预浸料板层,一个在另一个之上,以形成复合叠层,其中在相邻的预浸料板层之间放置非织造碳遮蔽物。作为铺放过程的结果,碳遮蔽物位于两个相邻碳纤维层之间的层间区域中。当固结叠层时,由于碳遮蔽物的厚度和多孔特性,至少一些导电纳米颗粒渗透通过碳遮蔽物。固化时,碳遮蔽物变得嵌入层间区域处的基质树脂中。在此实施例中,层间区域处的基质树脂与浸渍增强纤维的基质树脂相同,并且遍及基质树脂均匀地分散导电纳米颗粒。

在此披露的复合材料或预浸料叠层的固化可以在高达约200℃的升高的温度下进行,例如在约170℃至约190℃的范围内,并且任选地施加升高的压力以抑制逸出气体的变形效应,或抑制空隙形成。合适的压力可以高达10巴(1MPa),例如在约3巴(0.3MPa)至约7巴(0.7MPa)的范围内。在一些实施例中,固化温度通过以高达5℃/min、、例如2℃/min至3℃/min加热达到,并且保持长达9小时、或长达6h、例如在2h与4h之间的所需时间。在基质树脂中使用催化剂可以允许甚至更低的固化温度。压力可以全部释放,并且可以通过以高达约5℃/min、例如高达3℃/min的冷却降低温度。可以在190℃至350℃范围的温度和大气压下进行后固化,采用合适的加热速率以提高基质树脂的玻璃化转变温度。

应用

在此所述的树脂组合物可用于制造铸造或模制的结构材料,并且特别适用于制造具有改进的体积电导率的纤维增强的承重或耐冲击复合结构。

在此披露的复合材料适用于运输应用(包括航天、航空、航海和陆地交通工具、汽车和铁路)的部件的制造。例如,复合材料可以用于制造主要和次要航空器结构、空间和弹道结构。此类结构部件包括复合机翼结构。在此披露的复合材料还在建筑和建造应用以及其他商业应用中找到用途。值得注意地,复合材料特别适合于制造承重或耐冲击结构。

实例

测量方法

根据以下用于测量z方向电导率和机械特性的程序测试在以下实例中制造的复合样品。

电导率测量

测试样品的尺寸和公差在表1中定义。

表1-电导率试样尺寸

长度(L)1.0英寸宽度(w)1.0英寸厚度(t)0.110英寸

抛光样品表面以除去过量的树脂;然后使用银膏在相对的表面上产生两个电极。将样品夹在两个铜板之间以降低电线与样品表面之间的接触电阻。

z方向DC电导率使用Keithley 6221/2182A DELTA MODE系统根据4探针伏特-安培测量方法测定。

制备测试样品(1英寸×1英寸)并且通过施加10mA电流进行测试。在将电流稳定在2%内之后记录电极之间的电位电压值。根据下式计算z方向电阻率和电导率:

电阻率(ρ)[欧姆-m]=(V/I)/t·A

电导率(σ)(S/m)=1/ρ

其中:

V=电位电压(伏特)

I=强制电流(安培)

T=具有z尺寸的样品的厚度(m)

A=X乘Y尺寸的横截面积(m2)

在25℃在标准湿度条件下进行测量。报告平均值和相应的标准偏差结果。

机械表征

根据表2中报告的方法进行测量机械性能的测试。

表2-机械测试和相应的测试方法

表2中的RT表示室温。

实例1

基于表3中披露的配制品制备四种不同的树脂组合物。对照1.1和对照2.1是具有和不具有层间颗粒的两种基线树脂体系,并且树脂1.0和树脂2.0是其两种MWCNT改性版本。组成以重量比重量(w/w)百分比报告。

表3-树脂组合物

>

>

SUMIKAEXCEL 5003P是从住友化学公司可获得的聚醚砜聚合物,

MWCNT是指具有15nm的平均直径和约1mm的平均长度的多壁碳纳米管,

TGP3551是指 TGP3551,来自赢创公司(Evonik)的聚酰胺粉末,其在固化时是不可溶的,

P84颗粒是来自赢创公司的具有44微米的平均粒径分布d50的芳香族聚酰亚胺颗粒,其在固化时溶胀并溶解到树脂中,

交联的TP颗粒是来自氰特工业公司(Cytec Industries Inc.)的具有25微米的平均粒径的交联PES-PEES的颗粒,并且

4,4’DDS是指4,4'-二氨基二苯基砜。

将预定量的MWCNT分散在环氧树脂混合物中。然后将剩余的组分加入到母料中并混合直到获得均匀的混合物。

然后使用热熔浸渍方法将树脂组合物用于生产四种不同的单向(UD)预浸料。通过将树脂组合物涂覆到离型纸上来产生树脂膜。接下来,在热和压力的帮助下,将两个此类树脂膜层压到单向碳纤维(来自美国Toho Tenax的IM65E)的连续层的两侧上,以形成预浸料。预浸料的特性在表4中示出。所示的百分比(%)是重量百分比。

表4-预浸料

通过以下方式制造复合层压件:铺放预浸料以形成具有准各向同性构造的叠层(每个叠层为约0.110英寸厚),接着固结并且在高压釜中在177℃下固化2小时。根据相同的程序产生一些层压件,但在铺放之前将单个4gsm的非织造碳遮蔽物压制到预浸料的一侧上,使得碳遮蔽物是在两个相邻预浸料之间的中间层。

每个非织造碳遮蔽物由中间模量碳纤维构成,并且使用湿铺(即造纸)法和环氧-氨基甲酸乙酯共聚物的乳液作为粘合剂制造。碳遮蔽物是非常薄且多孔的,使得当存在时,热塑性颗粒在叠层的固结期间渗透通过遮蔽物。

测量固化的层压件的z方向电导率,并且结果报告在表5中。所示的百分比(%)是重量百分比。

表5-Z方向电导率结果

结果表明,碳纳米管和碳遮蔽物的组合可以产生固化层压件的z方向电导率的改进,其远远高于通过将单独仅由两种碳材料中的一种改性的树脂体系获得的电导率值相加而预期的改进。

对于没有层间增韧颗粒的层压件,层压件5.3具有65.22S/m的z方向电导率值,其远大于仅具有MWCNT的层压件5.1的电导率值(15.3S/m)和仅具有碳遮蔽物的层压件5.2的电导率值(8.01S/m)的总和。图5是表5中报告的z方向电导率结果的图形概述,显示了没有增韧颗粒的MWCNT和碳遮蔽物的协同效应。

对于具有层间增韧颗粒的层压件,测量层压件6.3的z方向电导率值为31.46S/m。该值大于仅具有MWCNT的层压件6.1的电导率值(5.54S/m)和仅含有碳遮蔽物的层压件6.2的电导率值(11.07S/m)的总和。图6是表5中报告的z方向电导率结果的图形概述,显示了MWCNT和碳遮蔽物在增韧颗粒的存在下的协同效应。

据信,对于层压件5.3和6.3获得的高电导率值是在导电遮蔽物与MWCNT之间的协同效应结果。这种正相互作用在具有和不具有层间增韧颗粒的复合材料中是明显的。此外,碳遮蔽物和MWCNT的存在导致在相邻的结构纤维层之间的明确限定的层间区域。该效应还降低了电子测量的变异系数(COV)。

实例2

根据表6中披露的配制品制备三种不同的树脂组合物。组成以重量比重量(w/w)百分比报告。对照7.0是基线颗粒增韧树脂体系;树脂7.1和树脂7.2是其碳改性的版本。选择相对低浓度的碳填充剂以产生具有适合于标准预浸料制造方法的流变特性曲线的配制品。

表6-树脂组合物(%)

>

首先将预定量的碳填充剂(MWCNT或炭黑)分散在环氧组分中。然后将剩余的组分加入到母料中并混合直到获得均匀的混合物。

然后经由热熔浸渍方法将这三种树脂组合物用于生产不同的单向(UD)预浸料。预浸料的特性在表7中示出。

表7-预浸料

通过以下方式制造复合层压件:铺放预浸料以形成具有准各向同性构造的0.118英寸厚的叠层,接着在高压釜中在180℃下固化2小时。使用单个4gsm非织造碳遮蔽物(来自技术纤维产品公司(Technical Fibre Products)的)作为两个相邻预浸料之间的中间层来生产一些层压件。测量固化的层压件的z方向电导率,并且结果报告在表8中。

表8-Z方向导电结果

观察到添加相对低浓度的碳纳米管或炭黑仅能产生固化层压件的z方向电导率的适度改进,如对于层压件10.1(0.57S/m)和层压件10.2(0.26S/m)所示的。当仅使用具有低面积重量的碳遮蔽物以改性颗粒增韧的预浸料(对照11.0)时,可以实现一些改进(电导率=7.42S/m)。值得注意地,当使用碳填充剂和碳遮蔽物的组合时,固化的层压件的z方向电导率的改进远高于通过将仅用碳填充剂改性的层压件的电导率值与仅用碳遮蔽物改性的层压件的电导率值相加而预期的改进。

参照表8,层压件11.1(碳遮蔽物+MWCNT)产生12.17S/m的z方向电导率,其相比对照11.0(仅遮蔽物)和层压件10.1(仅MWCNT)的预期累积值(7.99S/m)大了约50%。

对于用炭黑改性的树脂体系观察到相同的趋势。层压件11.2产生18.09S/m的z方向电导率,其大于对照11.0(仅遮蔽物)和层压件10.2(仅炭黑)的预期累积值(7.68S/m)的两倍。

图7是表8中报告的z方向电导率结果的图形概述,显示了碳遮蔽物和炭黑的协同效应。据信,对于层压件11.1和11.2测量的高电导率值是在固化层压件的层间区域中的轻质碳遮蔽物和导电纳米颗粒之间的正协同作用的结果。该协同作用可以是在固化时在导电碳纤维微网络内原位形成导电纳米网络的结果。

进行固化层压件的机械测试,并且结果报告在表9中。

表9-机械结果

结果表明轻质碳遮蔽物和纳米颗粒的组合对复合物的机械性能不产生任何显著的变化。图8示出了表9中报告的在230in-lbs冲击下的CAI的结果的图形概述。如从图8可以看出的,CAI值基本上不受碳遮蔽物或导电纳米颗粒的存在的影响。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号