首页> 中国专利> 一种曲面结构的蛋白石光子晶体和分子印迹聚合物反蛋白石薄膜的制备方法

一种曲面结构的蛋白石光子晶体和分子印迹聚合物反蛋白石薄膜的制备方法

摘要

本发明公开了一种曲面结构的蛋白石光子晶体和分子印迹聚合物反蛋白石薄膜的制备方法,将粒径为170nm~300nm的单分散二氧化硅微球用乙醇稀释其浓度在0.1wt%‑3wt%,超声震荡分散后移到带密封盖的宽口圆柱玻璃瓶中,盖上烧杯,然后在温度40~70℃,相对湿度为40%~85%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长,形成曲面结构的蛋白石光子晶体,再以此为模板制备曲面结构的分子印迹聚合物反蛋白石薄膜。本发明采用圆柱形玻璃瓶作为支撑介质,制备曲面结构的蛋白石光子晶体,制备方法简单、成功率高,单分散纳米硅胶利用率高;裸眼观测光子晶体具有良好的反射色。

著录项

  • 公开/公告号CN106929915A

    专利类型发明专利

  • 公开/公告日2017-07-07

    原文格式PDF

  • 申请/专利权人 北京市环境保护科学研究院;

    申请/专利号CN201710281798.5

  • 申请日2017-04-26

  • 分类号C30B29/16;C30B7/06;C08J5/18;C08F220/06;C08F220/28;C08F222/14;C08F2/48;C08K9/10;C08K3/36;G01N21/64;

  • 代理机构北京中建联合知识产权代理事务所(普通合伙);

  • 代理人周娓娓

  • 地址 100037 北京市西城区北营房中街59号

  • 入库时间 2023-06-19 02:45:36

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-01-11

    授权

    授权

  • 2017-08-01

    实质审查的生效 IPC(主分类):C30B29/16 申请日:20170426

    实质审查的生效

  • 2017-07-07

    公开

    公开

说明书

技术领域

本发明涉及无机和有机材料领域,具体涉及一种曲面结构的蛋白石光子晶体和曲面结构的分子印迹聚合物反蛋白石薄膜的制备方法以及该薄膜在检测领域的应用。

背景技术

分子印迹技术是集高分子合成、分子设计、分析、分离和测试,生物和医学等众多相关学科的优势,相互渗透而发展起来的一种材料制备新技术,利用该技术制备的分子印迹聚合物具有理化性质稳定、成本低、可重复利用等特点,是检测领域研究的热点。该技术是基于分子识别,即模拟生物体内的生物活性物质抗体和酶的识别机制,利用空间互补、共价和非共价作用力来达到对目标分子的识别。

其中,分子印迹聚合物反蛋白石薄膜作为化学传感器的一种选择性“响应薄膜”,是化学传感技术的热点研究之一。基于反蛋白石薄膜结合目标污染物后,其周期结构发生改变,导致吸收或者反射峰发生红移或者蓝移的原理, 能够实现目标污染物的裸眼或可视化检测。这种方法已用于检测葡萄糖、肌氨酸酐、环丙沙星、铅离子、pH和离子强度等化合物和溶液参数。(Li,M.;Fang,H.;Liao,Q.;Jian,L.;Liang,X.;Lei,J.;Song,Y.;Shu,W.;Zhu,D.Angew. Chem. 2008,47,7258.;Zhang,Y.-X.;Zhao,P.-Y.;Yu,L.-P.Sensors Actuators B:Chem.2013,181,850.)由于分子印迹聚合物具有选择性识别能力,是一项实用性强、有应用前景的污染物检测技术。此外,聚合物反蛋白石薄膜还具有慢光效应,能够强化附着于蛋白石薄膜上的污染物的荧光。(Li,H.;Wang,J.;Pan,Z.;Cui,L.;Xu,L.;Wang,R.;Song,Y.;Jiang,L. J. Mater:Chem. 2011, 21,1730;Zhang,Y.;Li,X.; Gao,L.;Qiu, J.;Liping,,H.; Zhong,T. B.;Lei,J. Chemphyschem2014,15,507)。然而,基于这种原理并结合分子印迹技术用于污染物检测的研究尚未见报道。

传统的分子印迹聚合物反蛋白石薄膜的制备方法通常包含两个步骤:第一步,采用垂直蒸发自组装法(非共价印迹法)在平板玻璃上制备硅胶光子晶体,典型的实验条件是:用浓硫酸-过氧化氢混酸(v/v,7/3)浸泡载玻片1h,然后用去离子水充分冲洗除去浓酸。最后用丙酮冲洗,室温干燥。接着,将载玻片按垂直放入100mL的小烧杯中,加入80mL左右的1%硅胶乙醇溶液。转移进恒温恒湿燥箱中,40℃缓慢蒸发,约1周时间。第二步,采用后填充技术制备分子印迹聚合物反蛋白石,典型的实验条件是:将优化得到的预聚合物溶液缓慢渗入平面结构的硅胶光子晶体聚合物膜内,然后在膜上覆盖PMMA薄膜以减少预聚合溶液的蒸发。然后,将上述体系转移到密闭容器中,通氩气除氧后,50℃热聚合1h。聚合反应完成后,在1-5%HF水溶液中浸泡过夜,把硅胶充分刻蚀掉,最终形成分子印迹聚合物反蛋白石薄膜。(Hu, X.;Li,G.;Li,M.;Huang,J.;Li,Y.;Gao,Y.;Zhang,Y.Adv. Funct.Mater.2008,18,575;Wei,L.;Asher,S.A.;Meng,Z.;Yan, Z.;Min,X.;Qiu,L.;Da,Y. J.Hazard.Mater.2016,316,87.)

反蛋白石薄膜的经典制备方式还可以参考授权公告号为CN102173862B所公开的,以二氧化硅作为基片,以聚苯乙烯微球作为正蛋白石模板材料,以五氯化钽作反蛋白石原料,以乙醇为溶剂用垂直沉积法先制备正蛋白石凸形网状结构,用溶胶凝胶法填充制备反蛋白石凹形网状膜层。但是这些方法都存在两个重要问题:问题一,每制备一片光子晶体要消耗大量的单分散纳米微球,组装结束后,通常大多数单分散微球附着于烧杯壁,材料浪费多。问题二,聚合反应的成功率较低,这是因为先在光子晶体模板引入聚合溶液,然后覆盖薄膜的过程不可避免地接触氧气,导致自由基聚合反应发生猝灭。问题三,基于慢光效应强化目标化合物或染料荧光的原理检测污染物的方法,需要高质量的反蛋白石薄膜,而常规的方法无法合成大面积和高质量的反式聚合物,荧光强化效果不明显。因此,如何减少材料浪费,提高聚合反应的成功率和反蛋白石的质量,是研究的重点之一,此前对曲面结构的光子晶体并无任何记载。

发明内容

本发明的目的在于提供一种快速、材料节约、聚合成功率高、成本低廉、操作简单的曲面结构的蛋白石光子晶体和曲面结构的分子印迹聚合物反蛋白石薄膜制备方法。

本发明的一个方面提供一种曲面结构的蛋白石光子晶体的制备方法,采用胶体自组装的方法,将粒径为170nm~300nm的单分散二氧化硅微球用乙醇稀释其浓度在0.1 wt%-3 wt%,超声震荡分散后移到带密封盖的宽口圆柱玻璃瓶中,盖上烧杯,形成相对封闭的环境,转入对流恒温箱中加热,然后在温度40~70℃,相对湿度为40%~85%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长,形成曲面结构的蛋白石光子晶体。

进一步,所述单分散二氧化硅微球自组装时间为1~5天。

进一步,所述超声震荡分散时间为10~30min。

进一步,所述宽口圆柱玻璃瓶使用前,需要进行表层处理,用浓硫酸/过氧化氢混酸,体积比为7:3浸泡至少1h;用去离子水清洗;用丙酮去除残留的水分,室温干燥。

本发明的另一个方面提供一种以上述曲面结构的蛋白石光子晶体为模板制备曲面结构的分子印迹聚合物反蛋白石薄膜的方法,将所述曲面结构的蛋白石光子晶体上覆盖厚度0.01~0.3mm的柔性聚合物薄膜,拧紧密封盖,通过设置在密封盖上的圆孔将纯氮气充入玻璃瓶中;充入的氮气用于置换瓶子中的氧气,避免氧气阻碍聚合反应;

通过进样针将聚合溶液引入所述曲面结构的蛋白石光子晶体模板和柔性聚合物薄膜之间的空隙,在溶液张力作用下光子晶体与柔性薄膜紧密贴合,避免产生气泡,置于0℃冰水混合物中,用紫外固化灯照射,聚合反应时间0.5-5h;

用2wt%的氢氟酸,刻蚀后,用乙醇洗涤,得到曲面结构的分子印迹聚合物反蛋白石薄膜。

进一步,所述聚合溶液依照待检测的目标分子,有针对性的配制,配制好后加入引发剂;所述引发剂是偶氮二异丁腈。

在一些优选的实施方案中,聚合溶液由恩诺沙星、甲基丙烯酸、甲基丙烯酸羟乙酯和二甲基丙烯酸乙二醇酯组成,其体积比为1:4:4:4。

在一些优选的实施方案中,聚合溶液由恩诺沙星、甲基丙烯酸、甲基丙烯酸羟乙酯和二甲基丙烯酸乙二醇酯组成,其体积比为1:4:4:0.2。

进一步,所述纯氮气不间断通充入玻璃瓶,流速45~60ml/min,时间20~30min。

进一步,所述刻蚀需12h后更换1次氢氟酸,继续刻蚀12h。

本发明还提供一种曲面结构的分子印迹聚合物反蛋白石薄膜在污染物检测中的应用。

本发明的有益效果体现在:

(1)本发明采用圆柱形玻璃瓶作为支撑介质,制备曲面结构的光子晶体,制备方法简单、成功率高,单分散纳米硅胶利用率高,同时由于组装面为连续曲面,不易形成薄厚不均的条带,光子晶体质量好;

(2)利用圆柱形的玻璃瓶内表面作为硅胶光子晶体生长的载体,可用的光子晶体面积将是平板玻璃载体的π倍以上,单位可用面积的硅胶光子晶体所消耗的单分散纳米硅胶的用量下降;

(3)裸眼观测光子晶体具有良好的反射色,特别是当垂直于玻璃瓶的中心轴观察,沿着中心轴硅胶光子晶体具有相同的反射色;

(4)圆柱状玻璃瓶作为聚合物反蛋白石薄膜合成的容器,可以密封,聚合物合成的成功率提高,方法简便,通过进样针将聚合溶液引入光子晶体模板和柔性聚合物薄膜之间的空隙,然后密封通入高纯氮气除氧,就能够解决聚合物合成成功率低的问题;

(5)制备成功的曲面结构的分子印迹聚合物反蛋白石薄膜在野外检测污染物时,检测针对性强,荧光反应明显,体积小携带方便,实操性强。

本发明的其它特征和优点将在随后的说明书中阐述,并且部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的主要目的和其它优点可通过在说明书、权利要求书中所特别指出的方案来实现和获得。

附图说明

实施例1~4中,单分散二氧化硅微球的四种粒径为170nm、200nm、220nm、240nm。

图1为四种粒径单分散二氧化硅微球在圆柱形玻璃瓶上生长形成的曲面结构的蛋白石光子晶体的示意图;

图2a、2b、2c、2d为四种粒径单分散二氧化硅微球组装成的曲面结构的蛋白石光子晶体的场发射扫描电镜图;

图3为四种粒径单分散二氧化硅微球组装成的曲面结构的蛋白石光子晶体的紫外吸收图谱;

图4为四种粒径的曲面结构的分子印迹聚合物反蛋白石薄膜的照片;

图5以粒径为200nm单分散二氧化硅微球所组装的曲面结构的蛋白石光子晶体做模板,制备的曲面结构的分子印迹聚合物反蛋白石薄膜SEM 图;

图6为四种粒径单分散二氧化硅微球所组装的曲面结构的蛋白石光子晶体做模板,制备的曲面结构的分子印迹聚合物反蛋白石薄膜紫外吸收图谱;

图7为基于慢光效应强化荧光原理检测恩诺沙星(ENR)的工作曲线;

图8为检测恩诺沙星(ENR)的效果图;

图9为制备曲面结构分子印迹聚合物反蛋白石的流程图。

具体实施方式

如本文所用,术语“包含”、“包括”、“含有”、“具有”的含义是非限制性的,即可加入不影响结果的其它步骤和其它成分。以上术语涵盖术语“由……组成”和“基本上由……组成”。如无特殊说明的,材料、设备、试剂均为市售。

实施例1

(1)选取粒径尺寸在170nm单分散二氧化硅微球;

(2)宽口圆柱玻璃瓶使用前,需要进行表层处理。用浓硫酸/过氧化氢混酸(体积比为7:3)浸泡25ml透明样品瓶至少1h,用去离子水清洗3次,最后用丙酮去除残留的水分,室温干燥;.

(3)采用胶体自组装的方法。用乙醇稀释单分散二氧化硅微球浓度至2%,超声震荡分散10min后,取15ml胶体溶液移到带密封盖的宽口圆柱玻璃瓶中;盖上500ml烧杯,形成半封闭的环境,圆柱形玻璃瓶的尺寸和胶体溶液的体积,可以依据要制备的晶体面积进行调节;

(4)转入恒温培养箱中加热,温度50℃,相对湿度为60%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长3天,形成曲面结构的蛋白石光子晶体;将形成的曲面结构的光子晶体在室温下老化24h,提高硅胶光子晶体的结构稳定性;

(5)按照曲面结构的蛋白石光子晶体的尺寸,在表面覆盖一层低密度聚乙烯薄膜(也可以选择其它类型的聚合物薄膜,如聚对苯二甲酸乙二醇酯、聚丙烯膜等,应保证具有质地柔软、反应活性低等特性),厚度约0.05mm,将瓶子用含有乳胶垫的盖子密封(密封盖上设置有圆孔,用于将纯氮充入玻璃瓶),用超纯氮气置换瓶子中的氧气,不间断充入氮气,以除去溶解氧,流速50ml/min,时间20min;

(6)通过进样针将聚合溶液引入曲面结构的蛋白石光子晶体和聚乙烯薄膜之间的空隙,避免产生气泡,在溶液张力作用下光子晶体与柔性薄膜紧密贴合;然后加入单体和交联剂质量含量1%的偶氮二异丁腈作为引发剂;其中,聚合溶液可依照待检测的目标分子,有针对性的配制;

(7)反应体系置于0℃冰水混合物中用主波长365nm的紫外固化灯照射上述体系,聚合反应时间2h;

(8)2%的氢氟酸(v/v,50/50)刻蚀硅胶,12h后更换氢氟酸1次,再刻蚀12h;

(9)用乙醇洗涤除去氢氟酸并保存在乙醇中,得到具有曲面结构的分子印迹聚合物反蛋白石;利用多孔的硅胶晶体做模板,单体和模板在其表面聚合,聚合后利用氢氟酸除去硅胶模板,形成与多孔硅胶互补的聚合薄膜。

实施例2

(1)选取粒径尺寸为200 nm的单分散二氧化硅微球;

(2)宽口圆柱玻璃瓶使用前,需要进行表层处理。用浓硫酸/过氧化氢混酸(体积比为7:3)浸泡25ml透明样品瓶至少1.5h,用去离子水清洗3次,最后用丙酮去除残留的水分,室温干燥;

(3)采用胶体自组装的方法。用乙醇稀释单分散二氧化硅微球浓度至2%,超声震荡分散15min后,取15ml胶体溶液移到带密封盖的宽口圆柱玻璃瓶中;盖上500ml烧杯,形成半封闭的环境,圆柱形玻璃瓶的尺寸和胶体溶液的体积,可以依据要制备的晶体面积进行调节;

(4)转入恒温培养箱中加热,温度40℃,相对湿度为45%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长4天,形成曲面结构的蛋白石光子晶体;将形成的曲面结构的光子晶体在室温下老化24h,提高硅胶光子晶体的结构稳定性;

(5)按照曲面结构的蛋白石光子晶体的尺寸,在表面覆盖一层低密度聚乙烯薄膜(也可以选择其它类型的聚合物薄膜,如聚对苯二甲酸乙二醇酯、聚丙烯膜等,应保证具有质地柔软、反应活性低等特性),厚度约0.1mm,将瓶子用含有乳胶垫的盖子密封,用超纯氮气置换瓶子中的氧气,不间断充入氮气,以除去溶解氧,流速50ml/min,时间20min;

(6)通过进样针将聚合溶液引入曲面结构的蛋白石光子晶体模板和聚乙烯薄膜之间的空隙,避免产生气泡,在溶液张力作用下光子晶体与柔性薄膜紧密贴合;然后加入单体和交联剂质量含量1%的偶氮二异丁腈作为引发剂;其中,聚合溶液可依照待检测的目标分子,有针对性的配制;

(7)反应体系置于0℃冰水混合物中用主波长365nm的紫外固化灯照射上述体系,聚合反应时间2h;

(8)2%的氢氟酸(v/v,50/50)刻蚀硅胶,12h后更换氢氟酸1次,再刻蚀12h;

(9)用乙醇洗涤除去氢氟酸并保存在乙醇中,得到具有曲面结构的分子印迹聚合物反蛋白石;利用多孔的硅胶做模板,单体和模板在其表面聚合,聚合后利用氢氟酸除去硅胶模板,形成与多孔硅胶互补的聚合薄膜。

实施例3

(1)选取粒径尺寸为240 nm的单分散二氧化硅微球;

(2)宽口圆柱玻璃瓶使用前,需要进行表层处理。用浓硫酸/过氧化氢混酸(体积比为7:3)浸泡25ml透明样品瓶至少1.5h,用去离子水清洗3次,最后用丙酮去除残留的水分,室温干燥;

(3)采用胶体自组装的方法。用乙醇稀释单分散二氧化硅微球浓度至2%,超声震荡分散30min后,取15ml胶体溶液移到带密封盖的宽口圆柱玻璃瓶中;盖上500ml烧杯,形成半封闭的环境,圆柱形玻璃瓶的尺寸和胶体溶液的体积,可以依据要制备的晶体面积进行调节;

(4)转入恒温培养箱中加热,温度70℃,相对湿度为75%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长23天,形成曲面结构的蛋白石光子晶体;将形成的曲面结构的光子晶体在室温下老化24h,提高硅胶光子晶体的结构稳定性;

(5)按照曲面结构的蛋白石光子晶体的尺寸,在表面覆盖一层低密度聚乙烯薄膜(也可以选择其它类型的聚合物薄膜,应保证质地柔软、反应活性低等特性),厚度约0.3mm,将瓶子用含有乳胶垫的盖子密封,用超纯氮气置换瓶子中的氧气,不间断充入氮气,以除去溶解氧,流速55ml/min,时间20min;

(6)通过进样针将聚合溶液引入曲面结构的蛋白石光子晶体模板和聚乙烯薄膜之间的空隙,避免产生气泡,在溶液张力作用下光子晶体与柔性薄膜紧密贴合;然后加入单体和交联剂质量含量1%的偶氮二异丁腈作为引发剂;其中,聚合溶液可依照待检测的目标分子,有针对性的配制;

(7)反应体系置于0℃冰水混合物中用主波长365nm的紫外固化灯照射上述体系,聚合反应时间2h;

(8)2%的氢氟酸(v/v,50/50)刻蚀硅胶,12h后更换氢氟酸1次,再刻蚀12h;

(9)用乙醇洗涤除去氢氟酸并保存在乙醇中,得到具有曲面结构的分子印迹聚合物反蛋白石;利用多孔的硅胶做模板,单体和模板在其表面聚合,聚合后利用氢氟酸除去硅胶模板,形成与多孔硅胶互补的聚合薄膜。

利用圆柱形的玻璃瓶内表面作为硅胶光子晶体生长的载体,可用的光子晶体面积将是平板玻璃载体的π倍以上,单位可用面积的硅胶光子晶体所消耗的单分散纳米硅胶的用量下降。

聚合溶液按照实际测试需求配制,其它类型的分子印迹聚合物也可以按照该方法进行,从而识别不同的目标分子。详见实施例4。

实施例4

(1)选取粒径尺寸为220 nm的单分散二氧化硅微球;

(2)宽口圆柱玻璃瓶使用前,需要进行表层处理。用浓硫酸/过氧化氢混酸(体积比为7:3)浸泡25ml透明样品瓶至少1.5h,用去离子水清洗3次,最后用丙酮去除残留的水分,室温干燥;

(3)采用胶体自组装的方法。用乙醇稀释单分散二氧化硅微球浓度至2%,超声震荡分散25min后,取15ml胶体溶液移到带密封盖的宽口圆柱玻璃瓶中;盖上500ml烧杯,形成半封闭的环境,圆柱形玻璃瓶的尺寸和胶体溶液的体积,可以依据要制备的晶体面积进行调节;

(4)转入恒温培养箱中加热,温度50℃,相对湿度为55%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长3天,形成曲面结构的蛋白石光子晶体;将形成的曲面结构的光子晶体在室温下老化24h,提高硅胶光子晶体的结构稳定性;

(5)按照曲面结构的蛋白石光子晶体的尺寸,在表面覆盖一层低密度聚乙烯薄膜(也可以选择其它类型的聚合物薄膜,应保证质地柔软、反应活性低等特性),厚度约0.2mm,将瓶子用含有乳胶垫的盖子密封,用超纯氮气置换瓶子中的氧气,不间断充入氮气,以除去溶解氧,流速55ml/min,时间20min;

(6)按体积1:4:4:4的比例制备分子印迹聚合物聚合溶液(恩诺沙星、甲基丙烯酸、甲基丙烯酸羟乙酯和二甲基丙烯酸乙二醇酯组成),然后加入单体和交联剂质量含量1%的偶氮二异丁腈作为引发剂;

(7)通过进样针将聚合溶液引入曲面结构的蛋白石光子晶体模板和聚乙烯薄膜之间的空隙,避免产生气泡,在溶液张力作用下光子晶体与柔性薄膜紧密贴合;

(8)反应体系置于0℃冰水混合物中用主波长365nm的紫外固化灯照射上述体系,聚合反应时间4h;

(9)2%的氢氟酸(v/v,50/50)刻蚀硅胶,12h后更换氢氟酸1次,再刻蚀12h;

(10)用乙醇洗涤除去氢氟酸并保存在乙醇中,得到具有曲面结构的分子印迹聚合物反蛋白石;利用多孔的硅胶做模板,单体和模板在其表面聚合,聚合后利用氢氟酸除去硅胶模板,形成与多孔硅胶互补的聚合薄膜。

实施例5

(1)选取粒径尺寸为220 nm的单分散二氧化硅微球;

(2)宽口圆柱玻璃瓶使用前,需要进行表层处理。用浓硫酸/过氧化氢混酸(体积比为7:3)浸泡25ml透明样品瓶至少1.5h,用去离子水清洗3次,最后用丙酮去除残留的水分,室温干燥;

(3)采用胶体自组装的方法。用乙醇稀释单分散二氧化硅微球浓度至2%,超声震荡分散25min后,取15ml胶体溶液移到带密封盖的宽口圆柱玻璃瓶中;盖上500ml烧杯,形成半封闭的环境,圆柱形玻璃瓶的尺寸和胶体溶液的体积,可以依据要制备的晶体面积进行调节;

(4)转入恒温培养箱中加热,温度50℃,相对湿度为55%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长3天,形成曲面结构的蛋白石光子晶体;将形成的曲面结构的光子晶体在室温下老化24h,提高硅胶光子晶体的结构稳定性;

(5)按照曲面结构的蛋白石光子晶体的尺寸,在表面覆盖一层低密度聚乙烯薄膜(也可以选择其它类型的聚合物薄膜,应保证质地柔软、反应活性低等特性),厚度约0.2mm,将瓶子用含有乳胶垫的盖子密封,用超纯氮气置换瓶子中的氧气,不间断充入氮气,以除去溶解氧,流速55ml/min,时间20min;

(6)按体积1:4:4:0.2的比例制备分子印迹聚合物聚合溶液(恩诺沙星、甲基丙烯酸、甲基丙烯酸羟乙酯和二甲基丙烯酸乙二醇酯组成),然后加入单体和交联剂质量含量1%的偶氮二异丁腈作为引发剂;减少二甲基丙烯酸乙二醇酯目的在于:使其具有良好的溶胀效果,检测污染物时,吸收峰位移变化显著,提高检测灵敏性;

(7)通过进样针将聚合溶液引入曲面结构的蛋白石光子晶体模板和聚乙烯薄膜之间的空隙,避免产生气泡,在溶液张力作用下光子晶体与柔性薄膜紧密贴合;

(8)反应体系置于0℃冰水混合物中用主波长365nm的紫外固化灯照射上述体系,聚合反应时间4h;

(9)2%的氢氟酸(v/v,50/50)刻蚀硅胶,12h后更换氢氟酸1次,再刻蚀12h;

(10)用乙醇洗涤除去氢氟酸并保存在乙醇中,得到具有曲面结构的分子印迹聚合物反蛋白石;利用多孔的硅胶做模板,单体和模板在其表面聚合,聚合后利用氢氟酸除去硅胶模板,形成与多孔硅胶互补的聚合薄膜。

分析、表征:

1),实施例1~4中所使用的四种粒径170nm、200nm、240nm、220nm,单分散二氧化硅微球在圆柱形玻璃瓶上生长形成的曲面结构的蛋白石光子晶体,裸眼观测光子晶体具有良好的反射色,特别是当垂直于玻璃瓶的中心轴观察,沿着中心轴硅胶光子晶体具有相同的反射色(详见图1),其中,粒径为220nm曲面结构的蛋白石光子晶体做模板,制备的反式结构的分子印迹聚合物反蛋白石薄膜,其SEM下的结构详见图5,结果表明该薄膜为具有周期性结构的聚合物反蛋白石;

2),图2a、2b、2c、2d依次粒径为170nm、200nm、220nm、240nm,单分散二氧化硅微球形成的曲面结构蛋白石光子晶体的场发射扫描电镜图,在4万倍的SEM图下可以看出,通过1~5天的自组装,单分散二氧化硅微球排列紧密、有序,进而形成蛋白石结构,可以看出这些曲面结构的蛋白石光子晶体,为面心立方堆积构型,与在平面结构支持介质上的微观结构一致;

3),实施例1~4中所使用的四种粒径,所组装出的曲面结构的蛋白石光子晶体的紫外吸收图谱,具有特征紫外吸收峰,如图3所示;

4),图4为四种粒径的曲面结构的分子印迹聚合物反蛋白石薄膜的照片,裸眼观测具有不同特征的反射色(由左向右粒径依次为240nm、220nm、200nm、170nm,黑白照片条件下,瓶身上的记号笔字体不明显);

5),图6为四种尺寸的曲面结构的分子印迹聚合物反蛋白石薄膜的紫外吸收图谱,可以证明成功合成了曲面结构的分子印迹聚合物反蛋白石薄膜;

6),图7为基于慢光效应强化荧光原理检测恩诺沙星的工作曲线对比图,高斜率的为强化后的工作曲线,低斜率的为强化前的曲线,从图7可以看出恩诺沙星的荧光强化效应明显;

7),图8为曲面结构的分子印迹反蛋白石薄膜(以粒径为220nm为的硅胶光子晶体制备的膜),基于慢光效应强化荧光机理选择性检测恩诺沙星(ENR)的效果图。

选取粒径尺寸为220 nm的单分散二氧化硅微球组装曲面蛋白石晶体,以此为模板制备曲面结构的反蛋白石薄膜,基于反蛋白石能够强化恩诺沙星荧光的原理,此薄膜为选择性识别恩诺沙星的光化学传感器薄膜。其中氟甲奎(FLU)和羟丙哌嗪(DPP)作为恩诺沙星的结构类似物,不能产生荧光信号,证明该薄膜能够选择性识别恩诺沙星;非印迹的曲面结构的聚合物反蛋白石薄膜和恩诺沙星溶液具有相似的荧光强度,说明非印迹薄膜对恩诺沙星的识别能力较弱并且不能强化的荧光发射,证明分子印迹聚合物具有良好的印迹效果。

本发明制备曲面结构的硅胶光子晶体和曲面结构的分子印迹聚合物反蛋白石薄膜的流程图可以参见图9,各个步骤的详细内容可以参考实施例1~4。

基于上述实施例,本发明一种曲面结构的反蛋白石薄膜的制备方法,利用圆柱形的玻璃瓶内表面作为硅胶光子晶体生长的载体,可用的光子晶体面积将是平板玻璃载体的π倍以上,可以减少单位面积的硅胶光子晶体消耗的单分散硅胶的量;圆柱形玻璃瓶具有可密封性,先在硅胶晶体上覆盖柔性聚合物膜,然后预先通氮除氧,通过进样针将聚合溶液引入光子晶体模板和柔性聚合物薄膜之间的空隙,就能够有效提高聚合反应的成功率。检测目标污染物,通过慢光效应强化荧光的原理,用荧光光谱仪检测荧光化合物,还可以在识别目标污染物后引发吸收峰位移,用紫外光谱仪或者反射光谱仪检测目标化合物,应用前景广阔。

以上所述仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内所想到的变化或替换,都应涵盖在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号