首页> 中国专利> 具有高机械强度和延展特性的经双重退火的钢板、该板的制造方法和用途

具有高机械强度和延展特性的经双重退火的钢板、该板的制造方法和用途

摘要

本发明涉及一种经双重退火的钢板,其组成包括以重量百分比表示含量的下述各者:0.20%≤C≤0.40%;0.8%≤Mn≤1.4%;1.60%≤Si≤3.00%;0.015%≤Nb≤0.150%;Al≤0.1%;Cr≤1.0%;S≤0.006%;P≤0.030%;Ti≤0.05%;V≤0.05%;B≤0.003%;N≤0.01%,该组成的剩余部分由铁和由加工产生的不可避免的杂质组成,以表面积比计,显微组织由10%至30%的残余奥氏体、30%至60%的退火马氏体、5%至30%的贝氏体、10%至30%的新鲜马氏体和小于10%铁素体组成。本发明还涉及用于制造这种板的方法以及这种板的用途。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-04-10

    授权

    授权

  • 2017-05-24

    实质审查的生效 IPC(主分类):C21D8/04 申请日:20150507

    实质审查的生效

  • 2017-04-26

    公开

    公开

说明书

本发明涉及经双重退火的高强度钢板的制造,该钢板同时具有能够进行冷成形操作的机械强度和延展性。更具体地,本发明涉及下述钢:所述钢具有大于或等于980MPa的机械强度、大于或等于650MPa的屈服应力、大于或等于15%的均匀延伸率和大于或等于20%的断裂延伸率。

对减少温室气体排放的强烈需求连同对汽车安全的日益严格的要求以及不断上涨的燃料价格已激励电机驱动的陆地车辆的生产者越来越多地使用下述钢:所述钢提供车体中提高的机械强度,以在保持结构的机械强度性能的同时减小部件的厚度并且因此减小车辆重量。为此,结合高强度和为了成形而不出现裂纹的足够可成形性的钢变得越来越重要。因此,随着时间的推移,已接连地提出了提供多种水平的机械强度的许多类的钢。这些类包括DP(双相)钢,TRIP(相变诱导塑性)钢,多相钢以及甚至低密度钢(FeAl)。

因此,为了响应对越来越轻重量的车辆的这种需求,需要越来越强的钢以补偿小的厚度。然而,在碳钢的领域中,已知机械强度的增加通常伴随着延展性的损失。另外,机动陆地车辆的生产者正在设计越来越复杂的需要具有高水平延展性的钢的部件。

EP1365037A1描述了一种钢,所述钢含有按重量百分比计的以下化学组成:C:0.06%至0.25%;Si+Al:0.5%至3%;Mn:0.5%至3%;P:0.15或更少;S:0.02%或更少,并且还任选地含有按重量百分比计的下述组分中的至少一者:Mo:1%或更少;Ni:0.5%或更少;Cu:0.5%或更少;Cr:1%或更少;Ti:0.1%或更少;Nb:0.1%或更少;V:至少0.1%;Ca:0.003%或更少和/或REM:0.003%或更少,所述钢还有以下组织:显微组织主要由按面积百分比计的50%或更多的回火马氏体或回火贝氏体组成,或者相对于整体组织的空间系数为15%或更大的回火马氏体或回火贝氏体以及还包含铁素体,回火马氏体或回火贝氏体;以及第二相组织,包括以面积百分比计的3%至30%的回火奥氏体,且还包括贝氏体和/或马氏体,残余奥氏体的浓度C(C γ R)为0.8%或更大。该专利申请不能实现显著地减小厚度以及因此显著减小例如汽车工业中所用的板的重量所需的足够高的强度水平。

另外,US20110198002A1描述了机械强度大于1200MPa、延伸率大于13%以及孔膨胀率大于50%的高强度且经热浸镀的钢以及该钢的生产方法,从以下化学组成开始:0.05%至0.5%碳、0.01%至2.5%硅、0.5%至3.5%锰、0.003%至0.100%磷、多至0.02%硫和0.010%至0.5%铝,剩余部分由杂质组成。就面积百分比而言,该钢的显微组织包含0%至10%铁素体、0%至10%马氏体和60%至95%回火马氏体并且含有5%-20%残余奥氏体(按通过X射线衍射确定的比例计)。然而,由根据该发明的钢实现的延展性水平低,这对由基于该申请中所包含的信息而获得的产物开始的部件的成形具有不利影响。

最后,题为“Fatigue strength of newly developed high-strength low alloy TRIP-aided steels with good hardenability”的出版物提出了具有以下组成的用于汽车应用的钢的研究:0.4%C、1.5%Si、1.5%Mn、0%至1.0%Cr、0%至0.2%Mo、0.05%Nb、0ppm至18ppm B。该钢具有超过常规钢的疲劳强度的非常好的疲劳强度。该特性通过添加B、Cr和Mo而进一步增强。该钢的显微组织具有TRIP效应,其中,高水平的亚稳残余奥氏体由于在从奥氏体转变期间马氏体的形成和塑性应力消除而防止预开裂及其蔓延。该篇文章公开了用于生产提供优异的强度延展性折中的钢的方法,但是所公开的化学组成以及生产方法不仅与工业生产不相容,而且导致可涂覆性问题。

本发明的目的是解决上述问题。本发明提供了机械强度大于或等于980MPa、弹性极限大于或等于650MPa、以及均匀延伸率大于或等于15%、断裂延伸率大于或等于20%的冷轧钢及其生产方法。本发明还提供了能够以稳定方式生产的钢。

为此,本发明的目标是一种钢板,该钢板的组成按重量百分比计包括:0.20%≤C≤0.40%、优选地0.22%≤C≤0.332%;0.8%≤Mn≤1.4%、优选地1.0%≤Mn≤1.4%;1.60%≤Si≤3.00%、优选1.8%≤Si≤2.5%;0.015%≤Nb≤0.150%、优选地0.020%≤Nb≤0.13%;Al≤0.1%;Cr≤1.0%、优选地Cr≤0.5%;S≤0.006%;P≤0.030%;Ti≤0.05%;V≤0.05%;Mo<0.03%;B≤0.003%;N≤0.01%,组成的剩余部分包括铁和由加工产生的不可避免的杂质,以面积百分比计,显微组织由10%至30%残余奥氏体、30%至60%退火马氏体、5%至30%贝氏体、10%至30%新鲜马氏体和小于10%铁素体组成。

优选地,根据本发明的钢板包括锌涂层或锌合金涂层或者铝涂层或铝合金涂层。这些涂层可以与铁形成合金或者可以不与铁形成合金,所形成的合金被称为镀锌板(GI/GA)。

理想地,根据本发明的板表现出这样的机械行为:板的机械强度大于或等于980MPa,屈服应力大于或等于650MPa,均匀延伸率大于或等于15%,并且断裂延伸率大于或等于20%。

本发明的另一个目标是一种用于经冷轧、经双重退火且任选地经涂覆的钢板的生产方法,该方法依次包括以下步骤:

-获得具有根据本发明的组成的钢,然后

-将钢铸造成半成品,然后

-使半成品达到1100℃至1280℃的温度Trech以获得经再加热的半成品,然后

-对经再加热的半成品进行热轧,其中,热轧结束时的温度Tfl大于或等于900℃以获得热轧板,然后

-将热轧板在400℃至600℃的温度Tbob下卷取以获得卷取的热轧板,然后

-将卷取的热轧板冷却至环境温度,然后

-将卷取的热轧板退卷并酸洗,然后

-以30%至80%的压下率将热轧板冷轧以获得冷轧板,然后

-通过将冷轧板以2℃/s至50℃/s的速率VC1加热到TS1=910.7-431.4*C-45.6*Mn+54.4*Si-13.5*Cr+52.2*Nb与950℃之间的温度T均热1并持续30秒至200秒的时间长度t均热1来对冷轧板进行第一时间的退火,其中,含量以重量百分比表示,然后

-通过使板以大于或等于30℃/s的速率冷却至环境温度将板冷却,然后

-通过将板以2℃/s至50℃/s的速率VC2再加热到Ac1与TS2=906.5-440.6*C-44.5*Mn+49.2*Si-12.4*Cr+55.9*Nb之间的温度T均热2并持续30秒至200秒的时间长度t均热2来对板进行第二时间的退火,其中,含量以重量百分比表示,然后

-通过使板以大于或等于30℃/s的速率冷却至420℃至480℃的冷却结束温度TOA将板冷却,然后

-使板在420℃至480℃的温度范围内保持5秒至120秒的时间长度tOA,然后

-任选地,在经冷轧且经退火的板上施加涂层。

在一个优选实施方案中,在冷轧之前对该卷取的热轧板进行基础退火使得该板被加热,然后在400℃至700℃的温度下保持5小时至24小时的时间长度。

优选地,使板在420℃至480℃的冷却结束温度TOA下等温地保持5秒至120秒。

然后,优选地,随后,在涂层沉积之前,以0.1%至3%的冷轧率将经双重退火且经冷轧的板冷轧。

在一个优选的实施方案中,最后将经双重退火的板加热到150℃至190℃的保持温度Tbase并保持10小时至48小时的保持时间tbase

优选地,在TOA下的保持结束时,将板在以下成分中的一者的液浴中热浸镀:Al、Zn、Al合金或Zn合金。

根据本发明或通过根据本发明的方法生产的经双重退火且经涂覆的冷轧板用于机动陆地车辆用部件的制造。

在以下描述中,本发明的其他特征和优点将变得明显。

根据本发明,碳含量按重量计为0.20%至0.40%。如果本发明的碳含量按重量计低于0.20%,则机械强度变得不足并且残余奥氏体的分数仍然不足并且不足够稳定以实现大于15%的均匀延伸率。如果高于0.40%,由于在电阻焊接的情况下在热影响区(HAZ)或熔融区中形成低韧性的显微组织而使可焊接性逐渐降低。在一个优选实施方案中,碳含量为0.22%至0.32%。在该范围内,可焊接性是令人满意的,奥氏体的稳定性被优化且新鲜马氏体的分数在本发明指定的范围内。

根据本发明,锰含量为0.8%至1.4%。锰是通过置换固溶体硬化的元素。其使奥氏体稳定并且降低转变温度Ac3。因此,锰有助于机械强度的提高。根据本发明,需要按重量计0.8%的最小含量以获得所需的机械特性。然而,超过1.4%,锰的γ相形成(gammagenic)特性导致在于冷却结束温度TOA下的保持期间发生的贝氏体转变动力学的减慢,并且贝氏体分数仍不足以实现大于650MPa的弹性强度。优选地,将锰含量选择在1.0%至1.4%的范围内,这在不增大以下风险的情况下同时具有令人满意的机械强度:降低贝氏体的分数且因此降低屈服应力,或增大焊接合金的可硬化性(其将对根据本繁忙的板的可焊接性有不利影响)。

硅含量必须为1.6%至3.0%。在该范围内,通过添加硅可以实现残余奥氏体的稳定化,这在退火循环期间且更特别地在贝氏体转变期间显著减慢碳化物的析出。这是由硅在渗碳体中的溶解度非常低并且该元素提高了奥氏体中碳的活性这一事实而造成的。因此,任何渗碳体的形成之前是在界面处的Si排除步骤(rejection step)。因此,奥氏体的碳富集导致奥氏体在环境温度下在经双重退火且经涂覆的钢板上的稳定化。然后,通过成形而施加的外部应力例如将导致该奥氏体转变成马氏体。这种转变的结果也提高了抗损坏性。硅也是强固溶体硬化元素,且因此可以实现本发明指定的弹性和机械强度水平。关于本发明指定的性能,添加大于3.0%的量的硅将显著地促进铁素体,且将无法实现指定的机械强度。另外,将形成强粘附性的氧化物,其将导致表面缺陷以及锌或锌合金涂层的不粘附。因此,最低含量必须设定为按重量计1.6%以获得对奥氏体的稳定化效果。硅含量将优选地在1.8%至2.5%以使上述效果最佳化。

铬含量必须被限于1.0%。该元素使得能够在从上述保持温度T均热1或T均热2退火期间冷却的同时控制先共析铁素体的形成,这是因为大量的这种铁素体使根据本发明的板所需的机械强度降低。该元素还可以使贝氏体显微组织硬化并细化。然而,这种元素使贝氏体转变动力学显著地减慢。然而,在大于1.0%的水平下,贝氏体分数仍不足以实现大于650MPa的屈服应力。

镍和铜具有与锰的效果基本类似的效果。这两种元素将以微量水平存在,即,每种元素为0.05%,但仅仅是因为它们的成本远高于锰的成本。

铝含量按重量计被限于0.1%。铝是促进铁素体形成的强α相形成(alphagenic)元素。高的铝含量将提高Ac3点,并且从而使得工业过程在退火所需的能量输入方面花费昂贵。还认为高的铝含量增大了耐火材料的侵蚀性以及在轧制上游钢的铸造期间堵塞喷嘴的风险。铝还不利地偏析且铝可以导致宏观偏析。过量的情况下,铝降低热延展性且增大连续铸造中出现缺陷的风险。在不对铸造条件进行严密控制的情况下,微观偏析缺陷和宏观偏析缺陷最终导致经退火钢板的中心偏析。该中心带将比其周围基体硬且将对材料的可成形性产生不利影响。

硫含量必须小于0.006%。高于该含量,由于降低变形适宜性的例如MnS(也被称作硫化锰)的硫化物的过多存在,延展性被降低。

磷含量必须小于0.030%。磷是这样的元素:其在固溶体中硬化、但特别地由于其趋于在晶粒边界处偏析或其趋于与锰共偏析,其显著降低热延展性和点焊适宜性。由于这些原因,磷含量必须被限于0.030%以实现点焊的适当适宜性。

铌含量必须为0.015%至0.150%。铌是具有形成与碳和/或氮硬化的析出物的特殊特性的微合金元素。在热轧操作时已经存在的这些析出物延迟退火期间的再结晶且因此细化显微组织,这使其有助于材料的硬化。还可以通过产生可能的高温退火来改善产品的伸长特性,而不会由于组织的细化效应而降低伸长性能。然而,铌含量必须被限于0.150%以避免过高的热轧力。另外,高于0.150%,使关于铌的积极效果(特别是关于通过显微组织的细化所得到的硬化效果)达到了饱和效果。另一方面,铌含量必须大于或等于0.015%,这使得可以当存在铁素体时铁素体的硬化且该硬化是期望的,以及为了残余奥氏体更高的稳定化的足够细化,还使得可以保证本发明所指定的均匀延伸率,Nb含量优选地为0.020至0.13以使上述效果最佳化。

例如钛和钒的其它微合金元素被限于0.05%的最大水平,因为这些元素具有与铌相同的益处,但是其具有更强地降低产品延展性的特殊的特征。

氮含量被限于0.01%以防止材料的老化现象并且以最小化氮化铝(AlN)在固化期间的析出并且因此最小化半成品的脆化。

硼和钼处于杂质的水平,即,单独地硼的含量小于0.003并且钼的含量小于0.03。

组成的剩余部分由铁和由加工产生的不可避免的杂质组成。

根据本发明,以面积百分比计,第一次退火之后的钢的显微组织必须包含小于10%的多边形铁素体,显微组织的剩余部分由新鲜马氏体或回火马氏体组成。如果多边形铁素体含量大于10%,则第二次退火之后的钢的机械强度和屈服应力将分别小于980MPa和650MPa。另外,第一次退火结束时多边形铁素体含量大于10%将导致第二次退火结束时多边形铁素体含量大于10%,这将导致屈服应力和机械强度相对于本发明的指定过低。

以面积百分比计,第二次退火之后的钢的显微组织必须含有10%至30%的残余奥氏体。如果残余奥氏体含量小于10%,均匀延伸率将小于15%,这是由于残余奥氏体将过于稳定且在机械应力下不能转变成马氏体,这导致钢的加工硬化显著增大,实际上,延迟了转化为均匀延伸率增大的颈缩的出现。如果残余奥氏体含量大于30%,残余奥氏体将不稳定,这是由于在第二次退火期间以及在冷却结束温度TOA下的保持期间富集的碳不足且第二次退火之后钢的延展性将降低,这将导致均匀延伸率小于15%和/或总延伸率小于20%。

另外,在第二次退火之后,以面积百分比计,根据本发明的钢必须含有30%至60%的退火马氏体,其是由第一次退火产生的马氏体在第二次退火期间被退火而产生的,并且该退火马氏体因较少量的晶体缺陷区别于新鲜马氏体,并且因在马氏体晶格中不存在碳化物而区别于回火马氏体。如果退火马氏体含量小于30%,钢的延展性将过低,这是由于残余奥氏体含量将由于其富集的碳不足而过低并且新鲜马氏体的水平将过高,这导致均匀延伸率小于15%。如果退火马氏体含量大于60%,钢的延展性将过低,这是由于残余奥氏体将过于稳定并且在机械应力作用下不能转变成马氏体,其影响将是降低根据本发明的钢的延展性且将导致均匀延伸率小于15%和/或总延伸率小于20%。

仍然根据本发明,以面积百分比计,在第二次退火之后的钢的显微组织必须含有5%至30%的贝氏体。贝氏体在显微组织中的存在通过其在残余奥氏体的碳富集中起的作用来证明。在贝氏体转变期间并且由于大量硅的存在,碳从贝氏体重新分布至奥氏体,其作用在于使奥氏体在环境温度下稳定。如果贝氏体含量小于5%,残余奥氏体将不能充分富集碳并且将不足够稳定,这将促进新鲜马氏体的出现,这将导致延展性的显著降低。于是,均匀延伸率将小于15%。如果贝氏体含量大于30%,将导致在机械应力的作用下不能转变成马氏体的过度稳定的残余奥氏体,其影响将是均匀延伸率小于15%和/或总延伸率小于20%。

最后,以面积百分比计,根据本发明的钢在第二次退火之后必须含有10%至30%的新鲜马氏体。如果新鲜马氏体的含量小于10%,钢的机械强度将小于980MPa。如果新鲜马氏体的含量大于30%,残余奥氏体含量将过低,钢将不具有足够的延展性并且均匀延伸率将小于15%。

根据本发明的板可以通过任何合适的方法生产。

第一步骤是获得具有根据本发明的组成的钢。然后,由该钢铸造半成品。钢可以铸造成锭或连续地铸造成板坯的形式。

再加热温度必须为1100℃至1280℃。铸造的半成品必须达到大于1100℃的温度Trech以获得经再加热的半成品,从而完全地实现有利于钢在轧制期间将经受的高变形的温度。该温度范围还使得能够处于奥氏体的范围内并且能够确保由铸造产生的析出物完全溶解。然而,如果温度Trech大于1280℃,奥氏体晶粒不期望地生长并且导致粗的最终组织,并且与液体氧化物的存在相关的表面缺陷的风险增大。当然,也可以在铸造之后立即热轧钢,而不再加热板坯。

然后,在其中钢的组织完全奥氏体化的温度范围内将该半成品热轧。如果轧制结束温度Tfl小于900℃,轧制力非常高并且可能需要大量的能量或甚至可能使轧机断裂。优选地,将考虑大于950℃的轧制结束温度以确保轧制在奥氏体的范围内进行并且因此以限制轧制力。

然后,将在400℃至600℃的温度Tbob下将经热轧产品卷取。该温度范围使得能够在与卷取相关的准等温保持期间获得铁素体、贝氏体或者珠光体转变,在卷取之后,缓慢冷却以使冷却后的马氏体分数最小化。大于600℃的卷取温度导致不期望的表面氧化物形成。当卷取温度过低(低于400℃)时,冷却之后的产品的硬度增大,这增大了随后的冷轧期间所需的力。

如果需要,根据本身已知的方法对经热轧的产品进行酸洗。

任选地,卷取的热轧板的中间分批退火将在TRB1至TRB2进行5小时至24小时的时间长度,其中,TRB1=400℃而TRB2=700℃。该热处理使得能够在经热轧的板中的每个点处具有低于1000MPa的机械强度,从而使板的中心与边缘之间的硬度差最小化。这通过软化所形成的结构而显著促进接着的冷轧步骤。

然后,以优选地30%至80%的压下率进行冷轧。

然后,优选地在连续退火线中以2℃每秒至50℃每秒的平均加热速率VC进行经冷轧的产品的第一次退火。关于退火温度T均热1,该加热速率范围使得能够获得再结晶以及组织的充分细化。低于2℃每秒,表面脱碳的风险显著地增大。高于50℃每秒,在均热处理(均热)期间将出现痕量的非再结晶和不溶的碳化物,其结果将是减少残余奥氏体分数且将对延展性产生不期望的影响。

进行加热到温度TS1与950℃之间的退火温度T均热1,其中,TS1=910.7-431.4*C-45.6*Mn+54.4*Si-13.5*Cr+52.2*Nb,其中,温度以℃为单位并且化学组成按重量百分比计,当T均热1小于TS1时,多边形铁素体的存在被促进为高于10%,因此超过本发明指定的范围。相反,如果T均热1高于950℃,奥氏体晶粒尺寸显著增大,这对最终显微组织的细化产生不期望的影响且因此对将低于650MPa的弹性极限的水平产生不期望的影响。

在温度T均热1下的30秒至200秒的保持时间t均热1能够使先前形成的碳化物溶解,并且特别地使得能够足以转变成奥氏体。低于30秒,碳化物的溶解可能不充分。另外,大于200秒的保持时间难以与连续退火线的生产率要求一致,特别是难以与卷取的行进速度一致。另外,出现与T均热1高于950℃的情况相同的奥氏体晶粒粗化的风险,以及具有小于650MPa的弹性极限的相同风险。因此,保持时间t均热1为30秒至200秒。

在第一次退火的保持结束时,板被冷却至环境温度,其中,冷却速率Vref1快到足以防止铁素体的形成。为此,该冷却速率大于30℃每秒,这使得能够获得铁素体小于10%、剩余部分为马氏体的显微组织。优选地,在第一次退火结束时将优先考虑全部马氏体的显微组织。

优选地,在连续镀锌退火线中以大于2℃每秒的平均加热速率VC对已经退火一次的冷轧产品进行第二次退火,以避免表面脱碳的风险。优选地,平均加热速率必须小于50℃每秒以防止在保持期间不溶碳化物的存在,不溶碳化物的存在可能具有降低残余奥氏体分数的影响。

将钢加热到温度Ac1=728-23.3*C-40.5*Mn+26.9*Si+3.3*Cr+13.8*Nb与TS2=906.5-440.6*C-44.5*Mn+49.2*Si-12.4*Cr+55.9*Nb之间的退火温度T均热2,其中,温度以℃为单位,化学组成按重量百分比计。当T均热2小于Ac1时,不能获得本发明指定的显微组织,这是因为仅将发生由第一次退火产生的马氏体的回火。当T均热2大于TS2时,退火马氏体含量将小于30%,这将促进大量新鲜马氏体的存在,从而严重降低产品的延展性。

在温度T均热2下的30秒至200秒的保持时间t均热2能够使先前形成的碳化物溶解,并且特别地使得能够足以转变成奥氏体。如果低于30秒,碳化物的溶解可能不充分。另外,大于200秒的保持时间难以与连续退火线的生产率要求一致,特别是难以与卷取的行进速度一致。另外,高于200秒将出现与t均热1的情况相同的奥氏体晶粒粗化的风险,以及具有小于650MPa的弹性极限的相同风险。因此,保持时间t均热2为30秒至200秒。

在第二次退火的保持结束时,将板冷却直到板达到TOA1=420℃至TOA2=480℃的冷却结束温度TOA,其中,冷却速率Vref2快到足以防止铁素体的大量形成,即,含量大于10%,为此,该冷却速率大于20℃每秒。

冷却结束温度必须在TOA1=420℃与TOA2=480℃之间。低于420℃,所形成的贝氏体将是硬的,这存在对延展性产生不利影响的风险,对于均匀延伸率而言可能小于15%。另外,如果板待通过锌浴(其温度通常为460℃),该温度过低,且将导致浴的连续冷却。如果温度TOA高于480℃,存在析出渗碳体的风险,渗碳体为将降低可用以稳定奥氏体的碳的渗碳相。此外,在热浸镀锌的情况下,如果温度过高(即,高于480℃),存在使液态Zn蒸发同时失去对浴和钢之间反应的控制的风险。

在温度范围TOA1(℃)至TOA2(℃)中的保持时间tOA必须为5秒至120秒以允许贝氏体转变,且因此通过奥氏体的碳富集而允许该奥氏体的稳定化。保持时间tOA还必须大于5秒以确保根据本发明的贝氏体含量,否则弹性极限将降至650MPa以下。保持时间toA还必须小于120秒以将贝氏体含量限于如本发明中指定的30%,否则残余奥氏体含量将小于10%并且钢的延展性将过低,这将通过均匀延伸率小于15%和/或总延伸率小于20%来证明。

在TOA1(℃)至TOA2(℃)的保持结束时,在板冷却至环境温度之前,通过热浸镀用锌或锌合金(其中,Zn表示按重量百分比计的主要元素)的沉积物涂覆经双重退火的板。优选地,锌涂层或锌合金涂层可以通过本身已知的任何电解方法或物理化学方法被施加在裸露的经退火的板上。还可以通过热浸镀沉积铝或铝合金(其中,Al表示以重量百分比计的主要元素)的基底涂层。

优选地,然后在150℃至190℃的保持温度Tbase下对经冷轧且经双重退火且经涂覆的板进行后分批退火热处理10小时至48小时的保持时间tbase,以改善屈服应力和弯曲性。该处理被称作后分批退火。

下面基于非限制性实施例对本发明进行说明。

实施例

制备具有下表中所示的以重量百分比表示的组成的钢。表1指示用于制造实施例中的板的钢的化学组成。

表1:化学组成(按重量百分比计)和临界温度,Ae1、TS1和TS2以℃为单位。

cMnSiAlCrMoCuNiVNbSPBTINAe1TS1TS2A0.261.32.120.0270.0020.0020.0050.0060.0020.1240.00270.0190.00050.0040.002728552846B0.281.171.890.030.0030.0030.0070.0080.0030.0170.00360.0140.000420.0070.0014727844829C0.291.171.980.0290.0030.0030.0070.0080.0030.0680.00360.0140.00040.0060.0016728845830O0.211.253.040.0230.0040.0050.0350.0040.0020.000.00330.0180.00060.0040.0015754927907E0.191.681.550.0530.0240.0060.0070.0170.0040.0010.0020.0090.00070.0030.004697836824

表1中的参考例D和E表示组成不是本发明所指定的钢。不符合本发明的含量用下划线表示。

应当特别指出的是,参考例D和E因为其组成含有铌而不符合本发明,这将由于缺乏析出物硬化而限制最终板的屈服应力和机械强度。

还应当指出的是,参考例D和E因为其硅含量在指定的范围之外而不符合本发明。硅含量超过3.00%将促进过量的铁素体并且将不能实现指定的机械强度。按重量计低于1.60%,残余奥氏体的稳定性将不足以获得期望的延展性。

还应当指出的是,参考例D因为碳含量小于所指定的碳含量而不符合本发明,这将限制板的最终强度和延展性。此外,锰含量过高,这将限制板中的最终贝氏体量,其效果将由于过量的新鲜马氏体的存在而限制板的延展性。

在表2中所示的制造条件下制备对应上面组成的板。

从这些组成开始,某些钢经受不同的退火条件。在热轧之前的条件是相同的,其中,在1200℃至1250℃再加热,轧制结束温度930℃至990℃,以及在540℃至560℃卷取。然后,将经热轧的产品全部酸洗,然后立即以50%至70%的压下率将热轧产品冷轧。

表2还用下面的标识示出了在冷轧之后的经退火板的制造条件:

-再加热温度:Trech

-轧制结束温度:Tfl

-卷取温度:TBOB

-冷轧压下率

-第一次退火期间的加热速率:VC1

-第一次退火期间的保持温度:T均热1

-在T均热1下的第一次退火期间的保持时间:t均热1

-第一次退火期间的冷却速率:Vref1

-第二次退火期间的冷却速率:VC2

-在第二次退火期间的保持温度:T均热2

-在T均热1下的第二次退火期间的保持时间:t均热2

-第二次退火期间的冷却速率:Vref2

-冷却结束温度:TOA

-在温度TOA下的保持时间:tOA

-所计算的温度Ac1、TS1和TS2(以℃为单位)

表2:实施例和参考例的退火条件

表2中的参考例A5至A6、B1至B4、C2至C5、D1和D2、E1至E6表示基于具有表1所示组成的钢在不符合本发明的条件下生产的钢。不符合本发明的参数用下划线表示。

应当指出的是,参考例A5、A6、B2至B4、C2至C4、D1和D2因为第一次退火的保持温度T均热1小于所计算的温度TS1而不符合本发明,这将在第一次退火中促进大量的铁素体,从而限制第二次退火之后的板的机械强度。

还应当指出的是,参考例E2、E3和E4由于其化学组成以及第二次退火的保持温度T均热2大于所计算的温度TS2的事实而不符合本发明,这将具有降低第二次退火之后的退火马氏体的量的效果,由于过量的新鲜马氏体而限制板的最终延展性。

还应当指出的是,参考例B1因为温度TOA在420℃-480℃的范围之外而不符合本发明,这将限制第二次退火之后的残余奥氏体的量且因此将限制板的延展性。

还应当指出的是,参考例C5因为在板上仅进行了符合本发明和第二次退火要求的单次退火而不符合本发明。缺少第一次退火导致在显微组织中不存在退火马氏体,这严重地限制了板的最终屈服应力和机械强度。

最后,应当指出的是,两个参考例E5和E6不符合本发明,第二次退火中的冷却速率VRef2小于30℃每秒,这促进在冷却期间铁素体的形成,这将具有降低板的弹性极限和机械强度的效果。

实施例A1至A4、C1是根据本发明的那些实施例。

然后,使用ISO 12.5×50试样来测量机械特性,并且每个相的含量存在于通过截取基于表1中所示的化学组成[被分析过]和基于表2中所述的方法而制得的材料的横截面所制备的显微组织中。进行单轴拉伸试验以获得在平行于冷轧方向的方向上的这些机械性能。

在每次退火之后的每个相的含量以及所获得的机械拉伸强度特性已经用以下缩写输入到下面的表3中:

-%M1:第一次退火之后的马氏体的面积百分比

-%F1:第一次退火之后的铁素体的面积百分比

-%M2:第二次退火之后的马氏体的面积百分比

-%F2:第二次退火之后的铁素体的面积百分比

-%RA:第二次退火之后的残余奥氏体的面积百分比

-%AM:第二次退火之后的退火马氏体的面积百分比

-%B:第二次退火之后的贝氏体的面积百分比

-屈服应力:Re

-机械强度:Rm

-均匀延伸率:Al.Unif.

-总延伸率:Al.Total.

表3:显微组织的每个相的面积百分比以及参考例和本发明的机械性能。

表3中的参考例A5和A6、B1至B4、C2至C5、D1和D2、E1至E6表示由具有表1所示的组成的钢在表2中所述条件下制造的钢。不符合本发明的机械性能和相的分数用下划线表示。

实施例A1至A4和C1是根据本发明的那些。

应当指出的是,参考例A5、A6、D1和D2因为屈服应力小于650MPa而不符合本发明,这由在第一次退火结束时的大量铁素体和在第二次退火结束时的低分数的退火马氏体(这是由于保持温度T均热1小于计算的温度TS1)来说明。

还应当指出的是,参考例B2至B4和C2至C4因为机械强度小于980MPa而不符合本发明,这由在第一次退火之后大于10%的铁素体量(这将限制在第二次退火结束时新鲜马氏体的分数,这是由于保持温度T均热1低于计算温度TS1)来说明。

还应当指出的是,参考例B1因为屈服应力小于650MPa且机械强度小于980MPa而不符合本发明,这由在第二次退火结束时过少量的新鲜马氏体(这是由于轧制结束温度TOA低于420℃)来说明。

还应当指出的是,参考例E1至E6因为屈服应力小于650MPa且机械强度小于980MPa而不符合本发明。这些实施例的不符合是由于不合适的化学组成,特别是硬化元素(碳,硅)的含量过低以及由于不存在铌而导致的缺乏析出物硬化。对于参考例E2至E6,这种效果甚至更明显,这是因为没有遵守本发明所教导的方法并且所获得的相的量在所指定的范围之外。

最后,应当指出的是,参考例C5因为仅实施了与本发明所教导的第二次退火的方法对应的单次退火而不符合本发明,这导致不存在实现本发明指定的屈服应力和的机械强度所需的退火马氏体。

本发明还提供了适合于施加锌或锌合金涂层,特别是在液锌浴中使用热浸镀工艺接着合金化热处理来施加锌或锌合金涂层的钢板。

本发明最后提供了在常规组装方法(例如电阻点焊,仅举出一个非限制性实例)中表现出良好可焊接性的钢。

根据本发明的钢板可以有利地用于机动陆地车辆用的结构零件、加强和安全部件、防磨料或传动盘的制造。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号