首页> 中国专利> 一种空心指数型超声变幅杆的设计方法

一种空心指数型超声变幅杆的设计方法

摘要

一种空心指数型超声变幅杆的设计方法,属于功率超声变幅杆设计领域。本发明解决了现有变幅杆设计方法均为实心结构,缺少空心结构的,以及实心超声变幅杆的放大系数有限的问题。它包括以下步骤:步骤一、计算面积系数

著录项

  • 公开/公告号CN106563634A

    专利类型发明专利

  • 公开/公告日2017-04-19

    原文格式PDF

  • 申请/专利权人 哈尔滨理工大学;

    申请/专利号CN201610663349.2

  • 申请日2016-08-15

  • 分类号B06B3/02;

  • 代理机构

  • 代理人

  • 地址 150040 黑龙江省哈尔滨市香坊区林园路4号哈理工南区材料学院

  • 入库时间 2023-06-19 01:58:08

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-03-22

    授权

    授权

  • 2017-05-17

    实质审查的生效 IPC(主分类):B06B3/02 申请日:20160815

    实质审查的生效

  • 2017-04-19

    公开

    公开

说明书

技术领域

本发明属于功率超声变幅杆设计领域,具体涉及一种空心指数型超声变幅杆的设计方法。

背景技术

功率超声在工业中应用十分广泛,超声变幅杆是超声波振动系统中一个重要的组成部分,它在振动系统中的主要作用是把机械振动的质点位移或速度放大,并将超声能量集中在较小的面积上聚能,因此也称超声变速杆或超声聚能器。超声变幅杆主要分为阶梯形、指数型、圆锥形、双曲线形等类型,在其它参数相同的情况下,阶梯形变幅杆的放大系数最大,其次是双曲线形变幅杆和指数型变幅杆;圆锥形变幅杆的形状因数最大,其次是指数型。综合考虑形状因数和放大系数,指数型超声变幅杆要优于其它类型。目前,超声变幅杆多为实心设计,并且放大系数有限,在此基础上想获得更高的放大系数,唯有增大端面直径来获得更大的放大系数,这势必造成径向振动增大,反而制约了能量在小端的聚焦,进而影响功率超声装置的整体放大系数。而空心变幅杆,在不需要增大变幅杆端面直径的条件下,便可获得更大的放大系数。此外,在材料加工领域,常常需要空心超声变幅杆,例如,带中心孔的变幅杆可以实现旋转超声加工的中心供冷却液或气体,可使其具有良好的冷却和排屑效果。然而,,变幅杆设计方法缺少相关数学模型,而且没有完整的理论体系,为此,本发明提出了一种空心超声变幅杆的设计方法。

发明内容

本发明为了解决现有变幅杆设计方法均为实心结构,缺少空心结构的,以及实心超声变幅杆的放大系数有限的问题,提出了一种空心超声变幅杆的设计方法。

一种空心指数型超声变幅杆的设计方法,它是按以下步骤实现的:

步骤一、变幅杆的母线选为指数型,设变幅杆大端面面积为,小端面面积为,圆柱形空心部分内圆面积为,为变幅杆的大端端面直径,为变幅杆的小端端面直径,为变幅杆的空心直径,振动频率为,纵波波速为。指数型空心变幅杆可以类比成实心指数型变幅杆,所以空心指数型变幅杆的面积函数为:

(1)

式(1)中和为蜿蜒指数,且

(2)

式(2)中N为面积系数,l为谐振长度,且

(3)

空心指数型变幅杆的直径函数为:

(4)

在已知时,联立公式(2)至公式(4)即可求出,进而求出蜿蜒指数;

步骤二、将步骤一中求得的、N代入位移节点公式(5)中可求出位移节点:

(5)

步骤三、将步骤一中求得的N代入放大系数公式(6)中可求出计算放大系数为:

(6)

步骤四、设为应变极大点,根据步骤一求得的蜿蜒指数和,按公式(7)可得到形状因数为:

(7)

步骤五、运用模拟软件依据步骤一至步骤一四中给定的数据和计算的结果进行数值模拟,对空心超声变幅杆的设计进行优化。

附图说明

图1是一种空心指数型变幅杆的设计的示意图;

图2是空心直径为20mm的指数型变幅杆模拟结果图中的总位移云图;

图3是空心直径为20mm的指数型变幅杆模拟结果图中的位移矢量云图;

图4是实心指数型变幅杆模拟结果图中的总位移云图;

图5是实心指数型变幅杆模拟结果图中的位移矢量云图。

实施例:

下面结合实施例对具体实施方式做进一步的说明,参见附图1,给定=88mm,=20mm,=20kHz,材料选择45号钢,则= mm/s,取一个波长,即=260mm,公式(2)至公式(4),求得=22mm,=159.4mm,N=9.03,=0.0174,进而求得=0.0138。

将求得的、N代入位移节点公式(5)中,求得位移节点=48.4mm。

将求得的N代入放大系数公式(6)中,求得计算放大系数=9.03。

根据求得的和,按公式(7)可求得形状因数=1.423。

用模拟软件依据上述给定的数据和求得的结果进行数值模拟,模拟结果见附图2和附图3,从附图2中可看到空心指数型变幅杆的模拟放大系数为4.5,从附图3中可看到空心指数型变幅杆的波的轴向性较好。

对照例:

为了与实心指数型变幅杆的模拟放大倍数作比较,选取同样材质的45号钢,实心指数型变幅杆的设计尺寸均与实施例的设计尺寸相同,但变幅杆为实心结构,按照具体实施方式的步骤一至步骤五进行,所得模拟结果见附图4和附图5,从附图4中可看到实心指数型变幅杆的模拟放大系数为1.8,实施例与对照例的对比结果下表所示:

从表中可以看出,空心指数型变幅杆的模拟放大系数为实心指数型变幅杆的模拟放大系数的2.5倍,远优于实心指数型变幅杆。此外,对比附图3和附图5可看出空心指数型变幅杆的波的轴向性比实心指数型变幅杆的波的轴向性好很多。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号