首页> 中国专利> 2,2’‑(1,2‑苯基)双(1H‑咪唑‑4,5‑二羧酸)、合成方法及其应用

2,2’‑(1,2‑苯基)双(1H‑咪唑‑4,5‑二羧酸)、合成方法及其应用

摘要

本发明公开了2,2’‑(1,2‑苯基)双(1H‑咪唑‑4,5‑二羧酸)、合成方法及其应用。所述的2,2’‑(1,2‑苯基)双(1H‑咪唑‑4,5‑二羧酸)采用2步法合成,第一步,以邻苯二胺和邻苯二甲酸为原料,在磷酸作用下,通过缩合加成反应生成中间产物1,2‑双(2‑苯并咪唑基)苯;第二步,在浓硫酸存在下,缓慢加入H

著录项

  • 公开/公告号CN106518774A

    专利类型发明专利

  • 公开/公告日2017-03-22

    原文格式PDF

  • 申请/专利权人 河南中医药大学;

    申请/专利号CN201610967918.2

  • 申请日2016-11-05

  • 分类号C07D233/90;C09K11/06;G01N21/64;C07F3/08;A61K31/555;A61P35/00;

  • 代理机构郑州天阳专利事务所(普通合伙);

  • 代理人林新园

  • 地址 450008 河南省郑州市金水区金水路1号

  • 入库时间 2023-06-19 01:48:18

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-09-14

    授权

    授权

  • 2017-04-19

    实质审查的生效 IPC(主分类):C07D233/90 申请日:20161105

    实质审查的生效

  • 2017-03-22

    公开

    公开

说明书

技术领域

本发明涉及一种具有金属离子传感性能的化合物,特别涉及2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)及其合成方法和应用。

背景技术

咪唑羧酸及其衍生物是一类重要的杂环化合物,在高性能复合材料、电子化学品、金属防腐蚀、感光材料等诸多领域显示出独特的性能,具有广泛的应用;苯并咪唑羧酸衍生物具有刚性平面和π电子共轭体系,易于产生荧光,在荧光传感器方面有潜在的应用价值。咪唑羧酸还具有显著的生物活性,是一类重要的医药中间体。例如,用于生产抗癌、抗真菌、调节血糖和治疗生理紊乱的药物,还可用于模拟天然超氧化物歧化酶(SOD)的活性部位、研究酶的生物活性。近几年来,咪唑羧酸及其衍生物作为配体应用于放射性药物及抗炎药物的研究异常活跃。因而有关咪唑羧酸及其衍生物的合成及对其母体进行修饰的研究具有重要的意义和应用价值。目前对2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)(H6Phbidc)的合成及性能研究尚未见报道。

发明内容

为了解决上述问题,本发明的目的是提供2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)、合成方法及其应用,所述的2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)对金属离子具有良好的传感性能。

为了实现上述目的,本发明所采用的技术方案是:

2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸),其化学结构式为:

对所述的2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)使用核磁共振波谱仪测试,得到2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的1H>1H>

对所述的2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)使用元素分析仪测试,得到2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的C、H、N含量(%);C、H、N的测定值(%)分别为:C 49.56、H 2.71、N 14.62。

一种2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的合成方法,包括以下步骤:

(1)将邻苯二胺和邻苯二甲酸混合,再加入85%磷酸,间歇式升温至180-185℃,搅拌回流6-6.5h,冷却至室温,然后倒入冰水中,室温放置6h,抽滤,得到蓝绿色固体;用甲醇和二甲基甲酰胺的混合液对蓝绿色固体进行重结晶,得到白色针状晶体,过滤,洗涤,真空干燥,得到1,2-双(2-苯并咪唑基)苯;

(2)将1,2-双(2-苯并咪唑基)苯和浓硫酸混合,升温至110℃,再加入30%H2O2,反应4h,冷却至室温,然后倒入冰水中,室温静置过夜,抽滤,得到浅黄色固体,即为2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)。

所述的邻苯二胺和邻苯二甲酸的物质的量比为2.0-2.2:1。

所述的85%磷酸用量为每1mol邻苯二甲酸加入2000ml 85%磷酸。

所述的甲醇和二甲基甲酰胺的混合液的体积比为1:1.5。

所述的间歇式升温为:由室温升温至140℃,每升温10℃,保温5min;140℃升温至180-185℃,每升温5℃,保温5min。

步骤(1)中冰水的用量为每1mol邻苯二甲酸用8000ml冰水;步骤(2)中冰水的用量为每2g 1,2-双(2-苯并咪唑基)苯用70ml冰水。

所述的浓硫酸的用量为每2g 1,2-双(2-苯并咪唑基)苯加入15ml浓硫酸;所述的30%H2O2的用量为每2g>2O2

一种2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)在金属离子传感方面的应用。

本发明2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的合成方法如下:

本发明的有益效果:

1、本发明是采用2步法合成,第一步,以邻苯二胺和邻苯二甲酸为原料,在磷酸作用下,通过缩合加成反应生成中间产物1,2-双(2-苯并咪唑基)苯;第二步,在浓硫酸存在下,缓慢加入H2O2氧化开环,制得2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)。

2、本发明2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)含有多个羧基和氮原子,具有较强的配位能力,其分子内的苯并咪唑基具有刚性平面,能增加配合物的稳定性。

3、本发明的2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸),对金属离子具有良好的传感性能。荧光光谱法实验证明,Zn2+、Cd2+、Co2+、Fe3+、Ni2+、Cu2+和Ag+对2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的荧光均有淬灭作用,且Zn2+和Cd2+的加入不仅能淬灭2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的荧光,而且引起了发射峰的蓝移,说明2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)对Zn2+和Cd2+离子选择性较好,能够双重检测Zn2+和Cd2+

4、本发明的2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)在溶液中具有较强的荧光发射,可以作为离子传感器检测溶液中的金属离子以及通过生物影像技术检测细胞中的金属离子,有望开发离子检测试剂盒;其分子内的咪唑基和羧基对溶液的酸碱性较敏感,可用于检测溶液及体内氢离子的浓度变化,预测机体中与酸碱性相关疾病的发生、发展;基于苯并咪唑衍生物具有较高的生物活性,该化合物在医药领域具有广阔的应用前景。

5、本发明的原料来源广泛、合成方法简单、操作方便,反应条件易控,产率高且易于纯化,便于工业化的推广,具有良好的社会和经济效益。

附图说明

图1为DMSO溶液中化合物H6Phbidc(50μmol/l)的荧光光谱随着金属离子浓度的变化图(λex=286nm)。其中,a为Zn2+,b为Cd2+,c为Co2+,d为Ag+,e为Cu2+,f为Ni2+,g为Fe3+;图中箭头所指方向为金属离子浓度增加的方向。

图2为咪唑羧酸类配合物的配位环境图。

图3为咪唑羧酸类配合物的一维链状结构图。

图4为咪唑羧酸类配合物的三维结构图。

图5为咪唑羧酸类配合物的模拟与实测的PXRD图谱对比图。

图6为咪唑羧酸类配合物的热分析曲线图。

具体实施方式

以下结合实施例对本发明的具体实施方式作进一步详细说明。

实施例1 2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的合成

1、1,2-双(2-苯并咪唑基)苯的合成

将4.758g(0.044mol)邻苯二胺和3.3226g(0.02mol)邻苯二甲酸混合,再加入40ml 85%磷酸(质量分数),间歇式升温至180℃,搅拌回流6h,冷却至室温,然后倒入160ml冰水中,室温放置6h,抽滤,得到蓝绿色固体。用甲醇和二甲基甲酰胺(DMF)(体积比为1:1.5)的混合液对蓝绿色固体进行重结晶,得到白色针状晶体,过滤,洗涤,真空干燥,得到2.16g 1,2-双(2-苯并咪唑基)苯(OBMB),产率:76.59%。

所述的间歇式升温为:由室温升温至140℃,每升温10℃,保温5min(最后一次升温至140℃时,如果升温不足10℃,按10℃算);140℃升温至180℃,每升温5℃,保温5min。

2、2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的合成

将2.0g 1,2-双(2-苯并咪唑基)苯和15ml浓硫酸混合,缓慢升温至110℃,再缓慢加入15ml 30%H2O2(质量分数),反应4h,冷却至室温,然后倒入70ml冰水中,室温静置过夜,抽滤,得到1.58g浅黄色固体,即为2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸),产率:40.93%。

实施例2 2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的结构表征

1、氢核磁共振

采用核磁共振波谱仪Avance III(500MHz),TMS为内标,测定实施例1得到的2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的氢谱。1H>

2、元素分析

采用美国Thermo FLASH EA 1112元素分析仪对实施例1中得到的2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)进行元素分析。C、H、N的测定值(%)分别为:C 49.65、H 2.71、N 14.62;按分子式C16H10O8N4(Mr=386.27)计算,C、H、N的理论值(%)分别为:C>

实施例3 2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的传感性能检测

实验仪器:荧光分光光度计,型号为F7000,日本日立公司生产。

试剂的配制:

1、样品液

2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)溶液:称取0.0386g 2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)于烧杯中,加入20ml二甲基亚砜(DMSO),搅拌溶解后转移至100ml容量瓶中,用DMSO定容,配制成浓度为1×10-3mol/l的2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)溶液。

2、金属离子储备液

Zn2+储备液的配制方法:称取Zn(NO3)2·6H2O>2+浓度为5×10-2mol/l的溶液。

Cd2+储备液的配制方法:称取Cd(NO3)2·4H2O>2+浓度为5×10-2mol/l的溶液。

Co2+储备液的配制方法:称取Co(NO3)2·6H2O>2+浓度为5×10-2mol/l的溶液。

Ag+储备液的配制方法:称取AgNO3>+浓度为5×10-2mol/l的溶液。

Cu2+储备液的配制方法:称取Cu(NO3)2·3H2O>2+浓度为5×10-2mol/l的溶液。

Ni2+储备液的配制方法:称取Ni(NO3)2·6H2O>2+浓度为5×10-2mol/l的溶液。

Fe3+储备液的配制方法:称取Fe(NO3)3·9H2O>3+浓度为5×10-2mol/l的溶液。

3、荧光光谱法对金属离子的传感性能检测

3.1、荧光光谱测试液的配制

用移液管移取5.00ml 1×10-3mol/l的2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)溶液至100ml容量瓶中,用DMSO定容,配制成浓度为5×10-5mol/l的2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)溶液。用移液管分别移取1.00ml不同的金属离子储备液至10ml容量瓶中,用DMSO定容,配制成浓度为5×10-3mol/l的不同金属离子溶液。

3.2、对金属离子传感性能检测

以对Zn2+的检测为例:

取上述5×10-5mol/l的2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)溶液10ml于50ml干净烧杯中,测其荧光光谱。然后向烧杯中加入10μl>-3mol/l的Zn2+溶液,充分搅拌10min,测试体系的荧光光谱;然后再加入10μl>-3mol/l的Zn2+溶液,充分搅拌10min,测试体系的荧光光谱,重复此步骤至体系最大发射峰的强度基本不变为止。

Cd2+、Co2+、Fe3+、Ni2+、Cu2+和Ag+的检测也参照Zn2+,得到的荧光光谱如图1所示。

由图1可知,加入不同金属离子后,荧光强度均有不同程度的变化,具体为:

随着Zn2+的加入,443nm处荧光强度逐渐减弱,发射峰从443nm蓝移到395nm,当加入Zn2+的物质的量与2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的物质的量比为1:1时,荧光光谱强度基本不变,此时,2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)与Zn2+的作用达到了平衡。

随着Cd2+的加入,443nm处荧光强度逐渐减弱,发射峰从443nm蓝移到389nm,当加入Cd2+的物质的量与2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的物质的量比为2:1时,荧光光谱强度基本不变,此时,2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)与Cd2+的作用达到了平衡,表明Cd2+与2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)是按照物质的量比2:1进行键合。

随着Co2+、Ag+、Cu2+、Ni2+和Fe3+的加入,443nm处荧光强度逐渐减弱,发射峰位置基本不变。

当加入Co2+的物质的量与2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的物质的量比为1:2时,反应基本达到平衡,此时I0/I=25。

当加入Ag+的物质的量与2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的物质的量比为7:1时,反应基本达到平衡,此时I0/I=20。

当加入Cu2+的物质的量与2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的物质的量比为0.3:1时,反应基本达到平衡,此时I0/I=50。

当加入Ni2+的物质的量与2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的物质的量比为1.5:1时,反应基本达到平衡,此时I0/I=100。

当加入Fe3+的物质的量与2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的物质的量比为4:1时,反应基本达到平衡,此时I0/I=100。

综上所述,Zn2+、Cd2+、Co2+、Ag+、Cu2+、Ni2+和Fe3+对2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的荧光均有淬灭作用,说明2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)对Zn2+、Cd2+、Co2+、Ag+、Cu2+、Ni2+和Fe3+具有一定的检测性能,而Zn2+和Cd2+的加入不仅能淬灭2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)的荧光,而且引起了发射峰的蓝移,说明2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)对Zn2+和Cd2+有较好的选择性,能够双重检测Zn2+和Cd2+离子,进一步研究发现H6Phbidc对Cd2+的检测是因为Cd2+与H6Phbidc之间形成了配合物。

实施例4咪唑羧酸类配合物[Cd(L)1/2·2H2O]n的合成

咪唑羧酸类配合物[Cd(L)1/2·2H2O]n(其中,L为2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸))的合成,包括以下步骤:

(1)将2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)分散于去离子水中,配制成浓度为0.025mol/l的2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)溶液;

将Cd(Ac)2·2H2O溶于去离子水中,配制成浓度为0.025mol/l的Cd(Ac)2·2H2O溶液;

(2)将2ml Cd(Ac)2·2H2O溶液加入至2ml>

(3)在咪唑羧酸类配合物的混合溶液中加入两滴二甲基甲酰胺,混合均匀,装入聚四氟乙烯内衬不锈钢反应釜中,在120℃条件下加热72h,然后以5℃/h的速率降温至室温,过滤,用蒸馏水冲洗,自然干燥,得到块状黄色透明晶体,即为[Cd(L)1/2·2H2O]n,产率:51%。

实施例5咪唑羧酸类配合物[Cd(L)1/2·2H2O]n的结构表征

1、元素分析

采用美国Thermo FLASH EA 1112元素分析仪对实施例4中得到的咪唑羧酸类配合物进行元素分析。C、H、N的测定值(%)分别为:C 28.23、H 1.45、N 8.12,按C8H6CdN2O6(Mr=338.55)计算,得到C、H、N的理论值(%)分别为:C>

2、单晶结构解析

采用Bruker D8VENTURE PHOTON型单晶衍射仪对实施例4得到的咪唑羧酸类配合物进行晶体结构测试,测试结果为:

所述咪唑羧酸配合物为单斜晶系,P21/m点群。晶胞参数a=6.9340(9)b=15.213(2)c=9.6882(13)α=90°,β=105.496(5)°,γ=90°;V=984.8(2)A3;Z=4;Dc=2.283Mg/m3;R1=0.0272,wR2=0.0766。

使用Crystalclear程序还原数据,用Lp因子和半吸收经验校正数据。采用SHELXS-97程序解析晶体结构,用全矩阵的最小二乘法对结构进行精修,无序原子和氢原子使用各向同性热参数法,其他原子使用各向异性热参数法。非氢原子的坐标是通过直接解析得到,配体上的氢原子是通过几何法确定其位置,再用骑式模型进行修正得到,水分子中的氢原子通过对傅里叶图谱的分析得到,最终的晶体数据中包括所有氢原子。得到如图2所示的咪唑羧酸类配合物的配位环境图,如图3所示的咪唑羧酸类配合物的一维链状结构图,如图4所示的咪唑羧酸类配合物的三维结构图。

从图2可知,所述咪唑羧酸类配合物的组成为[Cd(L)1/2·2H2O]n,分子式为C8H6CdN2O6。配合物的不对称单元包含两个晶体学独立且占有率各为二分之一的Cd(II)离子、半个完全脱质子的H2Phbidc4-阴离子和两个配位水分子。在配合物中Cd1为六配位,与四个氧原子(O2、O2#1、O5、O6)和两个氮原子(N1、N1#1)配位。其中两个氧原子和两个氮原子(O2、O2#1、N1、N1#1)来自配体H2Phbidc4-阴离子,另外两个氧原子(O5、O6)来自两个配位水分子。Cd1处于高度扭曲的八面体CdN2O4配位构型中,配位键角大都偏离180°和90°,且最大配位角N1-Cd1-O6为140.76(7)°,因此无法归属其确切的赤道与轴向位置。Cd2也是六配位,与四个氧原子(O3、O3#2、O7、O7#2)和两个氮原子(N2、N2#2)相连,呈现八面体CdN2O4构型。其中两个氧原子(O3、O3#2)和两个氮原子(N2、N2#2)来自两个对称性相关的配体H2Phbidc4-阴离子,另外两个氧原子(O7、O7#2)来自两个对称性相关的配位水分子。八面体的赤道面由O7、O7#2、N2、N2#2、Cd2组成,平面偏差为O3、O3#2占据八面体的顶点位置,键角O3#2-Cd2-O3为180.000(1)°。Cd1周围的Cd-O配位键长为Cd1-O6:Cd1-O5:Cd1-O2#1:Cd1-O2:Cd-N配位键长为Cd1-N1#1:Cd1-N1:Cd2周围的Cd-O配位键长为Cd2-O3#2:Cd2-O3:Cd2-O7:Cd2-O7#2:Cd-N配位键长为Cd2-N2#2:Cd2-N2:

在配合物中,配体H6Phbidc完全脱去质子形成H2Phbidc4-阴离子,每个H2Phbidc4-阴离子与三个Cd(II)配位(一个Cd1和两个Cd2)。如图3所示,在b方向上,H2Phbidc4-阴离子将相邻的Cd(II)连接成一维之字链状结构,Cd1和Cd2交替出现又分别处于三条平行线上。在链上,Cd1…Cd2的最小距离为Cd1…Cd1的最小距离为Cd2…Cd2的最小距离为相邻链的配位水和羧基之间存在四种氢键,分别是O5-H5A…O2#3:128.0°;O6-H6A…O3#4:170.6°;O7-H7B…O4#5:124.8°;O7-H7C…O2#4:153.0°。

如图4所示,一维链通过氢键和分子间作用力堆积形成三维结构。

3、红外光谱

采用美国赛默飞公司(Thermo SCIENTIFIC)公司生产的NICOLET iS50傅里叶变换红外光谱仪对实施例4得到的咪唑羧酸类配合物进行红外光谱测试(采用KBr压片法,室温下扫描,测试范围为4000-4000cm-1)。红外光谱中的特征吸收峰(cm-1):3388,1654,1540,1481,1284,1120,1003,771,735。

4、X射线粉末衍射

采用PANalytical公司生产的X’Pert PRO型粉末衍射仪,通过使用Cu-Kα1射线采集实施例4得到的咪唑羧酸类配合物的衍射数据(见图5)。

从图5分析可知,测得的咪唑羧酸类配合物的PXRD的图谱与模拟图谱基本吻合,这说明所述咪唑羧酸类配合物的纯度很高,可用于性能研究。

5、热分析

采用Netzsch公司生产的STA 449C型的TG-DSC联用热分析仪,从室温开始,以10℃/min的速度升温,得到咪唑羧酸类配合物的热分析数据。

如图6可知,如上所述咪唑羧酸类配合物的第一步失重发生在105-238℃,失重10.57%,对应于晶体水分子的失去(理论值10.63%)。第二步失重发生在238-637℃,对应于H2Phbidc4-阴离子的分解,最后剩余35.92%的黑色残渣为CdO(理论值37.92%)。与失重过程相对应的DSC曲线在539℃处出现最大放热峰,在228℃处出现一个较弱的吸热峰。

实施例6咪唑羧酸类配合物[Cd(L)1/2·2H2O]n的对肿瘤细胞增殖的影响

采用MTT法检测本发明咪唑羧酸类配合物对肿瘤细胞增殖的影响:

将对数生长期的肿瘤细胞株悬液(食管癌细胞Ec9706)种植于96孔培养板中,每孔加入200μl,每孔细胞密度为8000个,置于37℃、5%CO2培养箱中培养,24h之后向其中加入配合物溶液,配合物的浓度分别为:200μg/ml、100μg/ml、50μg/ml、25μg/ml、12.5μg/ml、6.25μg/ml、3.125μg/ml、1.5625μg/ml,以等体积不含配合物的培养液作为空白对照组,同时做三块板,继续分别孵育48h后,弃去上清液,每孔分别加入100μl>

本发明通过将2,2’-(1,2-苯基)双(1H-咪唑-4,5-二羧酸)与Cd(Ac)2·2H2O结合,利用其特殊的配位特点合成一种新型的咪唑羧酸类配合物,获得了该配合物的单晶结构。该配合物有望应用于发光材料、离子探针、抗肿瘤药物等领域。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号