首页> 中国专利> 从时间分布式引爆气枪阵列数据重建脉冲震源地震数据

从时间分布式引爆气枪阵列数据重建脉冲震源地震数据

摘要

使用时间分布式震源来采集地震数据并且使用多频方法来将所述采集的数据转换成脉冲数据。所述方法在频率‑震源位置域、频率‑波数域或频率‑慢度域中执行。所述方法可适用于单个震源采集或同时震源采集。

著录项

  • 公开/公告号CN106461803A

    专利类型发明专利

  • 公开/公告日2017-02-22

    原文格式PDF

  • 申请/专利权人 施蓝姆伯格技术公司;

    申请/专利号CN201580023848.9

  • 发明设计人 D.F.哈利迪;

    申请日2015-03-19

  • 分类号G01V1/28;G01V1/30;G01V1/38;G01V1/08;G01V1/09;G01V1/137;

  • 代理机构北京市柳沈律师事务所;

  • 代理人孙治国

  • 地址 荷兰海牙

  • 入库时间 2023-06-19 01:42:42

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-03-11

    未缴年费专利权终止 IPC(主分类):G01V 1/28 专利号:ZL2015800238489 申请日:20150319 授权公告日:20190118

    专利权的终止

  • 2019-01-18

    授权

    授权

  • 2017-04-12

    实质审查的生效 IPC(主分类):G01V1/28 申请日:20150319

    实质审查的生效

  • 2017-02-22

    公开

    公开

说明书

相关申请的交叉引用

本申请要求2014年3月20日提交的美国临时专利申请序列号61/968,167的权益,所述专利以引用的方式整体并入本文。

发明背景

本公开涉及对石油和天然气的地震勘测,并且具体地但非限制地涉及利用时间分布式震源进行的地震数据采集和对所采集数据的处理。

地震勘测涉及在地下地质层中勘探烃矿藏。勘探可涉及将地震源和地震传感器部署在预定位置上。震源产生震波,所述震波传播到地质层中,沿路产生压力变化和振动。地质层的弹性特性的变化使震波分散开来,从而改变它们的传播方向和其他特性。由震源发射的能量的一部分到达地震传感器。一些地震传感器对压力变化敏感(水下听音器);其他地震传感器对粒子运动敏感(例如,地下听音器)。工业勘探可部署一种类型的传感器或这两种类型的传感器。响应于检测到的地震事件,传感器产生电信号以产生地震数据。对地震数据的分析随后可指示存在或不存在烃矿藏的可能位置。

一些勘探称为“海洋”勘探,因为它们在海洋环境中进行。然而,“海洋”勘探不仅可在海水环境中进行,而且也可在淡水和半咸水中进行。在一种类型的海洋勘探(称为“拖曳阵列”勘探)中,含地震传感器的拖缆和震源的阵列被拖曳到勘探船后面。地震勘探可在陆地与大海之间的区域(其被称为“过渡区”)中进行。结合有水下听音器和地下听音器两者的其他勘探可在海床上进行。

在海洋勘探中,气枪或气枪阵列是流行的地震源。为了产生脉冲远场子波(与由炸药所产生的子波类似),将气枪阵列中具有不同尺寸或特征的气枪按某些几何排列布置并且根据某个时间序列激活,以使得所产生的波场相长或相消地重叠,以在远场形成脉冲震源子波。波的能量在波传播到大地中的过程中可在时间和空间上聚集。这可能会对勘探区域中的海洋生物和其他敏感海洋结构造成环境损害。所期望的是降低峰值能量以降低地震勘探期间的环境影响。

代替优化气枪阵列中的气枪以形成脉冲震源子波(即,调谐气枪阵列),存在一种称为“爆米花”或“机关枪”引爆的方法。在这种方法中,在随机(或伪随机)时间引爆气枪阵列中的单独气枪。因此,来自气枪阵列的能量分布在预限定的时间间隔上。来自气枪阵列的峰值能量被大大地减少。

这种类型的采集存在许多好处,包括减少气枪阵列的峰值输出并且减少同时地震源之间的串扰。然而,虽然调谐过的气枪阵列被设计成具有所需的宽带频谱输出,但阵列的时间分布是一项重要的去调谐操作。所得输出可为宽带,在这种意义上,所述宽带跨越相同的频率范围,但通过在整个时间上扩展单独气枪子波,多个陷波会被引入震源频谱中。这些陷波是不期望的,因为它们会在处理数据时(例如,在使数据与震源子波相关时或在地震迁移期间)引入旁瓣。存在多个解决方案来去除这些旁瓣。在信号噪声水平良好的情况下,可尝试对分布序列去卷积,以使得陷波中的信号能够被恢复。在另一方法中,在气枪阵列的时间分布随位置变化而变化的情况下,可尝试空间重建,其中来自相邻震源的信息用于重建在频谱陷波中丢失的信息。这些方法会对分布式气枪的使用强加多个限制。

例如,信号噪声水平不太可能会高到足以对分布子波进行令人满意的去卷积。在这种情况下,误差会被引入到去卷积结果中(噪声会被放大),或如果适当地使去卷积稳定,那么这会引入旁瓣(应当指出的是,使去卷积稳定的极端情况仅仅是使数据互相关)。

空间重建会变得困难,其中震源采样间隔导致产生空间假频数据。通常,气枪震源是每25m引爆,从而允许在震源侧上根据仅30Hz的频率(假设水速为1500m/s)很好地对地震波场采样(在空间上非假频);因此,在超过这个频率时,陷波频率的空间重建会变得困难。这对于给定震源位置上的丢失频率的重建来说尤其如此,因为两个震源任一侧之间的间隙都是较短间隔的两倍。为使气枪阵列在不同的位置上具有不同的时间分布,需要根据从一个炮到一个炮的不同顺序来激活气枪。

发明内容

提供本发明内容是为了介绍将在以下具体实施方式中进一步描述的概念选择。本发明内容既不意在识别所要求保护主题的关键或必要特征,也不意在用来帮助限制所要求保护主题的范围。在一些实施方案中,可在尤其没有上述限制和/或对现有采集硬件的修改的情况下使用时间分布式气枪阵列。

本公开涉及用于使用时间分布式引爆震源并将所采集的数据转换成脉冲震源数据的方法和设备。

在一个实施方案中,所述方法包括以下步骤:获得时间分布式数据和震源子波;选择频率范围;利用频率范围内的多个频率来建立基函数;使所述时间分布式震源子波与所述基函数进行卷积以形成关于所采集的时间分布式数据的基函数;对所采集的时间分布式数据和关于所采集的时间分布式数据的基函数进行反演求出加权因子;选择脉冲震源子波;使所述脉冲子波与所述基函数进行卷积;以及应用所述加权因子来形成脉冲数据。

所述频率范围(频率窗口)可覆盖可能已识别或未识别的一个或多个陷波频率。可使用多个频率范围并且它们中的一些可能重叠。

所述方法可与其中两个震源为时间分布式引爆震源的同时震源一起使用。所述两个时间分布式引爆震源可具有相同的或不同的引爆序列。震源分离和脉冲数据重建可在同一个过程内同时进行。

所述方法可在包括至少频率的任何域中执行,所述域例如为频率域、频率-震源空间域、频率-波数域或频率-慢度域。

附图简述

参照附图描述了本公开的实施方案。在全部附图中使用相同的标号来指代相同的特征结构和组件。当结合附图考虑以下对若干实施方案的详细说明时,可更好地理解方法或设备,在附图中:

图1图示了海洋环境中的地震采集系统。

图2图示了六枪阵列的略图。

图3a-3b图示了在调谐枪时分别处在时域和频域中的阵列的震源子波。

图4a-4b图示了当枪如同在时间分布式气枪阵列中一样引爆时分别处在时域和频域中的阵列的震源子波。

图5图示了如图4b所示的震源子波的频谱,其中频谱陷波使用陷波周围的多个频率来修复。

图6图示了使用多频处理的方法的流程图。

图7图示了连同同时震源一起使用多频处理的方法的流程图。

图8a-8e图示了方法的一些额外变化。

图9图示了实现所公开的一些方法可利用的计算机系统的示意图。

具体实施方式

现在详细参考多个实施方案,其实例在附图中图示。在以下具体实施方式中,阐述许多具体细节以便于提供本文主题的全面理解。然而,对于本领域普通技术人员显而易见的是,不需要这些具体细节就可以实践所述主题。在其他情况下,并未详细描述众多周知的方法、程序、组件和系统,以免不必要地混淆实施方案的各个方面。

还应当理解,虽然本文可以使用术语第一、第二等来描述各个元件,但这些元件不应被这些术语限制。这些术语仅用于将这些元件彼此区分。例如,可将第一对象或步骤称为第二对象或步骤,并且类似地,可将第二对象或步骤称为第一对象或步骤。第一对象或步骤和第二对象或步骤分别都是对象或步骤,但它们不应被视为同一对象或步骤。

本文中用于描述本公开的术语是为了仅描述具体实施方案的目的并且并不意在限制主题。如本说明书和随附权利要求中所使用的,除非上下文另外清楚指明,否则单数形式“一/一个(a/an)”和“所述(the)”也意在包括复数形式。还应当理解的是,如本文所使用的术语“和/或”是指并且涵盖相关联的列出项目中的一个或多个的任意及所有可能的组合。应进一步理解的是,术语“包括(includes)”、“包括(including)”、“包含(comprises)”和/或“包含(comprising)”在本说明书中使用时表示陈述特征、整数、步骤、操作、元件和/或组件的存在,而不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或其组合。

如本文所使用,术语“如果”可根据上下文解释为意指“当…时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[陈述情况或事件]”可根据上下文解释为意指“一旦确定”或“响应于确定”或“一旦检测到[陈述情况或事件]”或“响应于检测到[陈述情况或事件]”。

另外,应当指出的是,可将所述实施方案描述为是以流程表、流程图、数据流程图、结构图或方框图的形式描画的过程。尽管流程表可将操作描述为顺序过程,但也可并行或同时执行所述操作中的许多操作。此外,还可以重新安排各操作的次序。当完成某个过程的操作时,所述过程会终止,但所述过程可以具有图中不包括的额外步骤。过程可对应于方法、函数、程序、子例程、子程序等。当过程对应于函数时,所述过程的终止对应于所述函数返回到调用函数或主函数。

此外,如本文所公开,术语“存储介质”可以表示一个或多个用于存储数据的装置,包括只读存储器(ROM)、随机存取存储器(RAM)、磁性RAM、核心存储器、磁盘存储介质、光存储介质、闪存装置和/或其他用于存储信息的机器可读介质。术语“计算机可读介质”包括但不限于便携式或固定存储装置、光学存储装置、无线信道及能够存储、包含或携带指令和/或数据的各种其他介质。

此外,各种实施方式可通过硬件、软件、固件、中间件、微代码、硬件描述语言和/或其任意组合来实现。当用软件、固件、中间件或微代码来实现时,用于执行必要任务的程序代码或代码段可以存储在机器可读介质诸如存储介质中。处理器可以执行必要的任务。代码段可表示程序(procedure)、函数、子程序、程序、例程、子例程、模块、软件包、类或者指令、数据结构或程序语句的任意组合。可通过传送和/或接收信息、数据、自变量、参数和/或存储内容将代码段耦合到另一个代码段或硬件电路。可经由包括存储器共享、消息传送、令牌传送、网络传输等任何合适的手段来传送、转发或传输信息、自变量、参数、数据等。

图1描画了基于海洋的地震数据采集系统的实施方案10。在系统10中,勘探船20将一根或多根地震拖缆30(在图1中描画为一根拖缆30)拖到船20后面。应当指出的是,拖缆30可以扩展形式布置,其中多根拖缆30拖曳在同一深度上几乎相同的平面上。作为另一个非限制性实例,拖缆可拖曳在多个深度上,诸如扩展状态上方/下方。

地震拖缆30可以是几千米长并且可包含各种支撑电缆(未示出)以及可用于支持沿着拖缆30的通信的配线和/或电路(未示出)。一般来说,每根拖缆30包括其中安装有记录地震信号的地震传感器的主要电缆。拖缆30包含地震传感器58,所述地震传感器58可为水下听音器(用于采集压力数据)或多分量传感器。例如,传感器58可为多分量传感器;每个传感器可能能够检测压力波场和与接近传感器的声信号相关联的粒子运动的至少一个分量。粒子运动的实例包括粒子位移的一个或多个分量、粒子速度的一个或多个分量(纵测线(x)、横测线(y)和垂直(z)分量(例如,参看坐标轴59))和粒子加速度的一个或多个分量。

多分量地震传感器可包括一个或多个水下听音器、地下听音器、粒子位移传感器、粒子速度传感器、加速度计、压力梯度传感器或其组合。

海洋地震数据采集系统10包括一个或多个地震源40(在图1中描画了两个地震源40),诸如气枪等。地震源40可联接到勘探船20或由勘探船20拖曳。地震源40可独立于勘探船20操作,因为震源40可联接到其他船或浮标,仅列举一些例子。

由于地震拖缆30被拖曳到勘测船20后面,常被称为“炮”的声信号42(在图1中描画为声信号42)由地震源40产生并且穿过水柱44被向下引导到水底表面24下面的地层62和68中。声信号42从各种地下地质层诸如图1所描画的地层65反射出来。

由震源40产生的入射声信号42产生对应的反射声信号,或压力波60,它们由地震传感器58感测。应当指出的是,由地震传感器58接收和感测的压力波包括:“上行”压力波,其不经过空气-水界面31的反射就传播到传感器58;以及“下行”压力波,其通过压力波60从空气-水界面31反射而产生。

地震传感器58产生称为“迹线”的信号(例如,数字信号),所述信号指示压力波场和粒子运动的采集测量值。应当指出的是,虽然物理波场在空间和时间上是连续的,但记录了空间中离散点处可能导致空间假频的迹线。根据一些实施方案,所述迹线被记录并且可至少部分由部署在勘测船20上的信号处理单元23来处理。例如,特定地震传感器58可通过其水下听音器提供对应于压力波场的测量的迹线;并且传感器58可(根据传感器配置)提供对应于粒子运动的一个或多个分量的一个或多个迹线。

地震采集的目标是出于识别地下地质层,诸如地质层65的目的而建立勘探区域的图像。随后的图示分析可揭示地下地质层中烃矿藏的可能位置。取决于特定勘探设计,图示分析的多个部分可在地震勘探船20上,诸如由信号处理单元23执行。在其他勘探中,所述图示可由地震数据处理系统(诸如图6中所示并在下文进一步描述的地震数据处理系统600)处理,所述地震数据处理系统可例如位于陆地或船20上。

特定地震源40可由地震源元件(例如像,气枪)阵列形成,所述地震源元件可以串式(例如,枪串)阵列布置。特定地震源40还可由含一个气枪或预定数量气枪的阵列形成;所述特定地震源也可由多个阵列等形成。不管地震源的具体组成如何,所述震源都可在勘探期间以特定时间序列引爆。

地震源40可以一定序列引爆,以使得多个地震源40可在短时间间隔内同时或接近同时引爆,从而使得由地震传感器58感测到的复合能量信号包含大量来自超过一个地震源40的能量。换言之,地震源相互干扰,以使得复合能量信号不会轻易分成可归于特定震源的信号。这种类型的地震勘探称为同时震源勘探。由地震传感器58采集的复合数据可如下所述分成分别与地震源40之一相关联的数据集,以使得每个数据集都指示可归于相关联的地震源40的复合地震能量信号的分量。

在非同时震源勘探中,在一个地震源的引爆与下一个地震源的引爆之间引入延迟。所述延迟足以允许通过一个地震源的引爆产生的能量在与下一个地震源引爆相关联的能量到达之前衰减到可接受的水平。然而,这类延迟的使用对可采集地震数据的速率强加了限制。对于拖曳式海洋勘探来说,这些延迟还意味着最小纵向炮间距,因为勘探船的最小速度是一种约束。

因此,同时引爆或接近同时引爆的地震源(其中在每个记录的至少一部分中,存在来自震源的信号的干扰)的使用在采集效率和纵向震源采样方面具有益处。然而,为了让这种技术变得有用,所采集的地震数据必须分成分别与地震源之一唯一地相关联的数据集。

存在各种方式来将所采集的复合数据分成与地震源之一唯一地相关联的多个数据集,例如,如以下各项所公开:由Ian Moore等人提交于2007年12月26日,标题为“Separating seismic signals produced by interfering seismic sources”的待决的美国专利申请序列号11/964,402,(‘402申请)(代理人案号57.0820);由Ian Moore提交于2008年10月22日,标题为“Removing seismic interference using simultaneous or near simultaneous source separation”的美国专利申请序列号12/256,135,(代理人案号53.0100);由Ian Moore等人提交于2009年4月24日,标题为“Separating seismic signals producedby interfering seismic sources”的美国专利申请序列号12/429,328,(代理人案号53.0112);由Ying Ji等人提交于2011年11月28日,标题为“Separation ofsimultaneous source data”的美国专利申请序列号13/305,234,(代理人案号IS11.0742)。所有以上专利申请都被转让给本申请的同一受让人。所有以上专利申请以引用的方式并入本文。

不管震源是用于同时数据采集还是非同时采集,震源阵列中的震源元件(例如,气枪)可以调谐方式引爆以形成脉冲,或以时间分布方式引爆,其中震源能量在较大时间间隔内扩散。使用如图2所示的六枪阵列200的实例,当阵列以调谐方式引爆时,调谐的阵列子波可为如图3a所示的脉冲。脉冲300在短时间间隔内具有大峰301和小得多的旁瓣302。频域中的调谐的阵列频谱如图3b所示。频谱303以平滑轮廓覆盖广泛范围。

如果六枪阵列200以时间分布方式引爆,那么阵列子波400可变为如图4a所示的时间分布式阵列子波。不时引爆的六个枪(201、202、203、204、205和206)在间隔上扩展开来。总震源能量在这个较大时间间隔内扩展。阵列子波400具有六个小峰401-406。由于发生扩展,多个频率陷波411、413、415、417和419被引入震源频谱中,如图4b所示。在进一步处理数据以用于例如对地下结构成像时,这些陷波会引起问题。需要在进一步处理数据之前,消除这些陷波。

本申请公开了可使用多频方法消除频谱中的陷波的方法和系统。常规地震勘探是利用按一个炮到一个炮重复的震源来采集。时间分布式气枪阵列的一些现有实现方式要求单独气枪的时间分布随炮的变化而变化。多频方法的使用可消除随炮的变化而改变时间分布序列的需求。

如上所述的共同未决的申请(代理人案号IS11.0742)中首次提及了多频数据处理方法。使用每个陷波(或每个感兴趣的频率)周围的多个频率,因此称为“多频”。在以下描述中,首先论述了涉及将时间分布式数据转换成等效脉冲数据的方法。随后,可连同同时震源一起使用类似的方法。

分布式阵列在时间上扩展,并且由于地震源船的运动,来自一个分布式阵列的能量会在小范围位置内出现拖尾。为简单起见,在以下论述中忽略了这种效应,但应当理解的是,所述方法可扩展来包括每个单独气枪的精确位置,从而允许解决方案中涉及去拖尾操作。另外,为简单起见,使用标称炮位置(本文中称为震源位置)。由于我们忽略了拖尾效应,因此我们假设,所有能量都在这个标称位置上发出,并且重建脉冲数据将对应于这个位置上的脉冲震源。

使用时间分布式震源来采集数据

在地震勘探期间,在使用时间分布式震源时,震源中的每个震源元件在较小但大小可调整的时间间隔期间是激活的。使用如图2所示的实例,六枪阵列中的每个气枪在勘探期间在每个震源位置以一定顺序引爆,例如,在100ms的引爆序列期间,在30ms、40ms、60ms、70ms、90ms、100ms引爆。虽然这个实例是有规律的引爆序列,但也可使用更为随机的引爆时间序列。激活序列在所述间隔上扩展开来,以使得来自震源元件的能量在时间间隔上扩展开来。与现有技术的一些方法不同,引爆序列不需要随炮的变化、或随位置的变化而变化或随机化。所述序列在所有震源位置都可能是相同的。因此,气枪硬件可以更方便的方式使用。接收器可像往常一样记录大地响应。可由参考接收器记录震源附近位置处的震源子波(即,记录近场震源子波)或由参考接收器记录位于一定深度的震源子波(即,记录远场震源子波)。震源子波还可以建模,或从震源子波的预先计算的库中提取出来。

从这个勘探(其中震源为时间分布式震源)采集的数据为时间分布式数据。此数据在地震频率范围内的频域中可能会因震源元件激活的规律性而具有固定陷波。这些陷波如果未被去除,则在进一步数据处理或利用中可能会引起问题。如下所述,具有陷波的数据可被处理和转换成为无陷波的脉冲数据,这是地震数据的一种更为期望的形式。

重建脉冲数据

记录地震数据的过程可被视为是大地脉冲响应与时间分布序列的卷积。在频域中,这是一种简单的乘法:

dds(f,x)=Sds(f)r(f,x)。>

其中Sds(f)为分布式震源序列的子波,dds(f,x)为针对分布式震源采集的数据,并且r(f,x)为脉冲响应。x为震源位置,并且f为时间频率。为简单起见,接收器被视为对于每个震源来说都是相同的。

所需脉冲数据可被定义为:

dis(f,x)=Sis(f)r(f,x).,>

其中Sis(f)为所需脉冲震源子波并且r(f,x)为大地的相同的脉冲响应。

有可能定义一组基函数,b(p,τ0),其可描述所需带宽内的大地脉冲响应,

每个基函数都可对应于由截距时间和慢度定义的τ0线性倾斜事件p。可使用任何其他类型的基函数,例如,双曲线基函数、抛物线基函数或线性基函数、双曲线基函数和抛物线基函数的任意组合。每个元素b(p,τ0,fl,xm)对应于单个慢度(p)、单个截距(τ0)、单个频率fl以及单个空间位置xm。因此,每个基函数b(p,τ0)都对应于一系列2L+1个频率和2M+1个空间位置(标称震源位置)。包括2L+1个频率让所述方法变为了多频方法。当中心频率f0被选择为多个陷波频率之一时,基函数可描述陷波频率和陷波周围的频率。为便于讨论和计算,将时间频率和空间位置的数量选择为奇数,并且将中心频率和位置周围的时间频率和空间位置的数量选择为偶数,但它们不需要如此。例如,如图5所示,对于陷波频率513来说,选择了512与514之间的2L+1个频率的范围。陷波频率513并不位于所述范围的中心。

在一些情况下,并未明确地确定陷波频率的精确位置。可能没有必要确定这类位置,因为陷波存在于子波中并且Sds(f)需要去除。在一些情况下,其中存在陷波的可能的频率范围是已知的或可容易地确定,例如,如图5所示的频率范围516-518。可选择例如512与514之间具有2L+1个频率的窗口。另外选择几个频率窗口并且使其移动经过516-518的频率范围。在每个窗口中,处理数据并且消除窗口内的可能陷波。一旦所有窗口都被处理好,所有可能的陷波都会被自动覆盖,而不需要识别陷波的实际位置。为了减少边缘效应,相邻频率窗口可能具有重叠频率,在一些情况下,可能仅存在一个非重叠频率。在频率重叠的情况下,可将非重叠频率存储为输出频率,或可将重叠频率合并(例如,可使用每个频率的平均输出)。每个频率窗口的处理都是相同的并且以下仅讨论其中一个。

这些基函数可用于通过找出每个基函数的适当的加权因子m(p,τ0)来描述脉冲响应,所述基函数即为

r=Bm,(4)。

其中,B为包含关于所有要求的τ0和p的值的一组完整的基函数的矩阵,并且m为对应的一组加权因子。所要求的τ0和p的值可通过检查合适的数据域(例如,截距-慢度域)中的数据来确定。

如果所述基函数组适于描述大地脉冲响应,那么与分布式阵列的震源子波进行卷积的基函数组就适于描述dds等式(1)中的数据。因此,我们为所述数据定义基函数组:

以与等式(4)相同的方式,等式(5)中的基函数可用于描述数据,

dds=Gdsm。>

在等式(6)中,等式的左侧(即,数据dds,)是从地震勘探中采集的,并且是已知的。关于数据的基函数的矩阵Gds也是已知的,因为这是已知分布式震源子波Sds(f)和已知基函数b(p,τ0)的组合(如以上针对等式(3)所述)。等式(6)中唯一的未知变量为加权因子m。为了确定加权因子,我们可使用反演法来从以下各项对m求解:限定的基函数Gds和数据自身dds。这可通过使用例如方法如LSQR、匹配追踪、迭代重加权最小二乘法或任何其他反演法来实现。这可包括L2方法、L1方法或这两者的组合。

在对等式(6)中的m求解后,我们可安全地假设这个m也对应于等式(4)中的m。m为取决于勘探几何结构而不取决于震源子波的加权因子。因此,通过使用不同的震源子波,人们可获得对应于这个震源子波的不同数据。如果使用脉冲震源子波,那么所述数据就是对应于这种脉冲震源的数据。

与等式(5)中的震源子波类似,来自脉冲震源的数据可表示为:

其中Sis为所需脉冲震源的震源子波。基函数b(p,τ0)与等式(5)中的基函数相同,所述基函数描述了调查研究中的相同大地结构。

这个基函数组是针对所需脉冲数据的;即,震源处于具有所需频谱的所需位置处。与物理气枪阵列震源不同,对震源硬件或软件不存在物理限制。它们可以是有益的任何震源子波。

一旦选择了所需基函数(等式7),那么所需脉冲数据就仅可使用等式6的解来建模

dis=Gism。(8)

因此,频率分集方法可用于通过使用多个频率来对陷波中的数据求解而从带陷波的分布式气枪数据重建脉冲数据。

总而言之,如图6所示用于使用多个频率来将时间分布式数据转换成脉冲数据的方法600可包括以下步骤:

步骤610,从时间分布式震源采集数据,将所述数据根据需要变换到频域中;

步骤620,获得时间分布式震源的震源子波;

步骤630,在频域中选择将要消除的一个或多个陷波频率;或另选地,选择窗口内的陷波将被消除的频率窗口;

步骤640,建立基函数,所述基函数描述包括所述一个或多个陷波的所需窗口内的大地脉冲响应。每个陷波频率或窗口内的频率可被选择作为参考频率,并且在基函数中选择参考频率周围的另外几个频率;

步骤650,使时间分布式震源子波与基函数进行卷积以形成关于所采集数据的基函数组;时间分布式震源子波为用于采集数据的震源的子波;

步骤660,对所采集的数据及其基函数进行反演求出加权因子;

步骤670,选择对应于所需脉冲震源的脉冲震源子波;以及

步骤680,使脉冲震源子波与基函数进行卷积并且应用加权因子以推导出对应于脉冲震源子波的数据。

应当指出的是,上文列出的步骤以方便的顺序列出;它们不需要以所述次序执行。例如,可在转换过程开始之前确定或选择时间分布式震源子波或脉冲震源子波。也可在转换过程开始之前选择或确定基函数。如参考等式(6)所述,可使用以上提及的任何方法来执行反演步骤。

在许多地震数据处理技术中,数据通常在较小的重叠时间窗口中进行处理,并且应当理解的是,上述情况可以应用于时间窗口数据或非时间窗口数据。

脉冲震源子波为所需脉冲震源子波。可将所述脉冲震源子波选择或设计成所需任何东西。分布式震源子波为用于采集时间分布式数据的震源的子波。可根据许多已知方法例如从建模的或测得的震源子波库中获得这种子波。所述子波也可在远场直接测得,或在近场测得并且外推到远场。大地脉冲响应的基函数可由调查研究中的大地背景模型推导出,所述大地背景模型可以是其中事件可为线性、双曲线、抛物线或组合的简单模型或更精细复杂的模型。

在平常的地震勘探中,全地震频谱为大约1Hz一直到大约120Hz或150Hz。上述方法中所使用的多个频率范围可为大约10Hz或甚至宽至20Hz。因此,如果陷波频率被发现是例如60Hz,那么多频率范围可被选择为是55Hz至65Hz。陷波频率消除可一次消除一个或一次消除几个识别出的陷波频率,这取决于对其他操作参数的考虑。在其中选择了频率窗口的一些情况下,所述窗口内的精确陷波频率可能是未知的或未确定的。上述方法确保所述窗口内的陷波频率(如果存在的话)能被消除。频率窗口可能小至几赫兹或大至整个地震频率范围的相当大的部分,这取决于对其他操作参数的考虑。

分离和重建时间使得时间分布式数据抖动

以上方法也可连同两个或更多个同时震源一起使用。为简单起见,以下论述中考虑两个同时震源,但扩展到超过两个震源也是不复杂的。所述震源可通过任何同时震源方案来激活。为了简化讨论,这里将时间抖动方法用于同时震源。每个采集的数据对应于不同的分布式气枪阵列(也就是说,和其中每个阵列都使用不同的引爆序列)。这些震源之一通过使用随炮变化而变化的时间抖动ΔT(x)来相对于彼此随机化。同时震源数据可表示为:

其中分布式序列中的附加自变量指示时间抖动,并且下标指示数量指代哪个震源。r1和r2分别对应于震源1和震源2的大地响应。

正如等式(5)中一样,我们使用一组基函数来限定等式(9)中的数据。在这种情况下,需要两组基函数,这两组基函数之一包含对应于第二震源的时间抖动。这意味着基函数库可完全描述等式(9)中的时间抖动的、时间分布式气枪数据。基函数被定义为:

与等式(6)类似,等式(9)中的数据之后可描述为

dds=Gdsm。>

此处,Gds现在为包含一组完整的基函数的矩阵(等式11和等式12),它们限定两个震源,排序为首先是第一震源的所有基函数,然后是第二震源的所有基函数。因此,允许基函数描述数据的加权函数m可通过以下方式找出:使等式(12)以与等式(6)相同的方式进行反演。一旦找到,对应于每个震源的模型参数就可定义为

用于描述分离脉冲数据的两组基函数定义为:

并且最后使用限定的和(包含所有)以及求解出的m1和m2,可将转换为其脉冲等效物的分离数据集建模为,

其中和为两个分离数据集。

因此,同时时间抖动的时间分布式数据可通过使用多频分离和重建方法来分离和转换成其脉冲震源等效物。

应当指出的是,如果不同的时间分布式序列用于不同的同时震源,那么它们的对应数据集可利用时间分布式序列来恢复。不同的时间分布式序列可以是不同同时震源的“编码”并且消除了对时间抖动或另一震源编码方案的需求。

因同时震源而引起的数据分离和因时间分布式震源而引起的脉冲数据重建可一次全部执行。在图7中图示了一种与方法600类似的方法700。

步骤710,从两个同时时间分布式震源采集数据,将所述数据根据需要变换到频域中;

步骤720,获得两个时间分布式震源的震源子波。

步骤730,选择频率窗口。可能存在在组合时可以覆盖整个地震频率范围的多个重叠频率窗口。频率窗口可以是足够宽的以覆盖陷波及其周围频率,或是足够窄的以使得窗口内的数据独立于频率。

步骤740,建立基函数,所述基函数描述包括所述一个或多个陷波的所需带宽内的大地脉冲响应。每个陷波频率可被选择作为参考频率,并且在基函数中选择参考频率周围的另外几个频率;

步骤750,使两个时间分布式震源子波与基函数进行卷积以形成关于所采集数据的一组基函数;时间分布式震源子波为用于采集数据的震源的子波。步骤760,对所采集数据及其基函数进行反演求出加权因子。所述反演可如等式(12)中那样编写,其中两个所得加权因子如等式(14)中那样写成一个m。它们也可单独地分别写为m1和m2

步骤770,选择对应于两个所需脉冲震源的两个脉冲震源子波,如等式(14)中所表达;以及

步骤780,使每个脉冲震源子波与相应的基函数进行卷积并且应用加权因子以推导出对应于每个脉冲震源子波的数据,如在等式(15)和(16)中那样。

应当指出的是,在使用两个同时震源时,存在两个震源。因此,与震源相关的项翻倍,即,存在两组震源子波、两组基函数和两组数据。基函数的尺寸翻倍。另外,方法700与方法600几乎相同。

在使用多个重叠频率窗口时,针对每个频率窗口重复方法700直到所有频率窗口都被处理好为止。

如在上文可以看出,同时震源编码的方式不会影响以上等式中任一者的使用。在以上实例中,在使用震源抖动时,抖动时间ΔT仅出现在等式(11)的基函数中。因此,同时震源编码是通过时间抖动完成还是任何其他方法完成都不会影响所述方法。

多频方法对空间采样不敏感,因此具有某种空间假频的数据可能不再是问题。这些方法可能对假频数据以及非假频数据一样有用。

如同在单个震源情况下一样,应当理解的是,以上同时震源分离方法可应用于时间窗口数据或非时间窗口数据。

在以上论述中,所使用的震源位置为标称炮点,所述标称炮点不是精确的炮位置。使用标称炮位置而不是实际炮位置可能会引入拖尾效应。为了避免这种拖尾,可使用实际炮位置。更确切地说,在等式(5)的基函数中,在其中引爆单独气枪的空间中的精确点可用于震源子波。震源当中的实际震源位置的位置差为震源已行进的距离,所述距离为引爆之间的时间间隔与震源速度的乘积。在上文中,使用分布式震源序列Sds(f)的子波来描述所述方法。这个子波由形成气枪阵列的每个气枪的单独子波形成。当假设子波静止时,可通过简单地对根据分布式时间序列延迟时间的单独子波求和来形成这个复合子波。然而,如果考虑到震源运动,那么有必要形成阵列内的每个单独气枪的基函数,包括时间延迟和由震源行进的相关联的距离。这些单独基函数各自的总和随后可用于表示结合有震源运动的数据。例如,等式5中的单个基函数可更换为

iSi(fL)b(p,τ0,fL,xM+Δxi)>

其中Si(fL)为震源阵列的第i气枪的子波,并且Δxi为单独气枪的位置相对于标称炮位置的变化xM。应当指出的是,虽然等式(5)可被修改来以这种方式描述震源运动,但所需脉冲数据并不包括震源运动,并且因此等式17中的额外步骤不会应用于等式7。

所述拖尾可能会对地震源的方向性具有显著影响,对于较大离源角(take-off angle)诸如宽方位角海洋地震勘探中所感兴趣的那些来说尤其如此。这种方法在考虑到时间分布式阵列数据相对于传统数据的质量时可能是有价值的。

上述方法使用时间分布式引爆震源而不是产生“脉冲”震源子波的“调谐的”气枪阵列。这些方法克服了现有时间分布式气枪阵列的多个限制。所述方法使用来自多个频率的信息来重建陷波中丢失的频率。这利用了以下事实:地震数据在较小频率范围内缓慢变化;因此,来自高于和低于陷波的频率的信息可用于约束陷波内的解。

与常规去卷积方法相比,这些方法对噪声较不敏感,因为陷波外的高信噪比区域会使陷波内的低信噪比区域中的解稳定。与空间重建方法相比,这些方法对空间采样也没有那么敏感(不是使用来自陷波任一侧的空间样本或除此之外,使用来自陷波任一侧的频率样本)。这些方法都不依赖于随位置变化而随机(或以规定方式)变化的分布式气枪阵列。

这些使用多个频率的方法可以二维方式实现,其中多个频率和多个震源位置均用作输入。在这种情况下,使用随机变化的分布式阵列也会有益处。

应当指出的是,时间分布式阵列在它们应用于如上所述的同时震源分离时具有多个优点。多个分布式阵列可被配置成使得无论考虑哪种分离方案,震源串扰都被最小化。这可通过优化分布式阵列的某些特性(例如分布式阵列震源子波的自相关和互相关特性)来完成。这些方法可在分布式阵列数据分离之后应用。也有可能的是,震源分离和数据重建可一次全部进行。

上述方法一次使用多个迹线。对于频域中的每组迹线来说,选择一个或多个陷波频率周围的多个频率。一旦这组迹线被处理好,就处理下一组迹线(在每组之间可能存在重叠)。如果对数据进行了很好的采样(即,如果不存在空间假频),那么相同的多频方法可一次仅使用单个迹线或用于一些不同的域中。

图8a-8e图示了一些实例。图8a示出了简单的拖曳式拖缆放炮配置800。星形(例如,801-807)表示气枪震源阵列,并且黑色实线810表示拖缆排列。略图的每个部分(831-837)都表示不同的放炮时间。当炮引爆时,船(未示出)连同拖缆排列810在X方向850上向上移动。代替以一次一个迹线的方式处理数据,可一起处理多个迹线。为了如上所述同时向多个炮应用所述方法,可将所述数据分类为包含来自多个炮的记录的多个集合。在图8a中由虚线框822表示一个选项。在这种情况下,针对每个炮选择来自位于这个框822中的拖缆的一部分的记录,即针对每个炮选择一个记录。这些记录形成共同接收器集合。另选地,不是使用固定空间位置,而是可以使用拖缆上的固定位置。这由框821表示,现在将其中的拖缆的第一部分选择用于每个炮。这是共同偏移(或共同通道)集合。整个数据集可以这种方式分类,以使得多个炮记录被组合在一起。

在使用多频方法时,以这种方式组合炮提供了不同的选项。图8b示出了在变换为频域后,来自多个炮(由震源位置X表示,例如,851、853)的数据。在图8b中,细的蓝线(例如,851或853)指示一个炮记录。对于给定频率范围(例如,852或854,由黑色虚线表示),每个震源可使用多频方法来独立地处理。迹线的独立处理可允许对脉冲震源数据进行更有效的计算,并且可能在空间假频效应受限的情况下最有效。另选地,如图8c所示,一小组炮(例如,861-865)可作为组合866同时处理,如黑色虚线框所示。图8c中的其他迹线可一起组合成为867。虽然图8c表明,组合866和867是单独的且具有不同的迹线,但这些组合可重叠。来自多个震源位置的数据可组合在一起,以使得信号在这组迹线上是空间相干的。例如,在使用线性基函数时,所期望的是,所述数据仅由线性事件构成。这可能是以下情况:一次仅考虑少量迹线。来自多个震源位置的数据可组合在一起,以使得信号在这组迹线上是空间相干的。例如,在使用线性基函数时,所期望的是,所述数据仅由线性事件构成。这可能是以下情况:一次仅考虑少量迹线。

虽然图8b和图8c中的实例不同,但它们仍可在频域和震源位置域中进行处理。在空间上对数据很好地采样情况下的一种替代方案是将震源位置变换为波数,其中波数变换涉及将来自多个位置的数据组合起来。图8d图示了频率-波数域,其中线(例如,871)指示频率-波数域中的单独数据事件。上述处在频率-震源位置域中的基函数可被修改来在这个频率-波数域中操作。波数域可进一步变换为慢度域。在慢度域中,可能处理沿着单独“慢度迹线”的数据,因而将虚线框886往回聚焦于单个迹线。应当指出的是,当在单个迹线或单个慢度迹线方面研究时,一种方法(诸如IMAP(通过匹配追踪而进行插值,一开始被配置成重建空间样本))同样可用于通过考虑多个频率来重建陷波中的丢失信息。

一旦所述数据使用所述方法处理好,所述数据就可从慢度/波数域变换回到震源位置域。

本领域技术人员将理解的是,上述方法的步骤中的一个或多个可组合和/或一些操作次序可发生变化。另外,一些方法操作可与本文所公开的其他示例实施方案的各方面组合在一起,和/或一些操作次序可发生变化。测量过程、其解释以及由操作员采取的动作可以迭代方式进行;这个概念适用于本文论述的方法。最终,方法各部分可通过任何合适的技术来执行,包括基于图9中的计算系统900的自动化或半自动化技术。

上述方法的各部分可在计算机系统900中实现,在图9中示出其中一个。系统计算机930可与盘储存装置929、931、933和935连通,所述盘储存装置可为外部硬盘存储装置和测量传感器(未示出)。可以预期的是,盘存储装置929、931、933和935为常规硬盘驱动器,并且因此可通过局域网或通过远程访问来实现。虽然盘存储装置图示为单独装置,但可使用单个盘存储装置来根据需要存储任何和所有程序指令、测量数据和结果。

在一种实现方式中,可将来自传感器的实时数据存储在盘存储装置931中。可将来自不同震源的各种非实时数据存储在盘存储装置933中。系统计算机930可从盘存储装置931或933检索适当数据以根据对应于本文所述各种技术的实现方式的程序指令来处理数据。所述程序指令可以计算机编程语言诸如C++、Java等来编写。所述程序指令可存储在计算机可读介质诸如程序盘存储装置935中。这种计算机可读介质可包括计算机存储介质。计算机存储介质可包括任何信息存储方法或技术实现的易失性和非易失性介质以及可移动和不可移动介质,诸如计算机可读指令、数据结构、程序模块或其他数据。计算机存储介质还可包括RAM、ROM、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、快闪存储器或其他固态存储器技术、CD-ROM、数字通用光盘(DVD)或其他光学存储体、磁带盒、磁带、磁盘存储体或其他磁性存储装置或可用于存储所需信息并可由系统计算机930访问的任何其他介质。上述各项的任意组合也可包括在计算机可读介质的范围之内。

在一种实现方式中,系统计算机930可将输出主要呈现在图形显示器927上或通过打印机928(未示出)来呈现。系统计算机930可将上述方法的结果存储在盘存储体929上,以供稍后使用和后续分析。可向系统计算机930提供键盘926和指示装置(例如,鼠标、轨迹球等)925以实现交互式操作。

系统计算机930可位于现场,例如,作为如图1中那样的船20上的处理单元23的一部分;或位于远离现场的数据中心处。系统计算机930可与现场设备通信与接收各个测量数据。在常规格式化和其他初始处理后,这类数据可由系统计算机930以上述方式作为数字数据存储在盘存储体931或933中以供后续检索和处理。虽然图9将盘存储体例如931图示为直接连接到系统计算机930,但还可以预期的是,盘存储装置可通过局域网或通过远程访问来访问。此外,虽然盘存储装置929、931图示为用于存储输入数据和分析结果的单独装置,但盘存储装置929、931可在单个盘驱动器内(连同程序盘存储装置933一起或单独地)实现,或以本领域技术人员参考本说明书将充分理解的任何其他常规方式实现。

虽然以上仅详细描述了几个示例实施方案,但本领域技术人员将容易了解的是,在实质上不脱离本发明的情况下,许多修改在示例实施方案中是可能的。因此,所有这类修改都意在包括在如随附权利要求所限定的本公开的范围内。在权利要求中,装置加功能语句意在涵盖本文描述的执行所述功能的结构,不仅仅包括结构等效物,而且还包括等效结构。因此,尽管钉子和螺钉可能不是结构等效物,因为钉子利用圆柱形表面来将木质工件固定在一起,而螺钉则利用螺旋表面来将木质工件固定在一起,但是在固定木质工件的背景下,钉子和螺钉可以是等效结构。除在权利要求中与相关联功能一起明确使用了词语“用于…的装置”的情况外,申请人的表述含意不援引35 U.S.C.§112,第6段来对本文的任何权利要求进行任何限制。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号