首页> 中国专利> 一种湿法炼锌电解过程电解液酸锌比控制方法

一种湿法炼锌电解过程电解液酸锌比控制方法

摘要

本发明公开了一种湿法炼锌电解过程电解液酸锌比控制方法,针对锌电解过程电解液酸锌比难以自动控制的问题,以电解液酸锌比为控制目标,首先建立锌电解过程非线性模型,然后采用输入输出反馈线性化的方法对该非线性模型进行线性化,间接获得新液流量与电解液酸锌比的线性关系,最后采用反馈控制的方法实现电解液酸锌比渐进跟踪控制;使酸锌比迅速、精确的达到设定值,对于锌电解过程的节能降耗具有十分重要的意义。

著录项

  • 公开/公告号CN106048662A

    专利类型发明专利

  • 公开/公告日2016-10-26

    原文格式PDF

  • 申请/专利权人 中南大学;

    申请/专利号CN201610343361.5

  • 申请日2016-05-23

  • 分类号C25C7/06(20060101);C25C1/16(20060101);

  • 代理机构43114 长沙市融智专利事务所;

  • 代理人龚燕妮

  • 地址 410083 湖南省长沙市岳麓区麓山南路932号

  • 入库时间 2023-06-19 00:43:59

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-06-29

    授权

    授权

  • 2016-11-23

    实质审查的生效 IPC(主分类):C25C7/06 申请日:20160523

    实质审查的生效

  • 2016-10-26

    公开

    公开

说明书

技术领域

本发明属于湿法炼锌电解过程控制技术领域,涉及一种湿法炼锌电解过程电解液酸锌比控制方法。

背景技术

电解是锌湿法冶炼最为关键的工序,其能耗约占整个锌冶炼过程的75%-80%。其反应原理是在硫酸锌溶液中通入直流电,使锌离子以单质形式析出。锌电解过程对电解液中硫酸和锌离子浓度之比(以下简称酸锌比)要求非常苛刻。受电费分时计价政策影响,国内锌电解过程多采用分时供电方式进行生产,当电流密度改变时,需要相应地调节电解液酸锌比以降低电解过程能耗。

电解液的酸锌离子浓度主要依赖现场操作人员根据电解过程中酸锌离子浓度和操作经验进行调控。影响电解液酸锌比的因素复杂多样,如电流密度、新液离子浓度、新液流量、废液流量等。实际生产中,电流密度主要由电力调度部门根据分时电价决定,新液离子浓度由上游净化工段决定,而废液流量基本处于稳定状态。因此,现场工人仅能够调节新液流量实现对酸锌比的控制。然而,受锌电解过程多槽耦合反应特性的影响,新液流量与电解液酸锌比之间存在强非线性关系,采用人工经验控制的方法往往不能获得期望的控制效果。

发明内容

本发明提供了一种湿法炼锌电解过程电解液酸锌比控制方法,其目的在于,克服现有技术中新液流量与电解酸锌比无法进行线性测量的问题。

一种湿法炼锌电解过程电解液酸锌比控制方法,首先建立锌电解过程非线性模型;然后采用输入输出反馈线性化的方法对构建的非线性模型进行线性化,得到新液流量与电解液酸锌比的线性关系;最后,以设定的电解液酸锌比为控制目标,采用反馈控制的方法对电解液酸锌比渐进跟踪控制。

所述锌电解过程非线性模型是基于混合液槽、电解槽及废液槽中酸锌离子物料平衡过程获得,具体如下:

dC2.1dt=Q1C1.1+Q2C4.1-(Q1+Q2)C2.1V1dC2.2dt=Q2C3.2-(Q1+Q2)C2.2V1dC3.1dt=(Q1+Q2)(C2.1-C3.1)-rznV2dC3.2dt=(Q1+Q2)(C2.2-C3.2)+rH1-rH2V2dC4.1dt=(Q1+Q2)C3.1-(Q1+Q2)C4.1V3dC4.2dt=(Q1+Q2)C3.2-(Q1+Q2)C4.2V3

式中,C1.1为新液锌离子浓度,通过人工测量获得;V1、V2、V3分别为混合液槽、电解槽、废液槽中硫酸锌溶液的体积;C2.1、C2.2分别为混合液中锌离子、硫酸浓度,C3.1、C3.2分别为电解液中锌离子、硫酸浓度,C4.1、C4.2分别为废液中酸锌离子浓度,均通过人工测量获得;Q1、Q2分别为新液流量和废液流量,废液流量为恒定量,新液流量为控制量。

实际生产中废液流量Q2基本上保持恒定状态,因此仅通过调节新液流量以控制电解液酸锌比。

所述采用输入输出反馈线性化的方法对构建的非线性模型进行线性化,得到新液流量与电解液酸锌比的线性关系是指获得电解液酸锌比与新的输入变量v之间的一阶微分线性关系:

(c3.2/c3.1)t=v

其中,新的输入变量v是对非线性模型进行线性化变化后定义的单输入变量。

将原系统中无法直接求解的新液流量与电解液酸锌之间的非线性关系转化为利用新定义的原系统单输入变量和电解液酸锌比之间的线性关系来间接求解。

非线性模型的简要表达形式如下:

X·=F(X)+G(X)Uy=H(X)

其中,X=[x1,x2,……,x6]T=[C2.1,C2.2,……,C4.2]T为状态变量分别表示锌电解全流程中不同位置的锌酸离子浓度;F(X)表示非线性模型中的线性项,G(X)U表示非线性模型中的非线性项;U=Q1为控制变量,输出为H(X)=c3.2/c3.1=x4/x3,即电解液中硫酸浓度和锌离子浓度之比;

首先,对输出进行求导:

然后进行输入变化,取:

这样,得到输出y与变换后的新输入v之间的线性关系:即

所述采用反馈控制的方法对电解液酸锌比渐进跟踪控制是指采用比例控制实现对电解液酸锌比对其设定值的跟踪控制:

以实时的电解液酸性比和电解液酸锌比的控制目标设定值之间的实时差值作为控制因量,控制目标转化为实时差值为0;利用实时差值计算获得新的输入量从而获取新液流量的实时调控值Q1,从而实现对电解液酸锌比的跟踪控制;

Q1=(-[-c3.2c23.1*[Q2(C2.1-C3.1)V2-rznV2]+1c3.1*[Q2(C2.2-C3.2)V2+rH1-rH2V2]]+v)[-c3.2c23.1*(C2.1-C3.1)V2+1c3.1*(C2.2-C3.2)V2]

其中,

式中,e为电解液酸锌比实际值与控制目标设定值的实时差值,e=c3.2/c3.1-(c3.2/c3.1)set,(c3.2/c3.1)set为酸锌比控制目标设定值;k为比例控制系数,取值范围为取0.015-0.02;

rZn、分别为整个电解车间的锌离子消耗速率、硫酸消耗速率及生成速率,Mzn、为锌和硫酸的摩尔质量,F为法拉第常数,Mzn、和F为固定值;Ncell为电解槽数量,Nplate为电解槽内阴阳极板对数;S为极板面积;Ncell、Nplate、S根据实际生产中设备确定;

ε为电流效率,表示锌电解生产中实际的锌产量与通入电量的理论产量之比:

ε=a0+a1D+a2D2+a3D3+a4D4

其中,D为电流密度,a0,a1,a2,a3,a4均为为模型待辨识参数,通过收集现场生产数据采用最小二乘法对模型待辨识参数进行辨识,所述现场生产数据包括电流效率、电流密度、电解液酸锌离子浓度新液锌离子浓度,电解槽数、每个电解槽极板对数、极板面积、混合液槽、电解槽、废液槽体积。

选择新输入为其中k为比例控制系数,并带入中即可求的新液流量Q1

令e=c3.2/c3.1-c3.2/c3.1|set,其中c3.2/c3.1|set为期望输出,即期望获得的电解液酸锌比,

因为,选择新输入为所以变化成为即而e=c3.2/c3.1-c3.2/c3.1|set,所以变成该方程为关于e,即系统控制误差的一阶微分方程,求解可得e=Cexp(-kt),所以,

有益效果

本发明公开了一种湿法炼锌电解过程电解液酸锌比控制方法,针对锌电解过程电解液酸锌比难以自动控制的问题,以电解液酸锌比为控制目标,首先建立锌电解过程非线性模型,然后采用输入输出反馈线性化的方法对该非线性模型进行线性化,间接获得新液流量与电解液酸锌比的线性关系,最后采用反馈控制的方法实现电解液酸锌比渐进跟踪控制;巧妙的将多个参数变量与酸锌比之间的非线性化的关系转化成新液流量与酸锌比之间的线性化关系,使酸锌比迅速、精确的达到设定值,对于锌电解过程的节能降耗具有十分重要的意义。

附图说明

图1为锌电解过程电解液循环示意图;

图2为锌电解过程电解液酸锌比控制效果对比图。

具体实施方式

下面将结合附图和实施例对本发明做进一步的说明。

一种湿法炼锌电解过程电解液酸锌比控制方法,具体实施步骤如下:

第一步:在线计算锌电解过程电解液酸锌离子浓度

步骤1:辨识电流效率方程中的未知参数

收集现场生产数据中的包含电流效率、电流密度、电解液酸锌离子浓度、数据项的数据记录,形成辨识样本集,采用最小二乘法对方程中的5个未知参数进行辨识:

ε=a0+a1D+a2D2+a3D3+a4D4

a0=62.07268

a1=0.28154

a2=-0.00109

a3=1.9038*10-6

a4=-1.231*10-9

步骤2:计算电解液酸锌离子反应速率

rZn=MznNcellNplateDSε/2F

rH1=MH2SO4NcellNplateDS(1-ϵ)/2F

rH2=MH2SO4NcellNplateDS/2F

式中,rZn、分别为整个电解车间的锌离子消耗速率及硫酸消耗及生成速率,Mzn、为锌和硫酸的摩尔质量,Ncell为电解槽数量,Nplate为电解槽内阴阳极板数,S为极板面积,F为法拉第常数。

步骤3:按照以下公式计算锌电解过程电解液酸锌离子浓度

dC2.1dt=Q1C1.1+Q2C4.1-(Q1+Q2)C2.1V1dC2.2dt=Q2C3.2-(Q1+Q2)C2.2V1dC3.1dt=(Q1+Q2)(C2.1-C3.1)-rhV2dC3.2dt=(Q1+Q2)(C2.2-C3.2)+rH1-rH2V2dC4.1dt=(Q1+Q2)C3.1-(Q1+Q2)C4.1V3dC4.2dt=(Q1+Q2)C3.2-(Q1+Q2)C4.2V3

第二步:对锌电解过程非线性模型进行输入输出反馈线性化;

步骤1:将锌电解多槽耦合反应模型转换成单输入单输出仿射性非线性模型;

考虑到现场实际情况,给出如下两个假设:(1)三个反应槽内溶液混合均匀;(2)新液中只含锌离子而不含酸离子。

即废液流量几乎保持不变,因此可将锌电解多槽耦合反应模型写成如下单输入单输出仿射性非线性系统:

X·=F(X)+G(X)Uy=H(X)

其中,X=[x1,x2,……,x6]T=[C2.1,C2.2,……,C4.2]T为状态变量分别表示锌电解过程中不同位置的锌酸离子浓度。

控制量为新液流量,输出量可以表示为:

H(X)=c3.2/c3.1=x4/x3

即获得单输入单输出仿射性非线性系统。

步骤2:判断单输入单输出仿射性非线性模型相对阶;

通过计算非线性系统的李导数,判断其相对阶,其计算公式如下:

LGLF0H(X)=LGH(X)=H(X)X.G(X)=-c3.2c23.1*(C2.1-C3.1)V2+1c3.1*(C2.2-C3.2)V20

由于非线性系统的李导数不为0,因此其相对度为1,且小于系统状态变量个数,因此系统不能实现精确的输入-状态反馈线性化,但是能实现输入-输出反馈线性化。

即通过对输出进行求导,找出输出与输入的直接关系。

步骤3:对原系统进行输入输出反馈线性化

首先,对输出进行求导:

y·=H(F+GU)=LFH(X)+LGH(X)U=-c3.2c23.1*[Q2(C2.1-C3.1)V2-rznV2]+1c3.1*[Q2(C2.2-C3.2)V2+rH1-rH2V2]+[-c3.2c23.1*(C2.1-C3.1)V2+1c3.1*(C2.2-C3.2)V2]Q1

然后对原输入进行变化,取

U=1LGH(X)(-LFH(x)+v)

式中,v为新的输入。

利用对输出求导获得的表达式和利用新的输入量v表达式获得新液流量与新的输入量v之间的表达式:

Q1=(-[-c3.2c23.1*[Q2(C2.1-C3.1)V2-rznV2]+1c3.1*[Q2(C2.2-C3.2)V2+rH1-rH2V2]]+v)[-c3.2c23.1*(C2.1-C3.1)V2+1c3.1*(C2.2-C3.2)V2]

得到输出y与变换后的输入v之间的线性关系,即

y·=v

第三步:基于输入输出反馈线性化的新液流量设定

在第二步所得输出与新输入的线性关系基础上,设定新输入量的值,使得系统输出达到设定值。令e=y-yset

其中yset为期望输出,设定新输入为:

可以得到系统关于跟随误差微分方程:

则当k>0时,就有且e按指数规律衰减,这样,系统就能实现渐进跟踪控制,根据多次试验结果,k取值为0.015较为合适。

图2为采用该酸锌比控制方法与采用经验控制方法的电解液酸锌比控制效果对比,仿真时间为36小时。并采用最大绝对误差(maximum absolute error,MAXE),平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)来描述两种控制方法的控制性能指标如表1所示。结果表明,相比于经验控制,本发明所提出的控制方法使电解液酸锌比与目标值的MAXE、MAE、RMSE分别降低了12.86%、11.38%和2.98%,实现了电解液酸锌比的跟踪控制,且能有效的减少电解液酸锌比的波动。

表1

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号