首页> 中国专利> 复合材料构造体、具有该复合材料构造体的航空机机翼及航空机机身、以及复合材料构造体的制造方法

复合材料构造体、具有该复合材料构造体的航空机机翼及航空机机身、以及复合材料构造体的制造方法

摘要

本发明的目的在于,提供一种可抑制强度降低且重量轻的复合材料构造体。一种复合材料构造体,其采用向一个方向延伸并且多个孔(5)在一个方向上间隔排列形成的纤维增强塑料制复合材料,并且在一个方向上承受拉伸负荷及/或压缩负荷,其特征在于,孔(5)的周围区域(3a)含有第1区域(10),该第1区域(10)形成为,利用在长度方向上拉齐的连续纤维实施过强化的复合材料以所述复合材料的宽度W的中心线穿过相邻的孔(5)与孔(5)之间的方式弯曲并向一个方向曲折,孔(5)的周围区域(3a)在一个方向上的拉伸刚性及/或压缩刚性小于包围该周围区域(3a)的其他区域(3b)在一个方向上的拉伸刚性及/或压缩刚性。

著录项

  • 公开/公告号CN106029346A

    专利类型发明专利

  • 公开/公告日2016-10-12

    原文格式PDF

  • 申请/专利权人 三菱重工业株式会社;

    申请/专利号CN201580009194.4

  • 发明设计人 柏木圣纮;野中吉纪;阿部俊夫;

    申请日2015-03-17

  • 分类号B29C70/06;B32B5/08;B32B5/12;B64C1/00;B64C1/14;B64C3/26;B29K105/08;B29L31/30;

  • 代理机构北京市柳沈律师事务所;

  • 代理人岳雪兰

  • 地址 日本东京都

  • 入库时间 2023-06-19 00:42:37

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-03-03

    未缴年费专利权终止 IPC(主分类):B29C70/06 专利号:ZL2015800091944 申请日:20150317 授权公告日:20180724

    专利权的终止

  • 2018-07-24

    授权

    授权

  • 2016-11-09

    实质审查的生效 IPC(主分类):B29C70/06 申请日:20150317

    实质审查的生效

  • 2016-10-12

    公开

    公开

说明书

技术领域

本发明涉及一种复合材料构造体、具有该复合材料构造体的航空机机翼及航空机机身、以及复合材料构造体的制造方法。本发明尤其以向一个方向排列形成的具有多个孔的复合材料构造体为对象。

背景技术

在航空机、船舶、车辆等领域中,作为具有高强度且轻量化的构造体,广泛使用着纤维增强塑料(FRP:Fiber Reinforced Plastics)制的复合材料(专利文献1)。与金属相比,复合材料的优点在于“重量轻且硬度高”。

现有技术文献

专利文献

专利文献1:日本专利特开2013-180627号公报(权利要求1、权利要求3)

发明内容

发明要解决的问题

为了进行检查或用于组装时的出入,有时会在此种复合材料上形成孔。形成有孔时,会在孔的周围区域产生应力集中。使用金属时,应力集中部即使到达屈服应力也不会立即断裂,而会随着塑性变形最终导致损坏。根据一般的设计,例如具有孔的平板时,利用将负荷除以除孔以外的剖面积后获得的净应力评估静态强度。另一方面,复合材料的塑性变形少于金属,因此对于应力集中(孔、缺口)的灵敏度高,静态强度 评估时也必须考虑应力集中。其结果是,会通过增加孔周围的板厚来进行增强,有时会失去“重量轻且硬度高”的优点。

为了解决上述课题,专利文献1中提出,使孔的周围区域在一个方向上的拉伸刚性及/或压缩刚性小于包围该周围区域的其他区域在一个方向上的拉伸刚性及/或压缩刚性,缓和对孔的周围区域施加的应力集中,减少增强。专利文献1中,将其他区域的纤维取向设为0°,将孔的周围区域的纤维取向设为45°或-45°。

专利文献1中,其他区域与周围区域邻接,使纤维取向不同的2种复合材料(周围区域和其他区域)对接时,对接的界限部分(邻接部分)的纤维并不连续,作为基材的树脂会传递负荷,因此有时会成为使复合材料构造体的强度降低的主要原因。

专利文献1中记载的航空机的主翼等上,会向孔的排列方向施加主负荷,但有时也会同时施加剪切负荷。专利文献1中,在夹住周围区域的两侧邻接着纤维取向与周围区域不同的其他区域,因此可能会成为在与主负荷方向正交的方向上出现强度降低的主要原因。纤维不连续且纤维取向出现切换的界限存在于与孔的主负荷方向正交的直径的延长线上时,强度降低的风险会增高。

本发明鉴于上述情况开发而成,其目的在于提供一种可抑制强度降低且重量轻的复合材料构造体。

技术方案

为了解决上述课题,本发明提供一种复合材料构造体,其采用向一个方向延伸并且多个孔在所述一个方向上间隔排列而形成的纤维增强塑料制复合材料,并在所述一个方向上承受拉伸负荷及/或压缩负荷,其特征在于,所述孔的周围区域含有第1区域,该第1区域形成为,利用在长度方向上拉齐的连续纤维实施过强化的复合材料以所述复合材料的宽度W的中心线穿过相邻的孔与孔之间的方式弯曲,并向所述一个方向曲折,所述周围区域在所述一个方向上的拉伸刚性及/或压缩刚性小于包围该周围区域的其他区域在所述一个方向上的拉伸刚性及/或压缩刚性。

孔的周围区域的一个方向上的拉伸刚性小于包围孔的周围区域的其他区域的一个方向上的拉伸刚性,因此拉伸负荷主要由其他区域承担。因此,对孔的周围区域施加的拉伸负荷相对较小,因此对孔的周围区域施加的应力集中会得到缓和。因此,与对孔的周围区域施加与其他区域等同的拉伸刚性时相比,能够减少孔的周围区域的增强。

孔的周围区域的一个方向上的压缩刚性小于包围孔的周围区域的其他区域的一个方向上的压缩刚性时,压缩负荷主要由其他区域承担。因此,对孔的周围区域施加的压缩负荷相对较小,因此对孔的周围区域施加的应力集中会得到缓和。因此,与对孔的周围区域施加与其他区域等同的压缩刚性时相比,能够减少孔的周围区域的增强。

对复合材料构造体施加拉伸负荷和压缩负荷时(即施加弯曲负荷时),优选使孔的周围区域的一个方向上的拉伸刚性和压缩刚性小于其他区域的一个方向上的拉伸刚性和压缩刚性,拉伸负荷和压缩负荷主要由其他区域承担。

周围区域含有第1区域,该第1区域由利用在长度方向上拉齐的连续纤维实施过强化的复合材料(复合材料A)构成。通过使复合材料A弯曲,能够使纤维的方向朝向不同的方向。通过改变纤维的方向进行配置,能够使复合材料构造体的强度和刚性发生变化。在复合材料A配置成纤维向一个方向倾斜的区域中,一个方向上的拉伸刚性和压缩刚性小于其他区域的一个方向上的拉伸刚性和压缩刚性。此外,在复合材料A配置成纤维朝向一个方向时,纤维取向与其他区域一致,因此能够排除在周围区域与其他区域的界限发生强度降低的风险。

即使复合材料A弯曲,也能够维持纤维连续的状态。由于纤维连续,所以与使用短纤维时相比,能够提高一个方向上的强度。本发明中纤维连续,因此在第1区域内的纤维取向进行切换的部分,不会出现纤维的间隙。因此,可形成精度高于以往的复合材料构造体。

通过以穿过孔之间的方式曲折复合材料A,能够跨越多个孔地配置一片复合材料A,因此能够高效率地制造复合材料构造体。复合材料A也能够通过机械进行配置。

上述发明的一实施方式中,所述第1区域含有倾斜部,该倾斜部在将所述一个方向设为0°时,所述连续纤维朝向±30°以上±60°以下、优选为±45°的方向,所述倾斜部优选配置在相邻的孔与孔之间。

通过将倾斜部配置在孔与孔之间,能够实现0°方向(一个方向)上的拉伸刚性降低且容许拉伸方向(及/或压缩方向)上的伸长的区域。由于在倾斜部中,纤维朝向±30°以上±60°以下的方向、优选为±45°方向,所以剪切方向(与一个方向正交的方向、即±90°方向)的强度会增大,并且能够提高扭转刚性。

上述发明的一实施方式中,所述第1区域含有所述连续纤维配置为朝向0°方向的平行部,所述平行部可配置在所述第1区域中至少含有朝向所述孔的±90°方向的直径的延长线的位置,并与所述孔相接。

通过在朝向孔的±90°方向的直径的延长线上设置平行部,并使其与孔相接,能够不降低容易破裂的部位的强度,缓和对孔的周围区域施加的应力集中。因此,可形成实体强度大的复合材料构造体。

上述发明的一实施方式中,所述平行部优选配置在与所述孔的0°方向的直径并行的区域中包含所述第1区域的外缘的位置。

位于与孔的0°方向的直径并行的区域中的第1区域的外缘是指,位于与其他区域的界限的周围区域。复合材料A以复合材料A的宽度W的中心线穿过孔与孔之间的方式曲折形成。以孔的0°方向的直径为轴进行观察时,对于一个孔来说位于一侧的复合材料A对于下一个孔来说,位于另一侧。通过在与其他区域的界限配置平行部,能够使周围区域的纤维的方向与邻接的其他区域的纤维的方向一致。因此,能够抑制在周围区域与其他区域的连接部出现±90°方向上的强度降低。

上述发明的一实施方式中,1个所述倾斜部的连续纤维的方向与下一个倾斜部的连续纤维的方向正交时,所述宽度W可定义为相邻的孔的中心间距离L的1/√2以下。

复合材料A在孔与孔之间曲折形成,因此一个倾斜部的纤维的方向与下一个倾斜部的纤维的方向不同。一个倾斜部的纤维的方向与下一个倾斜部的纤维的方向成直角时,通过将复合材料A的宽度W设为孔的中 心间距离L的1/√2以下,能够将平行部配置在朝向孔的±90°方向的直径的延长线上。

上述发明的一实施方式中,所述平行部优选为与所述孔的0°方向的直径并行的区域。

因此,与孔并行的区域都为平行部,因此能够提高孔周围对于0°方向的强度。在孔的±90°方向上不存在纤维的方向出现切换的界限,因此能够提高孔周围对于±90°方向的强度。

上述发明的一实施方式中,优选使含有第1区域A的层与含有第1区域B的层以所述第1区域A的峰部与所述第1区域B的谷部上下成对的方式实施层叠,该第1区域A中,利用向所述长度方向拉齐的连续纤维实施过强化的复合材料按照峰部、谷部的顺序重复弯曲,该第1区域B中,利用向所述长度方向拉齐的连续纤维实施过强化的复合材料按照谷部、峰部的顺序重复弯曲。

第1区域的倾斜部的纤维与同一层内邻接的其他区域的纤维并不连续,并且纤维的方向不同。上述发明的一实施方式中,第1区域A的峰部与第1区域B的谷部形成为上下成对,因此倾斜部和与其邻接的区域的界限能够在上下方向上错开。因此,能够分散±90°方向上的强度降低风险。

上述发明的一实施方式中,所述孔可用作形成在航空机的机翼的下表面外板的出入孔。

下表面外板构成承担对航空机的主翼施加的负荷的抗扭翼盒的下表面部分。因此,飞行时,会对该下表面外板向主翼长度方向施加拉伸负荷。将出入孔的周围的规定区域设为上述周围区域,将包围该周围区域的区域设为上述其他区域时,拉伸负荷主要由其他区域承担,并且只会对周围区域施加较小的拉伸负荷。因此,能够减少出入孔的周围区域的增强,并且能够提供实现轻量化的主翼。

上述发明的一实施方式中,所述孔可用作形成在航空机的机身的外板上的窗用孔。

对于航空机的机身,会在长度方向上施加拉伸负荷和压缩负荷(即弯曲负荷)。将窗用孔的周围的规定区域设为上述周围区域,将包围该 周围区域的区域设为上述其他区域,因此拉伸负荷和压缩负荷主要由其他区域承担,并且只会对周围区域施加较小的拉伸负荷和压缩负荷。因此,能够减少窗用孔的周围区域的增强,并且提供实现轻量化的航空机机身。

本发明提供一种复合材料构造体的制造方法,该复合材料构造体采用向一个方向延伸并且多个孔在该一个方向上间隔排列而形成的纤维增强塑料制复合材料,并在所述一个方向上承受拉伸负荷及/或压缩负荷,其特征在于,使利用在长度方向上拉齐的连续纤维实施过强化的复合材料以该复合材料的宽度W的中心线穿过相邻的孔与孔之间的方式弯曲,并向所述一个方向曲折配置,所述孔的周围区域在所述一个方向上的拉伸刚性及/或压缩刚性小于包围该周围区域的其他区域在所述一个方向上的拉伸刚性及/或压缩刚性。

上述发明的一实施方式中,优选配置利用连续纤维实施过强化的复合材料,将所述一个方向设为0°时,所述连续纤维在相邻的孔与孔之间以朝向±30°以上±60°以下的方向、优选为±45°方向的方式,在所述长度方向上拉齐。

上述发明的一实施方式中,优选配置利用连续纤维实施过强化的复合材料,在包含朝向所述孔的±90°方向的直径的延长线的位置,所述连续纤维以朝向0°方向的方式在所述长度方向上拉齐。

上述发明的一实施方式中,优选配置利用连续纤维实施过强化的复合材料,在与所述孔的0°方向的直径并行的区域中,所述连续纤维在外缘以朝向0°方向的方式在所述长度方向上拉齐。

上述发明的一实施方式中,优选配置利用连续纤维实施过强化的复合材料,与所述孔的0°方向的直径并行的区域的所述连续纤维以朝向0°方向的方式在所述长度方向上拉齐。

有益效果

根据本发明的复合材料构造体、具有该复合材料构造体的航空机机翼及航空机机身、以及复合材料构造体的制造方法,能够曲折配置利用 在长度方向上拉齐的连续纤维实施过强化的复合材料,因此能够排除强度降低的主要原因,实现轻量化结构。

附图说明

图1显示了本发明的复合材料构造体的一实施方式所涉及的航空机的主翼的下表面外板,(a)为平面图,(b)为(a)的A-A的纵剖面图。

图2是显示构成作为盒构造的主翼的一部分的下表面外板和纵梁的立体图。

图3是图2的A-A的横剖面图。

图4是显示纤维板的层叠构造的主要部分解立体图。

图5是第1实施方式的第2层的主要部分平面图。

图6是第2实施方式的第2层的主要部分平面图。

具体实施方式

[第1实施方式]

以下,使用图1至图3说明本发明的一实施方式。

图1(a)中,显示了航空机的主翼1的下表面外板3。下表面外板3由纤维增强塑料(FRP:Fiber Reinforced Plastics)制的复合材料构造体形成。该图中所示的虚线表示含有襟翼和缝翼等的主翼1的外形线。

下表面外板3如图2和图3所示,从下表面外板3的宽度方向两端开始直立设置且成为侧面外板的前梁20和后梁22与将该前梁20和后梁22的上端相互连接的上表面外板24一同形成箱形的抗扭翼盒,承担主翼1的负荷。

在主翼1的长度方向上,设有多个纵梁26。纵梁26与下表面外板3等同样采用FRP制的复合材料。各纵梁26固定在下表面外板3和上表面外板24的内表面,主要承担主翼1在长度方向上的负荷。

在采用盒构造的主翼1的内部,设有翼肋28,将该内部空间在长度方向上分割为多个空间。翼肋28为向主翼1的宽度方向(与长度方向正交的方向)延伸的板状,在长度方向上以规定间隔配置有多个。如图3 所示,各翼肋28的前后端部分别利用螺栓和螺母等规定扣件30固定在前梁20和后梁22上。

如图1所示,在下表面外板3上,沿主翼1的延伸方向以规定间隔形成有多个出入孔(孔)5,该出入孔(孔)5用于对设置在主翼1内的燃油箱实施检查时和组装时等。

下表面外板3由位于各出入孔5的周围的周围区域3a和包围该周围区域3a的其他区域3b构成,利用一体的复合材料形成。

周围区域3a以通过各出入孔5的中心的沿主翼1的延伸方向的线为轴,并且以规定宽度d设置在该轴的两侧。此处,“宽度d”是指,与主翼1的延伸方向正交的方向上的周围区域的距离。

其他区域3b位于周围区域3a的周围,并且以周围区域3a以外的大致所有区域为存在范围。

构成下表面外板3的周围区域3a和其他区域3b为采用碳纤维增强塑料(CFRP:Carbon Fiber Reinforced Plastics)作为主体的复合材料。复合材料的层叠数根据要承担的强度来决定,例如为数十左右。

其他区域3b的碳纤维的取向比率为用作航空机的构造体的通常程度,例如,将主翼1的延伸方向(长度方向)设为0°时,由取向比率为(0°、+45°、-45°、90°)=(30%、30%、30%、10%)的具有各纤维方向的多个纤维板层叠而成。

周围区域3a的碳纤维的取向的比率与其他区域3b不同,将主翼1的延伸方向设为0°时,以相邻的孔5与孔5之间±30°以上±60°以下、优选±45°为主体。也就是说,使±30°以上±60°以下、优选为±45°的取向比率大于其他区域3b,例如±45°的取向比率为70%以上,由具有各纤维方向的多个纤维板层叠而成。并且,为了降低0°方向上的拉伸刚性,可将0°方向上的纤维从碳纤维变更为玻璃纤维(Glass fiber)或芳纶纤维(Aramid fiber)等。

参照图4说明实现上述取向比率的下表面外板3的层叠构造。图4是显示纤维板的层叠构造的主要部分解立体图。图4的层叠构造由第1层41至第5层45构成。第1层41至第5层45中,孔5、周围区域3a 以及其他区域3b的位置在上下方向上分别对应。图4中,将孔5的排列方向(主翼1的延伸方向)设为0°。

第1层41是纤维取向为+45°方向的层。第1层41形成为,将+45°纤维板配置在周围区域3a和其他区域3b。

第2层42主要是纤维取向为0°方向的层。第2层42形成为,将用于周围区域的复合材料配置在周围区域3a,将用于其他区域的复合材料配置在其他区域3b。后面将说明用于周围区域的复合材料以及用于其他区域的复合材料的详细配置。

第3层43是纤维取向为90°方向的层。第3层43形成为,将90°纤维板配置在周围区域3a和其他区域3b。

第4层44主要是纤维取向为0°方向的层。第4层44形成为,将用于周围区域的复合材料配置在周围区域3a,将用于其他区域的复合材料配置在其他区域3b。

第5层45与第1层41同样,是纤维取向为+45°方向的层。第5层45形成为,将+45°纤维板配置在周围区域3a和其他区域3b。

参照图5,进一步详细说明第2层42。图5是第2层42的主要部分平面图。图5中,第2层42由沿承受主负荷的方向t间隔排列形成的多个孔5、位于孔5的周围的周围区域3a、以及夹住周围区域3a形成在其两侧的其他区域3b构成。周围区域3a含有配置用于第1周围区域的复合材料而成的第1区域10以及配置用于第2周围区域的复合材料而成的第2区域11。用于第1周围区域的复合材料和用于第2周围区域的复合材料是利用在长度方向上拉齐的连续纤维实施过强化的复合材料(复合材料A)。此处,“连续纤维”表示周围区域3a在t方向上未被切断的状态。复合材料A是片状的预浸料或半含浸的预浸料等。

第1区域10使复合材料A以复合材料A的宽度W的中心线穿过相邻的孔5与孔5之间的方式弯曲并曲折配置而成。复合材料A可以通过多个孔5的中心的线为轴,对称地曲折。复合材料A可以是排列多个较窄的预浸料后形成宽度W的材料。

宽度W可以是在将复合材料A曲折配置时,利用复合材料A埋入相邻的孔5与孔5之间的长度。宽度W是与连续纤维的取向正交的方向 上的复合材料的长度。复合材料A的宽度W能够根据相邻的孔5的中心间距离L来决定。例如,如图5所示,1个倾斜部的纤维的方向与下一个倾斜部的纤维的方向正交(θ=90°)时,宽度W为相邻的孔5的中心间距离L的1/√2以下。

第1区域10含有倾斜部12和平行部13。倾斜部12和平行部13交替配置。图5中,从倾斜部12成为平行部13时,复合材料A以纤维取向按照规定角度切换的方式进行弯曲,也可使纤维取向如画曲线般慢慢变化地进行弯曲。

倾斜部12位于相邻的孔5与孔5之间,复合材料A中的连续纤维朝向±30°以上±60°以下、优选为±45°的方向。

平行部13配置在包含孔5的短直径(朝向±90°方向的直径)的延长线的位置上。平行部13还可配置在与孔5的长直径(孔5的0°方向的直径)并行的区域中包含第1区域10的外缘13a的位置。平行部13至少一部分与孔5相接。

第2区域11是曲折的第1区域的弯曲部分即谷部。第2区域11在该谷部配置用于第2周围区域的复合材料而成,使纤维取向为0°方向。

第4层44的结构也与第2层42相同。但是,第4层44的第1区域优选为峰谷部的配置与第2层42的第1区域相反的曲折形状。具体而言,第2层42的第1区域10为复合材料A按照峰部、谷部的顺序重复弯曲的曲折形状时,第4层44的第1区域为复合材料A按照谷部、峰部的顺序重复弯曲的曲折形状。将含有这种第1区域的第2层42和第4层44进行层叠后,第2层42的第1区域的峰部与第4层44的第1区域的谷部上下成对。

通过重复如上的第1层41至第5层45或者将这些层适当地任意组合(参照图5),与其他区域3b相比,能够使周围区域3a以±30°以上±60°以下、优选为±45°的取向比率为主体。

以下,说明使用上述结构的主翼1时的作用效果。

飞行时,会对主翼1施加使其前端向上方向变位的负荷。因此,会在主翼1的下表面外板3的延伸方向(0°方向)上,对其施加拉伸负荷。0°方向的拉伸负荷并非由周围区域3a,而是主要由下表面外板3的其 他区域3b承担。其原因在于,与其他区域3b相比,周围区域3a主体为±30°以上±60°以下、优选为±45°取向的纤维,其为对于0°方向的拉伸负荷的刚性较低的区域。因此,由于周围区域3a仅会承受小于其他区域3b的拉伸负荷,所以可降低周围区域3a的必要强度。也就是说,无需在孔周围设置用来增厚的用于强化的层叠体。为了便于理解,图1(b)中一同显示了用于强化的层叠体104。如此,由于不需要设置用于强化的层叠体104,所以能够减轻与该部分相应的重量。

周围区域3a以±30°以上±60°以下、优选±45°为主体,因此可强化剪切方向的刚性即扭转刚性。因此,周围区域3a不承担轴力(拉伸负荷),而承担扭转负荷。

周围区域3a含有使利用在长度方向上拉齐的连续纤维实施过强化的复合材料A曲折而成的第1区域10。由于复合材料A含有连续纤维,所以即使复合材料A弯曲,纤维也能够维持连续的状态。由于纤维连续,所以与使用短纤维时相比,能够提高0°方向上的强度。由于使用利用连续纤维实施过强化的复合材料,所以不会在第1区域内的纤维取向出现变化的界限产生间隙。因此,可形成精度高于以往的复合材料构造体。

由于通过以穿过孔5之间的方式使复合材料A曲折,能够在多个孔周围统一形成第1区域10,所以可以利用机械来配置复合材料A,并且能够高效率地进行制造。

通过将倾斜部12配置在孔5与孔5之间,能够实现0°方向(一个方向)上的拉伸刚性降低,并且容许拉伸方向(及/或压缩方向)上的伸长的区域。由于在倾斜部12中,纤维朝向±30°以上±60°以下的方向、优选为±45°方向,所以剪切方向(与一个方向正交的方向、即±90°方向)的强度会增大,并且能够提高扭转刚性。

通过在与朝向孔5的±90°方向的直径的延长线上设置平行部,能够不降低容易破裂的部位的强度,缓和对孔5的周围区域3a施加的应力集中。因此,可形成实体强度大的复合材料构造体。

通过在成为界限的周围区域3a配置平行部13,能够使周围区域3a的纤维的方向与邻接的其他区域3b的纤维的方向一致。因此,能够抑制在周围区域3a与其他区域3b的界限处出现±90°方向上的强度降低。

在层叠纤维板时,通过使一个层的第1区域A的峰部与另一个层的第1区域B的谷部成对,能够将纤维板的界限在上下方向上错开。因此,能够分散±90°方向上的强度降低风险。

[第2实施方式]

本实施方式所涉及的复合材料构造体除了设置平行部的范围不同以外,其结构与第1实施方式相同。

图6显示了本实施方式所涉及的第2层52的主要部分平面图。本实施方式中,平行部13配置在与孔5的长径(0°方向的直径)并行的区域。平行部的长度与孔5的长径相同。

通过将与孔5并行的区域都设为平行部,能够提高孔周围对于0°方向的强度。在孔的±90°方向上不存在纤维的方向出现切换的界限,因此能够提高孔周围对于±90°方向的强度。

另外,上述实施方式说明的是适用于主翼1的下表面外板3的情况,但本发明并不限定于此,只要是具有孔的复合材料构造体,即可广泛适用。

例如,在与下表面外板3一同构成抗扭翼盒的上表面外板中,也可适用与下表面外板3相同的结构。本实施方式也能够适用于尾翼等。

上述实施方式也能够适用于形成有窗用孔的航空机机身。并且,本发明的复合材料构造体不限定于航空机,也能够适用于例如船舶和车辆等。

上述实施方式中,主要使用碳纤维增强塑料(CFRP),但本发明并不限定于此,例如也可使用玻璃纤维增强塑料(GFRP:Glass Fiber Reinforced Plastic)和芳纶纤维增强塑料(AFRP:Aramid Fiber Reinforced Plastic)。

符号说明

1 主翼

3 下表面外板(复合材料构造体)

3a 周围区域

3b 其他区域

5 出入孔(孔)

10 第1区域

11 第2区域

12 倾斜部

13 平行部

13a (平行部的)外缘

20 前梁

22 后梁

24 上表面外板

26 纵梁

28 翼肋

30 扣件

41 第1层

42 第2层

43 第3层

44 第4层

45 第5层

104 用于强化的层叠体

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号