首页> 中国专利> 温室环境系统多变量区间控制方法

温室环境系统多变量区间控制方法

摘要

温室环境系统多变量区间控制方法,主要应用于温室生产的多变量控制系统中,通过放宽环境因子的目标控制精度,以“区间”控制目标替代传统的“点”控制目标。其步骤如下:1)初始化控制器参数,设置温室环境因子控制目标区间;2)传感器采集室内的温湿度、CO

著录项

  • 公开/公告号CN105843299A

    专利类型发明专利

  • 公开/公告日2016-08-10

    原文格式PDF

  • 申请/专利权人 浙江工业大学;

    申请/专利号CN201610207132.0

  • 申请日2016-04-05

  • 分类号

  • 代理机构杭州天正专利事务所有限公司;

  • 代理人王兵

  • 地址 310014 浙江省杭州市下城区潮王路18号浙江工业大学科技处

  • 入库时间 2023-06-19 00:12:25

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-01-08

    授权

    授权

  • 2016-09-07

    实质审查的生效 IPC(主分类):G05D27/02 申请日:20160405

    实质审查的生效

  • 2016-08-10

    公开

    公开

说明书

技术领域

本发明涉及一种温室环境系统多变量区间控制方法,具体涉及一种通过放宽环境因子的目标控制精度,以“区间”控制目标替代传统的“点”控制目标的温室环境多变量区间控制方法。

背景技术

目前温室环境的控制策略绝大多数还是采用严格的设定值精准控制模式,如:温度控制模式一般是早晚各保持某一固定的温度设定值,这种套用传统的固定设定点控制模式将导致两方面问题:

(1)精准控制往往导致大量的能源消耗和生产成本的急剧上升,因为温室的能量消耗与温室内各环境因子的控制精度有关,对于其设定值(set-point)的控制精度越高,所消耗的能量越大,据估算,若温室温度稳定精确控制在16℃比控制在15~17℃范围要多消耗10%的能料。而能耗成本在温室生产的总成本中占有很大的比例,温室加热的耗能量占全世界一年农业生产耗能量的35%,温室能耗的费用占生产总费用的15-40%,而在一些高纬度地区,温室的能耗甚至占到温室生产总成本的50-60%。能源消耗作为温室生产成本的主要部分,难以满足农业低成本的要求,这也是目前中高档自控温室还不受农民欢迎的主要因素,随着能源价格的不断上涨,已经成为制约温室生产可持续发展的重要瓶颈。为此,如何以尽可能小的能耗为温室作物提供最佳的生长环境,从而达到高产、优质、高效、可持续的温室生产目标一直是温室环境控制研究中所面临的问题。

(2)由于温室环境系统比较复杂,存在诸多干扰、约束以及各环境因子间的强耦合作用,如:温室环境因子(温度、湿度、光照等)均受加热通风降温等控制装置的影响,还受温室外大气候变化、温室内作物光合作用(如蒸腾)的严重影响,同时,室内温度和CO2浓度的升高将分别伴随着相对湿度下降和光合作用的加强等,为此,各环境因子的精准控制很容易导致某一因子达到目标精度要求,而其他目标则没有达到或没有全达到目标精度的“顾此失彼”状况,即:无法保证各环境因子控制目标的可行解(即控制器)的同时存在性。

发明内容

本发明要克服现有技术的上述缺点,提出了一种温室环境系统多变量区间控制方法,通过放宽环境因子的目标控制精度,以“区间”控制目标替代传统的“点”控制目标,从而既能确保控制器(可行解)存在性问题,又能为控制器提供经济 优化的自由度。

该区间控制方法包括以下几个步骤:

步骤1:系统启动后,初始化参数,并设置温室各环境因子的控制目标区间;

步骤2:传感器采集当前温室室内温度、湿度、CO2浓度等各环境因子的实际值;

步骤3:将采集得到的环境因子值与被控的目标控制区间进行比较,采用偏差处理算法对控制偏差进行处理;

步骤4:控制器根据偏差的大小输出控制律,控制偏差越大,控制作用越强,控制偏差为零,控制作用保持不变;

步骤5:中央控制单元通过PID或PI或模糊控制算法运算比较得出相关控制参数,并通过输出电路调节与控制加热调节阀、侧窗和帘幕电机、湿帘水泵、湿帘风机、喷淋泵、喷雾泵、二氧化碳阀、循环风扇等,执行元件通过加热、通风、喷雾、开启天窗或侧窗、施放CO2等措施调节室内的温室小气候环境,达到各环境因子的区间控制目标。

进一步,所述步骤3中,对于控制过程中控制偏差的处理,要求当系统输出即将违反或已经违反了区间约束要求时,能够使得被控变量快速而平稳地返回到区间内,因此,采用控制偏差处理算法对区间控制的偏差进行处理,该算法采用下述方式一或方式二得到:

方式一:直接法,当被控变量在区间内时,控制器不作调整,可认为是处于开环状态;当输出变量要超出给定区间时,控制器才会采取相应的动作,使输出快速返回到该区间,定义对第i个环境因子的偏差进行设计,得到

(S1)如果时,则ei=0;

(S2)如果时,则

(S3)如果时,则

式中,为给定的约束区间(区间控制目标);

和分别为约束区间的上、下限;

ei、yi和ui分别为控制系统的偏差、系统输出和控制律。

方式二:软约束法,借鉴传统的模型预测控制的处理方法,在进行性能指标函数设计时,通过加权加入这些约束因素,若违背约束,则按违背的大小程度进行惩罚,而约束违背的程度则根据偏差进行判断。定义以温室第i个环境因子的平均值为中心,根据此中心值与实际输出值yi的偏差来设计软约束值ηi,即:

设计函数,使之偏差ei越大,软约束值ηi越大,并满足:

(T1)如果ei=0,则ηi=0;

(T2)如果则ηi=∞(此时相当于硬约束)。

鉴于传统的设定值精准控制模式导致能耗的急剧上升以及很难满足温室环境多因子控制要求,发明必须着力解决温室环境控制的上述二大难题:一是温室生产的节能增效问题,即:如何以尽可能小的能耗为温室作物提供最佳的生长环境;二是控制器(即可行解)的存在性问题,即保证闭环系统的响应同时兼顾满足多个目标因子可达的要求。因此,有必要对传统的精准控制模式进行反思,不应过分着重控制性能而应从作物的生长生理特性出发,探索更加有效的温室环境优化控制策略。当然,值得注意的是,温室环境系统有别于工业中传统的控制对象,它也有易于控制的一面,例如温室环境控制目标的精度一般要求不高,“适宜环境目标值”一般是一个区域值。这一特点使得通过放宽控制目标精度解决以上控制难点、发明行之有效的温室环境控制方法成为可能。基于此,本发明旨在解决在温室生产过程中传统的设定值精准控制模式导致能耗的急剧上升和无法找到可行解的问题,通过放宽环境因子的目标控制精度,以“区间”控制目标替代传统的“点”控制目标,显然会使得各目标因子同时获得可行解的概率大增,从而确保控制器(可行解)存在性问题,同时又能为控制器提供经济优化的自由度,为降低生产成本、满足用户节能增效的目标要求提供了广阔的调节余地。

本发明的有益效果是:

本发明的主要特征在于通过放宽环境因子的目标控制精度,以“区间”控制目标替代传统的“点”控制目标,从而使得各目标因子同时获得可行解的概率大增,既能确保控制器(可行解)存在性要求,又能为控制器提供经济优化的自由度,为降低生产成本、满足用户节能增效的目标要求提供了广阔的调节余地,该发明尤其适用于温室生产过程中的多变量控制系统中其。

本发明的优点主要体现在以下几个方面:

1、本发明多变量区间控制方法,放宽了环境因子的目标控制精度,使控制系统获得可行解的概率大增,从而确保了控制系统能够找到有效解,克服了温室环境因各因子间的强耦合作用而导致无解的缺陷;

2、本发明多变量区间控制方法,由于控制目标是一个“区间”或“区域”而不是“点”,得到的可行解必然是一个解集,这为控制器经济优化提供了较大的自由度,用户可以根据偏好,选择能耗最低的那个解,为降低生产成本、满足用户节能增效的目标要求提供了广阔的调节余地。

3、本发明多变量区间控制方法,原理简单、结果可靠、实现方便、适用性 强,能够以最小的能源和资源投入的代价、有效和稳定地达到环境控制的目标要求。

附图说明

为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述,其中:

图1为本发明的方法流程示意图;

图2为本发明的温室环境区间控制系统示意图;

图3为本发明的区间控制效果图;

具体实施方式

以下将参照附图,对本发明的优选实施例进行详细的描述。应当理解,优选实施例仅为了说明本发明,而不是为了限制本发明的保护范围。

如图1所示,本发明的温室环境系统多变量区间控制方法,通过放宽环境因子的目标控制精度,以“区间”控制目标替代传统的“点”控制目标,从而确保控制器(可行解)存在,又能为控制器经济优化提供广阔的自由度,该控制方法实现步骤如下:

步骤1:系统启动后,初始化参数,并根据作物种类(如:番茄、黄瓜等)及该作物所处的生长阶段(如:发芽期、幼苗期、开花坐果期和结果期),设置温室各环境因子的控制目标区间;

步骤2:传感器采集当前温室室内温度、湿度、CO2浓度等各环境因子的实际值,为了能较为准确地采集到室内小气候环境,每一种环境因子传感器可在室内进行多点布置,取其平均值作为该时刻的实测值;

步骤3:将采集得到的环境因子实测值与该环境因子的目标控制区间进行比较,采用偏差处理算法对控制偏差进行处理;

步骤4:控制器根据偏差的大小计算输出控制律,控制偏差越大,控制作用越强,控制偏差为零,控制作用保持不变,如图2所示;

步骤5:中央控制单元通过PID或PI或模糊控制算法运算比较得出相关控制参数,并通过输出电路调节与控制加热调节阀、侧窗和帘幕电机、湿帘水泵、湿帘风机、喷淋泵、喷雾泵、二氧化碳阀、循环风扇等设备,执行元件通过加热、通风、喷雾、开启天窗或侧窗、施放CO2等措施调节室内的温室小气候环境,达到各环境因子的区间控制目标,某环境因子控制效果图如图3所示。

在系统启动使用前,可以根据作物的种类和该作物不同的生长阶段或同一生长阶段不同时期所需要的适宜气候环境划定控制目标区间,其步骤如下:

步骤a1:确定作物所属的科目及特性,便于从宏观上了解该作物对生长环境的要求;

例如:番茄属于茄科蔬果,番茄是喜温、喜光性蔬菜,对土壤条件要求不太严格,但为获得丰产,促进根系良好发育,应选用土层深厚,排水良好,富含有机质的肥沃壤土。

步骤a2:确定作物对生长环境的具体要求,包括温度、光照、水分、CO2浓度、土壤及营养等生长环境;

以番茄对温度的要求为例进行说明:番茄白天适宜的温度为25~28℃,夜间16~18℃;低于15℃,番茄种子发芽、授粉受精及番茄转红受到影响,低于10℃,生长缓慢,生殖发育受到抑制;5℃时茎叶停止生长,2℃则受到冷害,0℃即被冻死;高于35℃生殖发育受到影响,高于40℃生理紊乱而热死;充足的光照、适宜的温差利于养分的积累和转熟,促进植株健康发育,防止徒长,增强番茄的抗病、抗逆能力,提高产量。

步骤a3:根据作物生长对环境的要求,制定不同的生长阶段或同一生长阶段的不同时期作物生长的目标控制区间。

以番茄的温度目标控制区间为例进行说明:播种至出苗期间(指播种至两片子叶充分展开期),温度控制在昼温25~28℃、夜温15~18℃;出苗至分苗期,昼温可控制在20~25℃、夜温10~15℃,以防徒长;开花坐果期和结果期,昼温则控制在20~25℃、夜温18-21℃。

进一步,步骤3所述的控制偏差处理算法采用下述方式一或方式二得到:

方式一:直接法,当被控变量在区间内时,控制器不作调整,可认为是处于开环状态;当输出变量要超出给定区间时,控制器才会采取相应的动作,使输出快速返回到该区间,定义对第i个环境因子的偏差进行设计,得到

(S1)如果时,则ei=0;

(S2)如果时,则

(S3)如果时,则

式中,为给定的约束区间(区间控制目标);

和分别为约束区间的上、下限;

ei、yi和ui分别为控制系统的偏差、系统输出和控制律。

方式二:软约束法,借鉴传统的模型预测控制的处理方法,在进行性能指标函数设计时,通过加权加入这些约束因素,若违背约束,则按违背的大小程度进行惩罚,而约束违背的程度则根据偏差进行判断。定义以温室第i个环境因子的平均值为中心,根据此中心值与实际输出值yi的偏差 来设计软约束值ηi,即:

设计函数,使之偏差ei越大,软约束值ηi越大,并满足:

(T1)如果ei=0,则ηi=0;

(T2)如果则ηi=∞(此时相当于硬约束)。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号