首页> 中国专利> 小尺度非均匀地质体空间分布位置的预测方法和装置

小尺度非均匀地质体空间分布位置的预测方法和装置

摘要

本发明公开了一种小尺度非均匀地质体空间分布位置的预测方法和装置。该方法和装置利用小尺度非均匀地质体的绕射地震波的特点,从叠前共偏移距道集中提取绕射波信息,并对绕射波信息进行偏移成像,接着对绕射波成像体有利于小尺度非均匀地质体空间分布预测的属性分析,最终提取到小尺度非均匀地质体的空间分布参数,根据提取到的空间分布参数从而实现对小尺度非均匀地质体空间分布位置的预测。因此,该方法解决了小尺度非均匀地质体空间分布的预测,是复杂构造地区的地质体预测的有效工具。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-05-18

    授权

    授权

  • 2016-08-17

    实质审查的生效 IPC(主分类):G01V1/30 申请日:20160201

    实质审查的生效

  • 2016-07-20

    公开

    公开

说明书

技术领域

本发明涉及地质勘探领域,尤其涉及一种小尺度非均匀地质体预测方法和 装置。

背景技术

随着地质勘探开发技术的发展,一些小尺度非均匀地质体,如灭尘点、 小断块、裂缝等的探测越来越受到工业界重视。这些异常体的位置信息对识别 油气储层有着重要意义。

然而,在地震勘探开发领域,传统的地震数据处理通常只利用反射波来 获取地下地质构造信息,这种地震数据处理方式对大尺度连续地质体例如层状 沉积地层成像较好,而针对尺度较小的地质体,其反射波成像中往往表现为杂 乱反射,与噪音难以区分开来。

因此,利用传统的地震数据处理方式很难探测小尺度非均匀地质体的空 间分布情况。

发明内容

有鉴于此,本发明的发明人研究发现,在小尺度非均匀地质体区域,绕射 地震波发育明显,具有能量较弱,但成像分辨率高、识别能力强的特点,因此, 通过对绕射波运动学和动力学特征分析,本发明提供了一种基于绕射波信息的 小尺度非均匀地质体空间分布位置的预测方法和装置,以解决利用传统的地震 数据处理方法很难探测小尺度非均匀地质体的空间分布情况。

为了达到上述发明目的,本发明采用了如下技术方案:

一种小尺度非均匀地质体空间分布位置的预测方法,包括:

从叠前共偏移距道集中提取绕射波信息;

对所述绕射波信息进行偏移成像,形成绕射波成像体;

对所述绕射波成像体进行有利于小尺度非均匀地质体空间分布预测的属 性分析;

提取小尺度非均匀地质体的空间分布参数;

根据所述小尺度非均匀地质体的空间分布参数预测所述小尺度非均匀地 质体的空间分布位置。

可选地,所述对所述绕射波成像体进行有利于小尺度非均匀地质体空间分 布预测的属性分析,具体包括:

通过蚂蚁体技术和绕射波能量检测技术对所述绕射波成像体进行有利于 小尺度非均匀地质体空间分布预测的属性分析。

可选地,所述从叠前共偏移距道集中提取绕射波信息,包括:

获取地震数据;

将所述地震数据分选为共中心点道集数据;

对共中心点道集数据进行动校正;

将动校正后的共中心点道集数据分选为共偏移距道集;

对所述共偏移距道集进行规则化处理;

在规则化处理后的共偏移距道集上,利用反射波同相轴局部倾角和相邻地 震道数据,预测反射波同相轴;

从规则化处理后的共偏移距道集上对反射波进行自适应衰减,残余的数据 即为动校正处理后的绕射波数据;

对所述动校正处理后的绕射波数据进行反动校正处理,获取最终分离的绕 射波信息。

可选地,所述在规则化处理后的共偏移距道集上,利用反射波同相轴局部 倾角和相邻地震道数据,预测反射波同相轴之前,还包括:获取反射波同相轴 局部倾角。

可选地,所述获取反射波同相轴局部倾角,具体包括:

对地震数据中不同偏移距的地震道进行正常时差校正;

对正常时差校正后的地震数据进行叠加;

对叠加后的地震数据求取反射波同相轴局部倾角。

可选地,所述对所述绕射波信息进行偏移成像,形成所述绕射波成像体, 具体包括:

基于克希霍夫积分偏移理论对绕射波信息进行偏移成像,形成所述绕射波 成像体;

所述克希霍夫积分偏移理论的公式如下:

p(x,z,t)=A(t)12P(xs,xs,z=0,t+rsvd+rrvu)dxsdxr

其中,为地表观测得到的波场值;

分别为炮点和检波点坐标;

为反射点处在t时刻的波场;

rs和rr分别代表炮点到反射点、检波点到反射点的距离;

vd和vu分别代表下行波和上行波沿射线路径的均方根速度;

系数A为保幅处理因子,作为振幅比例因子,实现保幅处理。

一种小尺度非均匀地质体空间分布位置的预测装置,包括:

第一提取单元,用于从叠前共偏移距道集中提取绕射波信息;

偏移成像单元,用于对所述绕射波信息进行偏移成像,形成绕射波成像体;

属性分析单元,用于对所述绕射波成像体进行有利于小尺度非均匀地质体 空间分布预测的属性分析;

第二提取单元,用于提取小尺度非均匀地质体的空间分布参数;

预测单元,用于根据所述小尺度非均匀地质体的空间分布参数预测所述小 尺度非均匀地质体的空间分布位置。

可选地,所述第一提取单元具体包括:

第一获取子单元,用于获取地震数据;

第一分选子单元,用于将所述地震数据分选为共中心点道集数据;

动校正子单元,用于对共中心点道集数据进行动校正;

第二分选子单元,用于将动校正后的共中心点道集数据分选为共偏移距道 集;

规则化处理子单元,用于对所述共偏移距道集进行规则化处理;

预测子单元,用于在规则化处理后的共偏移距道集上,利用反射波同相轴 局部倾角和相邻地震道数据,预测反射波同相轴;

自适应衰减子单元,用于从规则化处理后的共偏移距道集上对反射波进行 自适应衰减,残余的数据即为动校正处理后的绕射波数据;

第二获取子单元,用于对所述动校正处理后的绕射波数据进行反动校正处 理,获取最终分离的绕射波信息。

可选地,所述第一提取单元还包括:

第三获取子单元,用于获取反射波同相轴局部倾角,并触发所述预测子单 元执行预测反射波同相轴的操作。

可选地,所述第三获取子单元具体包括:

正常时差校正子单元,用于对地震数据中不同偏移距的地震道进行正常时 差校正;

叠加子单元,用于对正常时差校正后的地震数据进行叠加;

计算子单元,用于对叠加后的地震数据求取反射波同相轴局部倾角。

可选地,所述偏移成像单元具体包括基于克希霍夫积分偏移理论对绕射波 信息进行偏移成像,形成所述绕射波成像体的子单元;

其中,所述克希霍夫积分偏移理论的公式如下:

p(x,z,t)=A(t)12P(xs,xs,z=0,t+rsvd+rrvu)dxsdxr

其中,为地表观测得到的波场值;

分别为炮点和检波点坐标;

为反射点处在t时刻的波场;

rs和rr分别代表炮点到反射点、检波点到反射点的距离;

vd和vu分别代表下行波和上行波沿射线路径的均方根速度;

系数A为保幅处理因子,作为振幅比例因子,实现保幅处理。

相较于现有技术,本发明具有以下有益效果:

本发明提供的小尺度非均匀地质体空间分布位置的预测方法,利用小尺度 非均匀地质体的绕射地震波的特点,从叠前共偏移距道集中提取绕射波信息, 并对绕射波信息进行偏移成像,接着对绕射波成像体有利于小尺度非均匀地质 体空间分布预测的属性分析,最终提取到小尺度非均匀地质体的空间分布参 数,根据提取到的空间分布参数从而实现对小尺度非均匀地质体空间分布位置 的预测。因此,该方法解决了小尺度非均匀地质体空间分布的预测,是复杂构 造地区的地质体预测的有效方法。

附图说明

为了清楚地理解本发明的具体实施方式,下面将描述本发明的具体实施方 式时用到的附图做一简要说明。显而易见地,这些附图仅是本发明的部分实施 例,本领域技术人员在未付出创造性劳动的前提下,还可以获得其它附图。

图1是本发明实施例提供的小尺度非均匀地质体空间分布位置的预测方 法流程示意图;

图2是本发明实施例提供的步骤S11的一个具体实施方式流程示意图;

图3是本发明实施例提供的小尺度非均匀地质体空间分布位置的预测装 置结构示意图;

图4是本发明实施例提供的第一提取单元的具体结构示意图。

具体实施方式

为使本发明的发明目的、技术方案和技术效果更加清楚、完整,下面结合 附图对本发明的具体实施方式进行详细描述。

首先需要说明的是,本发明实施例所述的小尺度非均匀地质体包括但不限 于尖灭点、小断块和裂缝。

图1是本发明实施例提供的小尺度非均匀地质体空间分布位置的预测方法 流程示意图。如图1所示,该预测方法包括以下步骤:

S11、从叠前共偏移距道集中提取绕射波信息:

在叠前共偏移距道集数据上,反射波和绕射波特征表现为:反射波同相轴 局部光滑连续,能量腔,子波波形稳定,可预测;绕射波能量弱,波形不稳定, 可预测性差。

根据上述特征差异,可以设计一滤波器,例如平面波分解滤波器,估算反 射波同相轴局部倾角,然后利用滤波算子从全波场中取出强反射波,将连续性 较差的绕射波信息保留下来。作为本发明的一个具体实施例,步骤S11的具体 实现方式如图2所示,其包括以下步骤:

S111、获取地震数据:

需要说明的是,在本发明实施例中,地震数据一般为炮集数据。炮集数据 为同一炮点激发,不同检波点接收的所有道上的数据。

S112、将所述地震数据分选为共中心点道集数据:

基于共中心点将地震数据分选为共中心点道集数据。共中心点道集数据是 地震资料处理中最常用的一种道集数据形式。其道集中的所有道来自于同一个 中心点。

S113、对共中心点道集数据进行动校正:

为了提高空间分布位置预测的精准度,本步骤对共中心点道集数据进行动 校正处理。

S114、将动校正后的共中心点道集数据分选为共偏移距道集:

基于共偏移距将动校正后的共中心点道集数据分选为共偏移距道集。此 时,每个共偏移距道集数据体都可以看作零偏移距数据体。

S115、对所述共偏移距道集进行规则化处理:

由于偏移距局部可能分布不均匀,存在缺道、坏道等问题,因此,需要对 分选后的共偏移距道集数据进行规则化处理。规则化处理后的共偏移距道集数 据才能应用局部倾角滤波。

S116、获取发射波同相轴局部倾角:

作为一个具体实施方式,获取反射波同相轴局部倾角的过程可以包括以下 步骤:

A1、对地震数据中不同偏移距的地震道进行正常时差校正:

需要说明的是,正常时差校正即为动校正。

在本发明实施例中,为了做到各道同相叠加,需要对不同偏移距的地震道 进行正常时差校正。其中,偏移距是指炮点到检波点之间的距离。

A2、对正常时差校正后的地震数据进行叠加:

需要说明的是,为了减少求取反射波同轴向局部倾角的计算量,本发明实 施例优选对正常时差校正后的地震数据进行叠加。通过叠加处理,把来自同一 个反射点上的反射波同相地叠加在一起,如此可以提高地震记录信噪比,有利 于更精确地提取反射波同相轴倾角信息。

A3、对叠加后的地震数据求取反射波同相轴局部倾角:

需要说明的是,作为示例,本发明可以利用平面解构滤波算法从叠加后的 地震数据中求取反射波同相轴局部倾角。此外,作为本发明实施例的扩展,本 发明也可以采用其它滤波算法从叠加后的地震数据中求取反射波同轴相局部 倾角。

S117、在规则化处理后的共偏移距道集上,利用反射波同相轴局部倾角和 相邻地震数据,预测反射波同相轴:

步骤S117可以具体为:在规则化处理后的共偏移距道集上,利用反射波同 相轴局部倾角和相邻地震数据,通过局部倾角滤波预测反射波同相轴。

S118、从规则化处理后的共偏移距道集上对反射波进行自适应衰减,残余 的数据即为动校正处理后的绕射波数据。

S119、对所述动校正处理后的绕射波数据进行反动校正处理,获取最终分 离的绕射波信息。

S12、对所述绕射波信息进行偏移成像,形成绕射波成像体:

反射波剖面断裂构造(如断层、裂缝系统等)不能很好成像,聚焦性差, 同相轴凌乱;绕射波剖面中,绕射波在断裂构造区域性发育的位置能量分布集 中,通过绕射波成像在断裂构造位置有明确显示,可应用其特性寻找并确定断 裂系统的位置。因此,为了预测小尺度非均匀地质体的空间分布位置,需要形 成绕射波成像体。

作为本发明的一个具体实施例可以基于克希霍夫积分偏移理论对上述提 取到的绕射波信息进行偏移成像,形成所述绕射波成像体;

所述克希霍夫积分偏移理论的公式如下:

p(x,z,t)=A(t)12P(xs,xs,z=0,t+rsvd+rrvu)dxsdxr

其中,为地表观测得到的波场值;

分别为炮点和检波点坐标;

为反射点处在t时刻的波场;

rs和rr分别代表炮点到反射点、检波点到反射点的距离;

vd和vu分别代表下行波和上行波沿射线路径的均方根速度;

系数A为保幅处理因子,作为振幅比例因子,实现保幅处理。

S13、对所述绕射波成像体进行有利于小尺度非均匀地质体空间分布预测 的属性分析:

需要说明的是,由于绕射波成像体的信噪比较低,通过直接分析绕射成像 体很难将小尺度非均匀地质体如小断层、裂缝系统等准确地分辨出来,这就需 要将绕射波成像体进行有利于小尺度非君度地质体空间分布预测的属性分析。

在本发明实施例中,可以通过蚂蚁体技术和绕射波能量检测技术对所述绕 射波成像体进行有利于小尺度非均匀地质体空间分布预测的属性分析。

其中,蚂蚁体技术又称断裂系统自动追踪技术,对小尺度非均匀地质体的 识别非常有效。由于常规反射波成像方法只对大尺度层状模型成像较好,例如 反射波成像层对层状沉积地层能够很好成像。当地质体的尺度较小时,在反射 波成像中难以进行识别。反射波成像方法对小尺度不规则、非均匀地质体的裂 缝带则成像难度较大,这些小尺度不规则、非均匀地质体的反射波成像体往往 表现为杂乱反射,与噪音难以区分开来,识别难度大。针对裂缝,孔洞等小尺 度非均匀地质体,绕射波具有比反射波强的识别能力。因此我们利用绕射数据 进行蚂蚁体裂缝追踪,最终获得一个低噪音、具有清晰断裂痕迹的数据体。

经过研究发现,通过反射波和绕射波成像剖面的分析,在地层沉积稳定区 域,构造破坏影响较小,绕射波能量相对较弱;而在构造发育区,受多期构造 作用,地层破坏严重,反射波聚焦差,同相轴相对凌乱,绕射波对应于这些断 裂系统,波场较发育。通过绕射信息分离及成像后,这些区域绕射能量相对较 强,指示该地区裂缝发育程度较高。因此,绕射波能量检测技术是有利于小尺 度非均匀地质体空间分布位置预测的属性分析手段。

S14、提取小尺度非均匀地质体的空间分布参数:

当小尺度非均匀地质体为裂缝时,所述小尺度非均匀地质体的空间分布参 数包括裂缝密度和方向。

S15、根据所述小尺度非均匀地质体的空间分布参数预测所述小尺度非均 匀地质体的空间分布位置。

以上为本发明实施例提供的小尺度非均匀地质体空间分布位置的预测方 法的具体实施方式。在该具体实施方式中,利用小尺度非均匀地质体的绕射地 震波的特点,从叠前共偏移距道集中提取绕射波信息,并对绕射波信息进行偏 移成像,接着对绕射波成像体有利于小尺度非均匀地质体空间分布预测的属性 分析,最终提取到小尺度非均匀地质体的空间分布参数,根据提取到的空间分 布参数从而实现对小尺度非均匀地质体空间分布位置的预测。因此,该方法解 决了小尺度非均匀地质体空间分布的预测,是复杂构造地区的地质体预测的有 效方法。

基于上述实施例提供的小尺度非均匀地质体空间分布位置的预测方法,本 发明实施例还提供了一种小尺度非均匀地质体空间分布位置的预测装置。具体 参见以下实施例。

图3是本发明实施例提供的小尺度非均匀地质体空间分布位置的预测装置 结构示意图。如图3所示,该预测装置包括以下单元:

第一提取单元31,用于从叠前共偏移距道集中提取绕射波信息;

偏移成像单元32,用于对所述绕射波信息进行偏移成像,形成绕射波成 像体;

属性分析单元33,用于对所述绕射波成像体进行有利于小尺度非均匀地 质体空间分布预测的属性分析;

第二提取单元34,用于提取小尺度非均匀地质体的空间分布参数;

预测单元35,用于根据所述小尺度非均匀地质体的空间分布参数预测所 述小尺度非均匀地质体的空间分布位置。

作为本发明的一个具体实施例,如图4所示,所述第一提取单元31可以 具体包括:

第一获取子单元311,用于获取地震数据;

第一分选子单元312,用于将所述地震数据分选为共中心点道集数据;

动校正子单元313,用于对共中心点道集数据进行动校正;

第二分选子单元314,用于将动校正后的共中心点道集数据分选为共偏移 距道集;

规则化处理子单元315,用于对所述共偏移距道集进行规则化处理;

预测子单元316,用于在规则化处理后的共偏移距道集上,利用反射波同 相轴局部倾角和相邻地震道数据,预测反射波同相轴;

自适应衰减子单元317,用于从规则化处理后的共偏移距道集上对反射波 进行自适应衰减,残余的数据即为动校正处理后的绕射波数据;

第二获取子单元318,用于对所述动校正处理后的绕射波数据进行反动校 正处理,获取最终分离的绕射波信息。

作为本发明的更具体实施例,上述所述的第一提取单元31还可以包括:

第三获取子单元319,用于获取反射波同相轴局部倾角,并触发所述预测 子单元执行预测反射波同相轴的操作。

作为本发明的更进一步具体实施例,所述第三获取子单元319可以具体包 括:

正常时差校正子单元,用于对地震数据中不同偏移距的地震道进行正常时 差校正;

叠加子单元,用于对正常时差校正后的地震数据进行叠加;

计算子单元,用于对叠加后的地震数据求取反射波同相轴局部倾角。

作为本发明的另一具体实施例,所述偏移成像单元32具体包括基于克希霍 夫积分偏移理论对绕射波信息进行偏移成像,形成所述绕射波成像体的子单 元;

其中,所述克希霍夫积分偏移理论的公式如下:

p(x,z,t)=A(t)12P(xs,xs,z=0,t+rsvd+rrvu)dxsdxr

其中,为地表观测得到的波场值;

分别为炮点和检波点坐标;

为反射点处在t时刻的波场;

rs和rr分别代表炮点到反射点、检波点到反射点的距离;

vd和vu分别代表下行波和上行波沿射线路径的均方根速度;

系数A为保幅处理因子,作为振幅比例因子,实现保幅处理。

以上为本发明实施例提供的小尺度非均匀地质体空间分布位置的预测装 置的具体实施方式。在该具体实施方式中,利用小尺度非均匀地质体的绕射地 震波的特点,从叠前共偏移距道集中提取绕射波信息,并对绕射波信息进行偏 移成像,接着对绕射波成像体有利于小尺度非均匀地质体空间分布预测的属性 分析,最终提取到小尺度非均匀地质体的空间分布参数,根据提取到的空间分 布参数从而实现对小尺度非均匀地质体空间分布位置的预测。因此,该装置解 决了小尺度非均匀地质体空间分布的预测,是复杂构造地区的地质体预测的有 效工具。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号