首页> 中国专利> 一种TiAl基合金板材超塑性成形方法

一种TiAl基合金板材超塑性成形方法

摘要

一种TiAl基合金板材超塑性成形方法,属于钛铝基合金塑性加工技术领域。其制备方法为:取粉末冶金法制备的TiAl基合金,热轧为板材后,通过热处理方法调整TiAl基合金组织为γ相与α2相的细小双态组织后与超塑性成形模具组装后整体加热至900~980℃,保温20~30分钟后,进行等温等速率成形。本发明超塑性成形过程工艺简单,无需对现有设备进行任何改造,解决了钛铝基合金板材超塑性成形制备零部件的技术难题,可为合金板材的工业化应用提供路径。本发明工艺简单,对设备要求低,适于工业化生产。

著录项

  • 公开/公告号CN105695910A

    专利类型发明专利

  • 公开/公告日2016-06-22

    原文格式PDF

  • 申请/专利权人 中南大学;

    申请/专利号CN201610076127.0

  • 申请日2016-02-03

  • 分类号C22F1/18(20060101);C22C14/00(20060101);

  • 代理机构43114 长沙市融智专利事务所;

  • 代理人颜勇

  • 地址 410083 湖南省长沙市岳麓区麓山南路932号

  • 入库时间 2023-12-18 15:32:47

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-06-16

    授权

    授权

  • 2016-07-20

    实质审查的生效 IPC(主分类):C22F1/18 申请日:20160203

    实质审查的生效

  • 2016-06-22

    公开

    公开

说明书

技术领域

本发明涉及钛铝基合金板材超塑性成形的方法,特指系一种大尺寸钛铝基 合金板材超塑性成形的方法;属于钛铝基合金塑性加工技术领域。

背景技术

钛铝基合金比强度高、比刚度高、密度低、阻燃性能和高温抗氧化、抗蠕 变性能好,是一种非常有潜力的轻质高温结构材料,在航空航天、汽车制造等 工业领域有着广阔的应用前景。钛铝基合金板材除了可以直接用作结构材料外, 还可以用于近净成形航空、航天发动机的零部件以及超高速飞行器的翼、壳体、 热区蒙皮,涡轮叶片,导弹尾翼等。然而,钛铝基合金较脆,属于难变形材料, 用传统的方法对钛铝基合金进行加工变形很困难,尤其是在生产制备形状复杂 或尺寸较大的零件如飞行器壳体、涡轮叶片时,传统的成形技术无法有效地发 挥作用。

超塑性成形技术作为一种“新型高效”的技术,它在难加工材料的成形和航空 工业领域显示出的巨大优越性越来越受到研究者们的重视。材料在进行超塑性 成形时变形抗力小、变形量大、易成形,因此,利用超塑性成形技术对钛铝基 合金进行加工具有巨大优势。目前,国内外已经有许多关于钛铝基合金超塑性 成形的研究。Imayev等人在1000℃条件下对Ti-35.9Al(wt%)基合金坯料进行等 温锻造,再进行后续不同的热处理后,发现在温度为1025℃、应变速率为 0.83×10-3s-1~1.6×10-3s-1条件下,合金试样的延伸率为130%~250%,具有超塑 性成形能力。Niu等人对锻造态的Ti-43Al-4Nb-2Mo-0.5B(at%)进行超塑性拉伸 时,在温度为900℃~950℃、应变速率为1×10-4s-1~4×10-4s-1时,得到的延伸率 为170%~405%,同样具有超塑性成形能力。

从他人的研究结果可以看出,虽然合金在特定的条件下均具备了超塑性, 但是成分的差别会导致超塑性的温度和应变速率条件有较大的差别,并且对于 特定的合金而言,必须同时具备温度和应变速率的条件才可能具有超塑性成形 能力。另一方面,合金单向拉伸超塑性性能的研究和实际工业中利用超塑性成 形方法制备零件还存在较大的差别,由于性能的研究主要关注简单的单向拉应 力状态下的超塑性性能,而零件的超塑性成形时的应力状态要复杂很多,并非 简单的单向拉伸,同时会受到周向挤压和摩擦力的作用,在多种应力的作用下, 超塑性成形的条件相比与单向拉伸的条件,可比性较小,也就是说采用单向拉 伸的超塑性条件进行零件的超塑性制备时,需要对条件进行较大的调整,且调 整程度并不可预知。比如,周向压力应力的增加有利于提高合金的超塑性,但 是摩擦力的存在则不利于合金的超塑性成形,所以调整方向存在较大的未知性。 可见对于零件的超塑性成形,需要考虑温度、应变速率和显微组织以及模具形 状等诸多因素,任何一个条件的变化,均会引起其它条件的相应变化。因此在 超塑性成形条件的设置时,必须考虑多种因素的复合作用,已有的研究报道的 条件主要对相应的材料和条件下具有指导性,但对于特定材料在特定条件下的 超塑性成形,其工艺参数却具有唯一性,并非根据现有研究及报道可以直接获 得。

对于铸锭冶金方法制备的TiAl合金板材的超塑性成形制备零件,由于本身 很难制备大尺寸的板材,并且铸锭冶金方法制备的合金晶粒一般比较粗大,并 且常常存在成分偏析或组织疏松的缺陷,导致其超塑性成形的难度增大。本发 明专利基于前期板材超塑性行为的基础理论研究,提出了适合大尺寸板材超塑 性成形的工艺方法。

发明内容

本发明的目的在于克服现有技术之不足而提供一种能生产较大尺寸零件的 钛铝基合金板材超塑性成形的方法。

本发明一种TiAl基合金板材超塑性成形方法,包括下述步骤:

第一步:合金基体组织调整

取粉末冶金法制备的TiAl基合金,热轧为板材后,通过热处理方法调整TiAl 基合金组织为γ相与α2相的细小双态组织;

第二步:超塑性成形

将第一步得到的TiAl基合金与超塑性成形模具组装后整体加热至 900~980℃,保温20~30分钟后,进行等温等速率成形;

第三步:稳定化处理

超塑性成形结束,出模后进行稳定化退火热处理。

本发明一种TiAl基合金板材超塑性成形方法,所述热处理方法的工艺参数 为:保温温度1250~1270℃,保温时间为4~5小时,保温结束后空冷。

本发明一种TiAl基合金板材超塑性成形方法,所述γ相与α2相的细小双态 组织中,γ相的平均晶粒尺寸为15~20μm,所占百分比为40%~45%,α2/γ晶团 的平均尺寸为20~25μm,所占百分比为55%~60%。

本发明一种TiAl基合金板材超塑性成形方法,所述等温等速率成形工艺参 数为:成形温度900~980℃,应变速率为8×10-5s-1~5×10-4s-1;成形过程中:工件 与模具的温度变化小于等于10℃,应变速率保持恒定。

本发明一种TiAl基合金超塑性成形方法,所述稳定化退火温度为850℃~ 900℃,保温时间3~5小时后出炉空冷。

本发明一种TiAl基合金板材超塑性成形方法,所述TiAl基合金包括下述组 分,按原子百分比组成:Al43~46%,Nb6.5~7.2%,W0.28~0.32%,杂质元素总 量小于0.1%,剩余为Ti。

本发明一种TiAl基合金板材超塑性成形方法,热轧后得到的TiAl基合金板 材宽度为250~300mm,长度为300~400mm,厚度为2~2.5mm。

本发明一种TiAl基合金板材超塑性成形方法,对通过热处理方法调整基体 组织后的TiAl基合金板材进行表面打磨处理,去除热处理过程中的表面氧化产 物,使板材厚度均匀,表面光洁,然后,与超塑性成形模具进行组装。

通常情况下,热轧态TiAl基合金板材的组织为双态组织,其中γ相和α2/γ 晶团的比例约为1:3,这种显微组织特征虽然较热轧前的近γ组织或全层片组织 的塑性有所提高,但是γ相和α2/γ晶团的比例并非塑性最佳的比例组合,这种 显微组织特征仍不具备超塑性成形的能力,需要对板材进行热处理,调整合金 中γ相和α2/γ晶团的比例,才能使板材具有超塑性成形的能力。由于TiAl基合 金塑性本身较差,进行显微组织调整使其具有合适的γ相和α2/γ晶团的比例的 同时,还必须在合适的成形温度和速度条件下才可实现超塑性成形。因此,要 实现TiAl合金板材的超塑性成形,需三种条件的有效组合。

本发明采用粉末冶金的路径制备TiAl基合金大尺寸坯料,热轧制备出大尺 寸钛铝基合金板材,再结合热处理措施使合金具有细小、均匀的双态组织,最 后再进行超塑性成形是一种制备较大尺寸钛铝基合金零件的可行路线。本发明 首先,利用粉末冶金成形技术制备出的热轧坯料可以避免铸造缺陷、细化晶粒 组织;其次,热轧出的大尺寸钛铝基合金板材为成形大尺寸零件奠定了基础; 特别是利用热处理措施得到的双态组织细小、均匀,具有良好的塑性,进行热 处理,既为钛铝基合金板材超塑性成形准备了良好的基体组织,也降低了对生 产设备的要求。实现了大尺寸且具有细小、均匀合金组织的钛铝基合金板材在 不同条件下的超塑性成形,获得较大尺寸的合金零件。

本发明采用上述工艺方法,可对粉末冶金钛铝基合金轧制板材进行超塑性 成形制备零件。本发明的优点:1、是利用粉末冶金高Nb钛铝合金本身具有的 耐高温氧化性的特征,在900~980℃时仅发生表面变色,而不像其它低Nb或不 含Nb的钛铝合金在900℃以上就会发生氧化脱落,避免了超塑性成形过程中所 需的防氧化涂层或气氛保护。2、超塑性成形性前,通过热处理方法调整合金基 体组织,为实现钛铝基合金板材超塑性成形提供合适的组织条件,使板材具有 最佳塑性变形能的显微组织,包括γ相和α2/γ晶团的晶粒大小以及比例;3、利 用温度和应变速率的有效组合,保证合金板材具有良好的超塑性成形性。

超塑性成形过程工艺简单,只需在进行超塑性成形前对板材进行热处理, 保证其合适的显微组织条件,在超塑性成形过程中控制成形温度和速度,即可 实现零件制备,无需对现有设备进行任何改造,并且可实现大批量生产。综上 所述,本发明为粉末冶金高Nb钛铝合金板材超塑性成形零件制备提供了一条简 单高效的途径。

附图说明:

附图1未进行热处理的热轧板材的显微组织。

附图2采用实施例1中超塑性成形前热处理工艺得到的板材显微组织。

附图3采用实施例2中超塑性成形前热处理工艺得到的板材显微组织。

附图4采用实施例3中超塑性成形前热处理工艺得到的板材显微组织。

附图5为本发明超塑性成形模具及成形示意图。

从图1中可以看出,未进行热处理的板材中γ相的数量远小于α2/γ晶团数 量,并且晶粒呈现拉长状,这种拉长的变组织晶粒也不利于超塑性成形。

从附图2-4可以看出:而经过本发明热处理的板材γ相和α2/γ晶团的比 例合适,且晶粒呈等轴状,更有利于超塑性成形。

图5为本发明超塑性成形模具及成形示意图,超塑性成形过程中凸起部分 为主要变形位置,经核算该位置变形时的真应变为0.8~0.9,相当于板材伸长率 达到105~120%,因此采用该发明方法对TiAl合金板材进行超塑性成形时,板 材的塑性需满足伸长率大于105%。

具体实施方式:

在进行超塑性成形制备零件前,需要对待成形的板材进行超塑性性能测试, 只有具备超塑性性能的板材才可能实现超塑性成形零件制备。对于热轧成形制 备的板材,当板材未进行热处理时,组织中γ相的平均晶粒尺寸为15±5μm,所 占百分比为30±2%,α2/γ晶团的平均尺寸为20±5μm,所占百分比为65±5%,在 温度为980±10℃,应变速率为1×10-4s-1的条件下进行拉伸时,板材的伸长率为 53%,不具有超塑性,因此并不适合进行超塑性成形;对轧制板材进行如以下实 施例的热处理后,在相应的温度和应变速率条件下进行拉伸性能测试时,伸长 率分别达到113%,125%以及120%,均具备了超塑性,因此可进行超塑性成形 制备零件。

本发明实施例、对比例中,均采用附图5所示模具进行超塑性成形,制作 头盔形的零部件。

对比例

对粉末冶金方法制备的原子百分成分为:Al44.5±1.5%,Nb7±0.2%, W0.3±0.02%,其余杂质元素总量小于0.1%,剩余为Ti的钛铝合金进行热轧制 备宽度为300mm,长度大于350mm,厚度2.75±0.25mm的板材。热轧板材组 织中γ相的平均晶粒尺寸为15±5μm,所占百分比为30±2%,α2/γ晶团的平均尺 寸为20±5μm,所占百分比为65±5%,将热轧板材进行表面打磨处理,去除热处 理过程中的表面氧化产物,保证板材厚度均匀,表面光洁,打磨处理后板材的 厚度为2.2±0.2mm。将表面处理后的板材与超塑性成形模具组装后置于加热炉中 一起加热保温。加热温度为980±10℃,保温30分钟。保温后将组合后的板材与 超塑性成形模具在压力机上进行等温等速率超塑性成形。超塑性成形温度与保 温温度一致为980±10℃,应变速率为1×10-4s-1,在此条件下进行超塑性成形时, 零件尚未完全成形,则在弧顶位置发生断裂,无法实现超塑性成形。

实施例1

对粉末冶金方法制备的原子百分成分为:Al44.5±1.5%,Nb7±0.2%, W0.3±0.02%,其余杂质元素总量小于0.1%,剩余为Ti的钛铝合金进行热轧制 备宽度为250mm,长度大于300mm,厚度2.75±0.25mm的板材。将待成形的 板材在温度为1260±10℃条件下保温4.5±0.5小时后空冷,得到具有细小双态组 织的板材,且双态组织中γ相的平均晶粒尺寸为17.5±2.5μm,所占百分比为 42.5±2.5%,α2/γ晶团的平均尺寸为22.5±3μm,所占百分比为57.5±2.5%。将热 处理后板材进行表面打磨处理,去除热处理过程中的表面氧化产物,保证板材 厚度均匀,表面光洁,打磨处理后板材的厚度为2.2±0.2mm。将表面处理后的板 材与超塑性成形模具组装后置于加热炉中一起加热保温。加热温度为900±10℃, 保温30分钟。保温后将组合后的板材与超塑性成形模具在压力机上进行等温等 速率超塑性成形。超塑性成形温度与保温温度一致为900±10℃,应变速率为 8×10-5s-1。超塑性成形结束,出模后在温度为850℃条件下稳定化退火5小时后 空冷;制备的头盔状零件圆弧顶端至开口端平面的距离为248-252mm,采用超 声波探伤,圆弧顶端未见裂纹。

实施例2

对粉末冶金方法制备的原子百分成分为:Al44.5±1.5%,Nb7±0.2%, W0.3±0.02%,其余杂质元素总量小于0.1%,剩余为Ti的钛铝合金进行热轧制 备宽度为280mm,长度大于350mm,厚度2.75±0.25mm的板材。将待成形的 板材在温度为1260±10℃条件下保温4.5±0.5小时后空冷,得到具有细小双态组 织的板材,且双态组织中γ相的平均晶粒尺寸为17.5±2.5μm,所占百分比为 42.5±2.5%,α2/γ晶团的平均尺寸为22.5±3μm,所占百分比为57.5±2.5%。将热 处理后板材进行表面打磨处理,去除热处理过程中的表面氧化产物,保证板材 厚度均匀,表面光洁,打磨处理后板材的厚度为2.2±0.2mm。将表面处理后的板 材与超塑性成形模具组装后置于加热炉中一起加热保温。加热温度为950±10℃, 保温25分钟。保温后将组合后的板材与超塑性成形模具在压力机上进行等温等 速率超塑性成形。超塑性成形温度与保温温度一致为950±10℃,应变速率为 1×10-4s-1。超塑性成形结束,出模后在温度为880℃条件下稳定化退火4小时后 空冷;制备的头盔状零件圆弧顶端至开口端平面的距离为248-252mm,采用超 声波探伤,圆弧顶端未见裂纹。

实施例3

对粉末冶金方法制备的原子百分成分为:Al44.5±1.5%,Nb7±0.2%, W0.3±0.02%,其余杂质元素总量小于0.1%,剩余为Ti的钛铝合金进行热轧制 备宽度为300mm,长度大于400mm,厚度2.75±0.25mm的板材。将待成形的 板材在温度为1260±10℃条件下保温4.5±0.5小时后空冷,得到具有细小双态组 织的板材,且双态组织中γ相的平均晶粒尺寸为17.5±2.5μm,所占百分比为 42.5±2.5%,α2/γ晶团的平均尺寸为22.5±3μm,所占百分比为57.5±2.5%。将热 处理后板材进行表面打磨处理,去除热处理过程中的表面氧化产物,保证板材 厚度均匀,表面光洁,打磨处理后板材的厚度为2.2±0.2mm。将表面处理后的板 材与超塑性成形模具组装后置于加热炉中一起加热保温。加热温度为980±10℃, 保温20分钟。保温后将组合后的板材与超塑性成形模具在压力机上进行等温等 速率超塑性成形。超塑性成形温度与保温温度一致为980±10℃,应变速率为 5×10-4s-1。超塑性成形结束,出模后在温度为900℃条件下稳定化退火3小时后 空冷;制备的头盔状零件圆弧顶端至开口端平面的距离为248-252mm,采用超 声波探伤,圆弧顶端未见裂纹。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号