首页> 中国专利> 用于轻石脑油芳构化的具有改善的活性/选择性的催化剂

用于轻石脑油芳构化的具有改善的活性/选择性的催化剂

摘要

在一个实施方式中,用于制备催化剂的方法,包括:形成包含锗源、碱金属源、铝源、和二氧化硅源的混合物,其中,所述混合物具有pH;将所述混合物的pH调节至大于或等于9.5的值;将所述混合物结晶和锻烧以形成沸石;在所述沸石上沉积铂;并且锻烧所述沸石以形成最终催化剂。所述最终催化剂是非酸性的并且具有基于除了任何粘合剂和挤出助剂之外的所述最终催化剂的总重量小于或等于0.75wt%的铝含量以及大于或等于125的Si:Al2摩尔比。

著录项

  • 公开/公告号CN105636693A

    专利类型发明专利

  • 公开/公告日2016-06-01

    原文格式PDF

  • 申请/专利权人 沙特基础工业公司;

    申请/专利号CN201480056989.6

  • 申请日2014-11-06

  • 分类号B01J37/18;B01J29/04;B01J29/44;B01J37/00;C07C5/41;C10G35/095;C10G45/70;

  • 代理机构北京康信知识产权代理有限责任公司;

  • 代理人张英

  • 地址 沙特阿拉伯利雅得

  • 入库时间 2023-12-18 15:38:07

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-12-13

    授权

    授权

  • 2016-06-29

    实质审查的生效 IPC(主分类):B01J37/18 申请日:20141106

    实质审查的生效

  • 2016-06-01

    公开

    公开

说明书

背景技术

沸石是可以在沸石晶体的骨架中包含其他金属的结晶的水合铝硅酸盐(crystallinehydratedaluminosilicate)或者可以是在沸石上(即,在表面上或者在孔中)可以被沉积、交换、或浸渍的结晶的水合铝硅酸盐。用于制备沸石的方法包括:制备铝的氧化物的源和氧化硅的混合物水溶液;以及在结晶条件下保持所述混合物水溶液直至形成沸石晶体。在晶体结构中,存在可以相互连接的孔和通道。这些孔和通道的尺寸和构造允许某些尺寸的分子进入。沸石用作催化剂用于,除了别的事物之外,异构化、甲苯岐化、烷基转移、氢化、烷烃寡聚、和芳构化。芳构化是可以包括烃的脱氢、脱氢烃的环化、以及环化烃的芳构化步骤的多步过程。

烃芳构化的一种这样的实例是石脑油的芳构化。石脑油主要是直链、支链、和环状的脂肪族烃,具有五至九个碳原子/分子的轻石脑油,以及具有七至十二个碳原子/分子的重石脑油的混合物。通常,轻石脑油包含环烷、如环己烷和甲基环戊烷,以及直链和支链的链烷烃、如己烷和戊烷。轻石脑油通常包含60至99重量百分数(wt%)的链烷烃和环烷烃。轻石脑油可以表征为具有70至150克/摩尔(g/mol)的范围的分子量、0.6至0.9克/立方厘米(g/cm3)的范围的比重、50至320华氏度(°F)的范围(10至160摄氏度(℃))的沸点、以及在室温下5至500毫米汞柱(mmH)的蒸气压力的石油馏出物。轻石脑油可以通过各种方法,例如蒸馏,获得自原油、天然气凝析油、或者其他烃流股。

对于石脑油芳构化,具有改善的选择性和转化率中的一种或者两者的沸石是期望的。

发明内容

在本文中公开了催化剂、用于生产和使用该催化剂的方法。

在一个实施方式中,生产催化剂的方法包括:形成包含锗源、碱金属源、铝源、和二氧化硅源的混合物,其中,该混合物具有pH;将混合物的pH调节至大于或等于9.5的值;将混合物结晶和煅烧以形成沸石;在沸石上沉积铂;并且煅烧沸石以形成最终催化剂。最终催化剂是非酸性的,并且具有基于除了任何粘合剂和挤出助剂(extrusionaide)之外的最终催化剂的总重量小于或等于0.75wt%的铝含量以及大于或等于125的Si:Al2摩尔比。

在另一个实施方式中:催化剂包含:在其上沉积有Pt的骨架中包含Si、Al、和Ge的沸石;其中,催化剂具有大于或等于125的Si:Al2摩尔比、40至400的Si:Ge摩尔比,以及0.9至2.5的Na:Al摩尔比,其中,催化剂具有小于或等于0.75wt%的铝含量,其中,催化剂是非酸性的。

在另一个实施方式中:用于烃芳构化的方法包括:使包含6至12个碳原子/分子的烷烃与催化剂接触,该催化剂包含:在其上沉积有Pt的骨架中包含Si、Al、和Ge的沸石;其中,催化剂具有大于或等于125的Si:Al2摩尔比、40至400的Si:Ge摩尔比,以及0.9至2.5的Na:Al摩尔比,其中,除了任何粘合剂和挤出助剂之外,催化剂具有小于或等于0.75wt%的铝含量。

通过以下具体实施方式来举例说明上述和其他特征。

具体实施方式

在制备用于轻石脑油芳构化的非酸性的催化剂的先前方法中,形成包含铝源、二氧化硅源、四价金属、三价金属、或者包含上述一种或多种的组合的混合物,并且然后将混合物的pH调节至小于或等于9的低pH(例如,为了在催化剂上获得期望量的四价金属)。用这样的方式制备的材料通常是酸性的。酸性的沸石催化剂具有大量的具有显著的或Lewis酸性的位点,并且这些位点促进进料组分的裂解,这在轻石脑油芳构化中是不期望的反应。因此,通常使催化剂经受合成后离子交换步骤,其中通过使碱金属接近铝来将碱金属或者其他碱性组分用于中和酸性位点。当使用具有+1价的碱金属时,在所得的非酸性催化剂中碱金属与铝的摩尔比将大于0.90,例如,大于或等于0.95。出乎意料地发现非酸性催化剂可以由具有大于或等于9.5的pH值的混合物形成。在不受理论限制的情况下,应认为在这种条件下,出现增加量的钠以中和铝。更进一步出乎意料地发现,尽管在这种增加的pH下制备催化剂可以限制可能结合至最终催化剂中的锗的量,例如,基于催化剂的最终重量(除了任何粘合剂和挤出助剂之外),至小于3wt%,但是仍然可以得到良好的活性和良好的选择性。良好的活性是在515℃的温度以及8.6倒数小时(reciprocalhour)(hr-1)的液时空速下大于或等于20%的转化率,优选地,大于或等于30%并且良好的选择性是大于或等于85%、优选地,大于或等于90%的选择性。

催化剂可以是锗(Ge)取代的中孔的沸石,在其上已经将贵金属(如铂)沉积。优选地,催化剂可以是非酸性的、低铝的Pt/Ge-ZSM-5催化剂,例如,基于最终催化剂的总重量,具有小于或等于0.75wt%,例如,0.45至0.7wt%的铝(Al)的量。如在本文中使用的,非酸性的沸石是指其基本上全部的阳离子交换位点,例如,通常与铝有关的那些,被非氢阳离子种类占据(例如,碱金属或碱土金属如钠、钾、铷、铯、锂、镁、钙、钡、或包含上述一种或多种的组合;优选地,碱金属可以包括钠)的非酸性的沸石。通常阳离子位点用于烃裂解成不期望的产物。

沸石可以是多种沸石中任一种,其中沸石是具有包含硅石(SiO4)和氧化铝(AlO4)四面体的三维骨架(framework)的结晶的铝硅酸盐,并且可以是天然存在的或者是合成的。沸石在结晶的骨架中可以包含除了铝和硅之外的元素。术语“沸石”不仅包含铝硅酸盐,而且还包含其中其它三价元素取代铝的物质,以及其中其它四价元素取代硅的物质。沸石是用于异构化、甲苯岐化、烷基转移、氢化和烷烃低聚反应以及芳构化的已知催化剂。一些沸石催化剂,特别是含有第VIII族沉积金属的那些可以对硫中毒敏感。

沸石结构的实例是MTW、FER、MEL、TON、MRE、MWW、MFI、BEA、MOR、LTL、或MTT。在本说明书中使用的术语“ZSM-5”是指具有MFI结构的沸石。沸石可以包含ZSM-5、ZSM-11、ZSM-23、镁碱沸石、丝光沸石、或者包含上述一种或多种的组合。沸石可以来自于在骨架结构中包含五元的环单元或者五元硅环(pentasil)单元的五元硅环沸石家族。这种沸石包括ZSM-5、ZSM-11、ZSM-23、等等。沸石可以是ZSM-5或者MFI(ZSM-5的国际沸石协会命名)。ZSM-5沸石具有二维的具有笔直通道(5.4埃x5.6)的孔结构,其与弯曲通道(sinusoidalchannel)(5.1x5.7)交叉,在交叉处具有9的最大直径。例如,在美国专利号3,702,886中描述了ZSM-5沸石催化剂以及它们的制备。这种ZSM-5沸石是在晶体结构中包含硅和铝两者的铝硅酸盐。ZSM-11是另一种与ZSM-5类似的五元硅环铝硅酸盐沸石。

沸石在结晶的骨架中可以包含除了铝和硅之外的元素,其中其他三价元素可以将至少一些的铝替代,和/或其他四价元素可以将至少一些的硅替代。通常,沸石是TO4四面体的结构,其通过共享氧原子形成三维网格,其中T代表四价元素,如硅,以及三价元素,如铝。四价元素,如锗、锡、铅、锆、钛、钒、或铬,可以取代硅。三价元素,如镓、硼、铟、铊、或铁,可以取代铝。这些四价的和三价的元素将是在沸石晶体的骨架中,还称为骨架元素。可以在沸石晶体的骨架中的其他元素是锌和/或磷。

锗沸石在沸石结构的结晶的骨架中包含硅、锗、并且可选地铝,例如,锗沸石可以是在骨架中具有锗的铝硅酸盐沸石并且可以优选地是锗ZSM-5(Ge-ZSM-5)沸石。锗沸石可以包括具有5至8的平均孔径、125至200的氧化硅与氧化铝摩尔比(“SAR”;还称为Si:Al2摩尔比)、以及基于最终催化剂(除了粘合剂和挤出助剂之外)的总重量的0.1至3wt%、优选0.3至3wt%的锗含量的中孔的沸石。锗沸石可以包括具有如MTW、FER、MEL、TON、MRE、MWW、MFI、BEA、MOR、LTL、和MTT结构的沸石。

可以通过制备混合物、允许混合物形成凝胶、以及从其中结晶沸石来形成沸石。混合物可以包含锗源(如二氧化锗)、钠源(例如,NaOH和/或NaCl)、和铝源(如铝酸钠,例如,包含氧化铝和氧化钠的铝酸钠溶液)的水溶液,例如,作为单一的水溶液或者结合的多重溶液(multiplesolution)。例如,可以通过制备两种水溶液(第一溶液包含锗源和钠源,并且第二溶液包含铝源)、以及将所述溶液结合来形成沸石。混合物可以包含二氧化硅源如铵离子或者钠离子稳定的胶体二氧化硅,例如,由Sigma-Aldrich可商业获得的LudoxTMAS-30、LudoxTMAS-40、LudoxTMSM-30、LudoxTMHS-30,或者由Nalco可商业获得的NalcoTM1034A、NalcoTM2326、NalcoTM2327、NalcoTM2329、NalcoTMDVSZN002,其中,例如,基于胶体材料的总重量,胶体二氧化硅可以包含15至40wt%的二氧化硅。

混合物可以包含有机的结构导向剂(structuredirectingagent),在结晶期间将其结合至结晶网络的微孔空间中,因此通过与例如硅和铝相互作用来控制网络的构建以及辅助稳定结构。结构导向剂的实例是有机胺和季铵化合物以及它们的盐和阳离子。具体地,结构导向剂可以包括四正-丙基氢氧化铵、四正-丙基溴化铵、四正-丙基氯化铵、四乙基氢氧化铵、四乙基溴化铵、四甲基氯化铵、六亚甲基亚胺、1,4-二(1'4'-二氮杂二环[2.2.2]辛烷)丁烷氢氧化物、吗啡啉、环己胺、二乙基乙醇胺、N,N'-二异丙基咪唑鎓阳离子、四丁基铵化合物、二-正-丙胺(DPA)、三丙胺、三乙胺(TEA)、三乙醇胺、哌啶、2-甲基吡啶、N,N-二甲基苄胺、N,N-二乙基乙醇胺、二环己胺、N,N-二甲基乙醇胺、胆碱阳离子、N、N'-二甲基哌嗪、1,4-二氮杂双环(2,2,2)辛烷、1,6-己二胺、N',N',N,N-四甲基-(1,6)己二胺、N-甲基二乙醇胺、N-甲基乙醇胺、N-甲基哌啶、3-甲基哌啶、N-甲基环己胺、3-甲基吡啶、4-甲基吡啶、奎宁环(quinuclidine)、N,N'-二甲基-1,4-二氮杂双环(2,2,2)辛烷离子;二-正-丁胺、新戊胺、二-正-戊胺、异丙胺、叔-丁基-胺、乙二胺、吡咯烷、2-咪唑酮、N-苄基-1,4-二氮杂双环[2.2.2]辛烷阳离子、1-[1-(4-氯苯基)-环丙基甲基]-1-乙基-吡咯鎓阳离子、1-乙基-1-(1-苯基-环丙基甲基)-吡咯鎓阳离子、和1,8-二氨基辛烷。该混合物可以包含包括上述结构导向剂中的一种或多种的组合。结构导向剂可以包含四-正-丙基氢氧化铵(TPAOH))。混合物可以具有0.01至1、优选,0.05至0.5的结构导向剂与二氧化硅的摩尔比。

混合物的Si:Al2摩尔比可以是175至290,优选,200至275,更加优选,220至275。在混合物中的Si:Ge摩尔比可以是5至100、优选,15至50。在混合物中Na:Al摩尔比可以是10至60、优选,12至40。可以将混合物的pH调节至大于9的值,优选,大于或等于10,更加优选,10至小于或等于13。例如,可以将混合物的pH调节至大于或等于9.5、优选,9.5至12.5、更加优选,10至12.5的值。

应注意到,尽管利用作为合成助剂的氟化物制备一些沸石,但是由于氟化物潜在的高毒性和腐蚀性,这会是不期望的,其可以致使其用于商业合成是困难的和不实际的。因此,在本文中公开的方法可以不含氟化物,并且由此,最终沸石可以不含氟化物(即,除了可能的杂质之外,沸石不具有氟化物)。换言之,在加工期间,不有意地添加氟化物。

然后可以将混合物结晶、洗涤,然后煅烧,以形成沸石。结晶可以在140至200℃、优选160至180℃的温度下出现。结晶可以进行最长6天的时间,优选,1至6天,更加优选,1.5至5天。可以利用水将结晶的沸石洗涤并且进行煅烧。例如,可以将沸石煅烧,以烧掉可能存在的一种或多种的沸石结构导向剂以及任何其他可分解的材料。可以将沸石在大于或等于500℃、优选地,大于或等于530℃、更加优选地,大于或等于550℃的温度下煅烧。可以将沸石在500至650℃的温度下煅烧。可以将沸石煅烧大于或等于0.5小时(hr),优选地,大于或等于1hr,更加优选地,大于或等于2hr。可以将沸石煅烧0.5至20hr。

可以将贵金属沉积在煅烧的沸石上,例如,通过如离子交换、浸渍、和初湿浸渍(incipientwetnessimpregnation)的方法。可以将贵金属作为容易在水中溶解的贵金属化合物(例如,贵金属盐)添加至煅烧沸石。例如,当金属是铂时,铂源可以是任何可适用的铂源,如氯铂酸(H2PtCl6·6H2)、四胺硝酸铂((NH2)4Pt(NO3)2),或者包含上述至少一种的组合。基于催化剂的总重量(除了粘合剂和挤出助剂之外),贵金属可以以小于或等于3.0wt%(如通过x-射线荧光(XRF)技术测量的),优选地,0.05至3.0wt%,更加优选地,0.25至3wt%,更加优选地,0.2至2wt%,甚至更加优选地,0.2至1.5wt%的降低的量存在于最终催化剂中。贵金属可以包含钯、银、铂、金、铱、铑、钌、或者包括上述一种或多种的组合,优选地,贵金属可以包含铂。在添加粘合剂之前或之后可以将贵金属,如铂,沉积在结晶结构上并且使沸石成形。在已经添加贵金属之后,可以将沸石再次加热,例如,至约300℃。

生产本发明催化剂的方法可以不含离子交换步骤,例如,与碱金属的离子交换,例如,铯化合物。

在与碱一次或者两次离子交换之后以及在贵金属沉积之后可以将沸石热处理以形成最终催化剂。可以将催化剂在大于或等于200℃、优选地,200至400℃的升高的温度下加热一段时间以足够地分解金属盐。加热时间可以是0.5至10hr、优选地,0.5至5hr。可以进一步地将催化剂煅烧,例如,在200至400℃、优选地,250至330℃的温度下煅烧0.5至20hr、优选地,1至20hr、更加优选地,5至8hr的时间段。可以是在空气、O2、N2、H2或者包含上述至少一种的组合下进行热处理和/或煅烧。

最终催化剂可以是非酸性的。最终催化剂可以具有大于或等于125、优选地,125送至200、更加优选地,140至190的SAR。最终催化剂可以具有40至400、优选地,50至300、更加优选地,80至200的Si:Ge摩尔比。最终催化剂可以具有0.9至2.5、优选地,1.2至2.2的Na:Al摩尔比。基于最终催化剂的总重量(除了粘合剂之外),最终催化剂可以具有0.3至3wt%、优选地,0.4至2.5wt%、更加优选地,0.6至1.5wt%、甚至更加优选地,0.5至1.5wt%的锗含量。最终催化剂可以包含以下一种或多种:0.5至2wt%、优选地,1至2wt%的Na;小于或等于0.75wt%、优选地,小于或等于0.7wt%、更加优选地,0.4至0.7wt%的Al;小于3wt%、优选地,小于或等于2.5wt%、更加优选地,0.4至1.5wt%的Ge;0.05至3wt%、优选地,0.2至2wt%、更加优选地,0.2至1.5wt%的Pt;或者包括上述一种或多种的组合(基于最终催化剂的总重量(除了粘合剂之外))。基于催化剂的总重量(除了粘合剂之外),最终催化剂可以不含铯,例如,可以包含小于或等于0.1wt%,例如,0wt%的铯。

最终催化剂的化学式可以由式I表示:

Ptz[(0.9-2.5)M+y(SiO2)(GeO2)x(AlO2)y](I)

其中z是0.00015至0.01;M+是碱金属,如钠,y是0至0.02,优选地,0.01至0.017;并且x是0.0025至0.025,优选地,0.003至0.0125。

可以将添加剂添加至催化剂,其可以包含粘合剂和/或挤出助剂以形成成形混合物。粘合剂可以包含无机的氧化物材料。粘合剂可以包含含铝或含硅的材料如二氧化硅、氧化铝、粘土、磷酸铝、二氧化硅-氧化铝、或者包含上述至少一种的组合。粘合剂可以包含镁、钛、锆、钍、硅、硼的氧化物,以及它们的混合物;粘土,例如,高岭土或蒙脱石;碳,例如,碳黑、石墨、活性炭、聚合物或木炭;金属碳化物或者氮化物,例如,碳化钼、碳化硅或氮化钨;金属氧化物氢氧化物(metaloxidehydroxide),例如,勃姆石;或者包含上述一种或多种的组合。基于成形混合物的总重量,粘合剂可以包含0.5至30wt%、优选地,1至小于10wt%、更加优选地,1至4.5wt%的非二氧化硅氧化物。

粘合剂可以包含胶体二氧化硅粘合剂,其中胶体二氧化硅粘合剂是酸、NH4+、或Na+稳定的胶体二氧化硅。粘合剂可以包含固体二氧化硅,该固体二氧化硅可以包含结晶的二氧化硅、无定形二氧化硅、或它们的组合。粘合剂可以包含至少一种胶体二氧化硅粘合剂以及至少一种固体二氧化硅(SiO2)粘合剂。固体二氧化硅粘合剂的一些实例包括硅镁土、例如,由ActiveMineralsInternational商业可获得的Min-U-GelTM,由Sigma-Aldrich商业可获得的UltrasilTM,由DegussaCorporation商业可获得的那些、以及由Sigma-Aldrich商业可获得的DavisilTM-643。

粘合剂可以具有基于主轴10至25纳米(nm)的平均粒径。粘合剂可以包含一种或多种粘合剂的混合物并且可以包含至少一种固体粘合剂以及胶体粘合剂的混合物,该胶体粘合剂的混合物包含至少10wt%的具有基于主轴10至30nm平均粒径的胶体粘合剂,同时剩余的胶体粘合剂可以具有基于主轴1至30nm的平均粒径。粘合剂可以包含至少20wt%的具有基于主轴10至30nm的平均粒径的胶体粘合剂的混合物,同时剩余的粘合剂可以具有基于主轴5至10nm的平均粒径。粘合剂可以具有小于或等于250平方米/克(m2/g),优选地,250至100m2/g的表面积。

基于成形混合物的总重量,粘合剂可以以最高达99wt%、例如,1至99wt%、优选地,10至60wt%的量存在于催化剂中。基于成形混合物的总重量,催化剂可以包含15至50wt%、优选地,20至40wt%的含二氧化硅的粘合剂材料,更加优选地,20至30wt%。

挤出助剂可以包含聚乙烯醇和/或聚丙烯酰胺。例如,挤出助剂可以包含部分地水解的聚乙烯醇,例如,通过聚(乙酸乙烯酯)水解商业上生产的。当水解聚(乙酸乙烯酯)时,由氢取代乙酸酯基团(COCH3)以沿着聚合物链形成醇(OH)基团。在下文中,术语‘部分地水解’是指已经水解小于或等于90%的聚(乙酸乙烯酯)。在部分地水解的聚(乙烯醇)中,乙酸酯基团和醇基团是随机地分布于聚合物链中。部分地水解的聚(乙烯醇)可以具有500至500000g/mol、优选地,10000至200000g/mol的重均分子量(Mw)(例如,基于聚碳酸酯标准)。基于成形混合物的总重量,部分地水解的聚(乙烯醇)可以以0.1至5wt%、优选地,0.5至3wt%、更加优选地,1至2wt%的量使用。

挤出助剂可以包含聚丙烯酰胺。聚丙烯酰胺可以具有基于聚碳酸酯标准如通过凝胶渗透色谱法测定的2至10百万g/mol、优选地,2至7百万g/mol的重均分子量(Mw)。基于成形混合物的总重量,聚丙烯酰胺可以以0.1至5wt%、优选地,0.5至3wt%、更加优选地,1至2wt%的量使用。聚丙烯酰胺的商业可获得的源的实例是作为由Cytec,WestPeterson,NJ可获得的以商标CYFLOCTMN-300LMWFlocculant出售的,其是具有基于聚碳酸酯标准如通过凝胶渗透色谱法测定的2至5百万g/mol的Mw的聚丙烯酰胺。

可以将成形混合物成型(shaped)(还称为成形(formed))以导致成形的催化剂。可以通过各种的成形方法如制粒、压片(tableting)、挤出、以及将催化剂形成形状的任何其他技术,以及包括上述方法中的至少一种的组合,将成形的催化剂成型。得到的成形的催化剂可以是,例如,颗粒或者片。成形的催化剂可以具有横截面,例如是圆形、椭圆形、长圆形(oblong)、正方形、矩形、菱形、多角形、或者包括上述一种或多种的组合。特定的实例是1/16英寸(1.6毫米(mm))至1/8英寸(3.2mm)的圆柱形成型的挤出物。

催化剂可以作为脱氢、脱氢环化、和芳构化催化剂中的一种或多种同时地起作用。优选地,可以在烷烃的芳构化过程中使用该催化剂,如具有六至十二个碳原子(C6-12)/分子的烷烃,以产生芳香族化合物,如苯、乙基苯、甲苯、和二甲苯。可以在0.1至100hr-1的液时空速下,在200至950℃、优选地,425至650℃、更加优选地,450至600℃、甚至更加优选地,475至550℃的温度下,在5至315磅/平方英寸(绝对)(psia)的压力下进行烷烃和催化剂之间的接触。本发明催化剂会与广泛的进料作用,包括链烷烃和烯烃化合物和/或环烷。例如,进入包含催化剂的反应器的进料流股可以包含大于或等于30体积百分数(vol%)的链烷烃(例如,大于或等于50体积百分数(vol%)的链烷烃),并且可选地较低的(即,小于或等于20vol%,或者甚至小于或等于10vol%)环烷。进料流股可以包含C6-8烷烃,单独地或者作为在混合物中的组分,即对于每种C6、C7、和C8烷烃量为0至100vol%(例如,大于0至最高达100wt%,或者大于或等于10wt%,优选地,大于或等于20wt%)。

进料流股可以是石脑油进料。该石脑油进料可以是包含大于或等于25wt%、优选地,大于或等于35wt%、更加优选地,大于或等于50wt%的C5-9脂肪族和脂环族的烃如烯烃和链烷烃,以及0至40wt%的C6-13芳香族化合物(例如,大于0至40wt%的C6-13芳香族化合物)的炼油产品。石脑油进料可以包含最高达1000重量份每百万份(ppm)的硫、优选地,1至500ppm的硫、更加优选地,1至200ppm的硫、甚至更加优选地,1至50ppm的硫,其中术语硫是指元素硫以及硫化合物(如有机硫化物和杂环的苯并噻吩)。石脑油进料可以包含最高达100重量份每百万份(ppm)的氮化合物。

提供以下的实施例举例说明了改善的催化剂。该实施例仅仅是示例性的并且不旨在将根据本公开制造的装置限制于在本文中阐述的材料、条件、或工艺参数。

实施例

在表1中描述了用于以下实施例的材料。除非特定地另有说明,以在表1中阐述的形式使用该材料,并且在实施例中确定的数量是基于该形式。

使用以下程序来合成用于实施例1-21中的催化剂,其中根据特定的实例改变这些量并且其中在对应的表格中示出了最终催化剂中的量;在程序中示出的特定的数字是用于实施例1。通过利用去离子水将50wt%的NaOH溶液稀释并且随后溶解于二氧化锗来制备溶液1。通过利用去离子水将铝酸钠溶液(23.6wt%的氧化铝和19.4wt%的氧化钠)稀释来制备溶液2。将两种溶液结合并且混合。添加TPAOH并且搅拌约10分钟(min)。一次性添加所有的LudoxAS-40并且将凝胶搅拌2.5小时(hr)使其均匀。根据需要添加冰乙酸以调节混合物的pH。

将凝胶装载至1升(L)的不锈钢高压灭菌器中并且在160℃下加热3天,同时搅拌。然后由母液将固体过滤并且利用去离子水洗涤。在具有空气流动的烘箱中将固体在550℃下煅烧10hr以导致Ge-ZSM-5沸石。通过测量粉末X-射线衍射图案确认固体的MFI结构。

当最终催化剂包含铂时,通过逐滴地添加溶解在去离子水中的四胺硝酸铂溶液至Ge-ZSM-5沸石进行初湿浸渍(incipientwetnessimpregnation)。将材料在110℃下在烘箱中干燥1hr然后在280℃下煅烧3hr。在对应的表格中示出了对于每种催化剂的元素分析。

压缩催化剂粉末并且分级(size)为20-40目。将0.25立方厘米(cm3)(0.131克(g))分级的催化剂与1.75cm3的惰性的碳化硅碎片(chip)混合并且在流动的H2中在460℃下加热1hr。然后将温度升高至515℃并且在实施时,开始催化性检测。在大约150℃的温度下通过蒸发正-己烷至流动的氢气流股中形成气体混合物。使气体混合物穿过通过外部加热夹套维持在515℃的反应器。通过气相色谱法分析反应产物。观察到在大小上(insize)从甲烷到二甲基环烷范围的产物。为了计算转化率和选择性的目的,认为C6异构化和脱氢产物是未反应的。将报道的选择性,S50(即,在生产中(onstream)50小时之后的催化剂选择性)计算为所生产的苯、甲苯、和二甲苯(BTX)的总和除以回收的苯和所有C1-5和C7+材料的总和。基于摩尔C6提供这些选择性。将报道的转化率,X50(即,在生产中50小时之后的催化剂活性)计算为正己烷进料转化成回收的苯、甲苯、二甲苯、和所有C1-5和C7+材料的分数(fraction)。

表2总结了实施例1的合成数据并且示出了这种材料具有优异的催化性能,在以上描述的条件下具有31%的转化率以及96%的芳香族化合物的选择性。相应组分的重量百分数值是基于最终催化剂的总重量。

实施例2-7:改变Si:Al2摩尔比

制备如在实施例2-7中示出的六种催化剂并且测试转化率和选择性,其中改变在混合物中的Si:Al2摩尔比。特别地,除了用于实施例2-7中的合成混合物分别具有110、170、225、250、275、和300的Si:Al2摩尔比之外,方法与实施例1阐述的方法相同。对应地,在实施例2-7的最终催化剂中的Si:Al2摩尔比分别是60、102、151、178、189、和206。在表3中示出了结果。

表3示出了当在最终催化剂中的Si:Al2摩尔比是151至189时,观察到改善的转化率和选择性,其中实施例4、5、和6分别产生33%、23%、和31%的转化率,并且分别产生94%、96%、和96%的选择性。

实施例8-11:改变Si:Ge摩尔比

制备如在实施例8-11中示出的四种催化剂并且测试转化率和选择性,其中改变在混合物中的Si:Ge摩尔比。特别地,用于实施例8-11的合成混合物分别具有15、22、29.8、和50的Si:Ge摩尔比。对应地,在实施例8-11的最终催化剂中的Si:Ge摩尔比分别是88、141、193、和287。在表4中示出了结果。

表4示出了测试的全部的Si:Ge摩尔比,实施例8-11的催化剂显示了24至36%的高转化率以及94至95%的高选择性。

实施例12-16:改变混合物的pH

制备如在实施例12-16中示出的五种催化剂并且测试转化率和选择性,其中改变混合物的pH。特别地,实施例12-16的混合物的pH值分别是9.1、10.0、11.0、12.0、和13.0。在表5中示出了结果。

表5示出了当混合物的pH大于9.5,优选地,10至12时,观察到改善的转化率和选择性,,其中实施例13-15分别导致27%、23%、和33%的转化率,并且分别导致92%、94%、和94%的选择性。

实施例17-21:改变Na:Al摩尔比

制备如在实施例17-21示出的五种催化剂并且测试转化率和选择性,其中改变在混合物中的Na:Al摩尔比。特别地,实施例17-21分别地具有6.97、13.35、24.71、40.0、和45.0的Na:Al摩尔比。对应地,在实施例17-21的最终催化剂中Na:Al摩尔比分别是0.32、2.10、1.64、1.73、和1.62。在表6中示出了结果。

表6示出了当在最终催化剂中的Na:Al摩尔比大于0.9时,观察到改善的转化率和选择性,其中实施例18、19、20、和21分别导致39%、33%、36%、和47%的转换率,并且分别导致93%、94%、95%、和91%的选择性。

比较实施例22-23:

根据在美国专利号7,902,413中的程序制备比较实施例22,如下:通过利用131.25g的去离子(DI)水稀释15.84g的50wt%NaOH溶液并且随后溶解7.11g的二氧化锗来制备溶液#1。通过利用153.9g的DI水稀释3.84g的铝酸钠溶液(23.6wt%的氧化铝以及19.4wt%的氧化钠)来制备溶液#2。将溶液#1添加至150.0g的LudoxAS-40(在胶体状态中的40wt%的二氧化硅)并且搅拌7分钟。添加溶液#2,并且将得到的混合物搅拌20分钟。添加105.42g的四-正丙基氢氧化铵(TPAOH)并且将混合物搅拌60分钟。最后,将23.34g的冰乙酸添加至混合物以调节pH至9.2。将混合物装载至1L的不锈钢高温灭菌器(autoclave)中并且在160℃下加热36小时,同时搅拌。随后,由母液将获得的固体过滤并且利用去离子水洗涤。在具有空气流动的烘箱中将固体在550℃下煅烧10小时。通过测量粉末X-射线衍射图案,确认固体的MFI结构。

利用CsNO3(0.5M)的水溶液在4个步骤中在室温下将得到的Ge-ZSM-5沸石部分进行离子交换,然后进行过滤。然后在过滤器上利用蒸馏水将滤出物洗涤并且在280℃下在空气中煅烧3小时。通过逐滴地添加溶解在去离子水中的四胺硝酸铂溶液至Ge-ZSM-5沸石进行初湿浸渍。将材料在90℃下在烘箱中干燥然后在280℃下煅烧3hr。

除了仅使用一半的铝酸钠(1.92g)之外,通过相同的程序制备比较实施例23。对于该样品,需要23.0g的乙酸以调节pH至9.2。

根据用于实施例1-21的相同的程序测试比较实施例22和23。在表7中示出了元素分析和催化剂测试的结果。

如在表7中可以看出,在pH9下制备的比较实施例23,包含更高含量的铝和锗并且已经用铯进行碱交换,相比于实施例4-6、8-11、14、15、19、和20,具有较低活性并且具有较低的选择性;相比于比较实施例22,实施例13和18具有类似的选择性,但是具有更高的转化率。

如在表7中可以看出的,在pH9下制备并且用Cs-碱交换(Cs-baseexchange)但是具有较少的铝的比较实施例23,对于正-己烷转化具有不可接受的低转化率和选择性。

以下阐述的是本发明催化剂及其制备和使用方法的一些实施方式。

实施方式1:一种制备催化剂的方法,包括:形成包含锗源、碱金属源、铝源、和二氧化硅源的混合物,其中,该混合物具有pH;将混合物的pH调节至大于或等于9.5的值,优选地,大于9.5;将混合物结晶和锻烧以形成沸石;在沸石上沉积铂;并且锻烧沸石以形成最终催化剂。该最终催化剂是非酸性的并且具有基于除了任何粘合剂和挤出助剂(extrusionaide)之外的最终催化剂的总重量小于或等于0.75wt%的铝含量以及大于或等于125的最终Si:Al2摩尔比。

实施方式2:实施方式1的方法,进一步地包括在调节pH之后允许混合物形成凝胶。

实施方式3:实施方式1-2中任一项的方法,其中,混合物的形成包括:形成第一水溶液,其中,第一溶液包含锗源和碱金属源;形成第二水溶液,其中,第二溶液包含铝源;将第一水溶液和第二水溶液结合以形成结合的溶液;并且添加二氧化硅源至结合的溶液以形成混合物。

实施方式4:实施方式1-3中任一项的方法,其中,混合物具有175至290的混合Si:Al2摩尔比。

实施方式5:实施方式1-4中任一项的方法,其中,混合物具有5至100的混合Si:Ge摩尔比。

实施方式6:实施方式1-5中任一项的方法,其中,混合物具有10至60的Na:Al摩尔比。

实施方式7:实施方式1-6中任一项的方法,其中,混合物具有175至290的混合Si:Al2摩尔比、5至100的混合Si:Ge摩尔比、以及10至60的混合Na:Al摩尔比。

实施方式8:实施方式1-7中任一项的方法,其中,混合物具有200至275的混合Si:Al2摩尔比。

实施方式9:实施方式8的方法,其中,混合物具有220至275的混合Si:Al2摩尔比。

实施方式10:实施方式1-9中任一项的方法,其中,混合物具有15至50的混合Si:Ge摩尔比。

实施方式11:实施方式1-10中任一项的方法,其中,混合物具有12至40的混合Na:Al摩尔比。

实施方式12:实施方式1-11中任一项的方法,其中,沸石是ZSM-5沸石。

实施方式13:实施方式1-12中任一项的方法,其中,最终Si:Al2摩尔比是125至200、优选地,140至190、更加优选地,151至189。

实施方式14:实施方式1-13中任一项的方法,其中,最终催化剂具有40至400的最终Si:Ge摩尔比以及0.9至2.5的最终Na:Al摩尔比中的一种或者两者。

实施方式15:实施方式14的方法,其中,最终Si:Ge摩尔比是50至300。

实施方式16:实施方式14-15中任一项的方法,其中,Si:Ge摩尔比是80至200。

实施方式17:实施方式14-16中任一项的方法,其中,Na:Al摩尔比是1.2至2.2。

实施方式18:实施方式1-17中任一项的方法,其中,最终催化剂包含小于或等于3.0wt%的锗含量。

实施方式19:实施方式1-18中任一项的方法,其中,最终催化剂包含0.1至3wt%的Ge含量、0.5至2wt%的Na含量、以及0.05至3wt%的Pt含量中的一种或多种,其中,wt%值是基于除了任何粘合剂和挤出助剂之外的最终催化剂的总重量。

实施方式20:实施方式19的方法,其中,Ge含量是0.3至3、优选地,0.4至2.5、更加优选地,0.6至1.5、甚至更加优选地,0.5至1.5wt%。

实施方式21:实施方式19-20中任一项的方法,其中,钠含量是1至2wt%。

实施方式22:实施方式19-21中任一项的方法,其中,铂含量是0.2至2、优选地,0.2至1.5wt%。

实施方式23:实施方式1-22中任一项的方法,其中,该方法没有包括用碱金属和/或碱土金属离子交换的步骤。

实施方式24:实施方式1-23中任一项的方法,其中,最终催化剂不含铯。

实施方式25:实施方式1-24中任一项的方法,其中,碱金属源包含钠源和钾源中的至少一种。

实施方式26:实施方式1-25中任一项的方法,其中,碱金属源包含NaOH和NaCl中的至少一种。

实施方式27:实施方式1-26中任一项的方法,其中,pH是9.5至12.5。

实施方式28:实施方式1-27中任一项的方法,其中,pH是10至12.5。

实施方式29:实施方式1-28中任一项的方法,其中,混合物进一步地包含结构导向剂(structuredirectingagent)。

实施方式30:实施方式29的方法,其中,混合物具有0.01至1的结构导向剂与二氧化硅摩尔比。

实施方式31:实施方式30方法,其中,结构导向剂与二氧化硅摩尔比是0.05至0.5。

实施方式32:实施方式29-31中任一项方法,其中,结构导向剂包含TPAOH。

实施方式33:通过实施方式1-32中的任一项制备的催化剂。

实施方式34:用于烃芳构化的方法,包括:使包含6至12个碳原子/分子的烷烃与实施方式33或35或36的催化剂接触。

实施方式35:催化剂包含:在其上沉积有Pt的骨架中包含Si、Al、和Ge的沸石;其中,催化剂具有大于或等于125的Si:Al2摩尔比、40至400的Si:Ge摩尔比,以及0.9至2.5的Na:Al摩尔比,其中,催化剂具有小于或等于0.75wt%的铝含量,其中,催化剂是非酸性的。

实施方式36:实施方式35的催化剂,其中,Ge以0.3至3wt%的量存在,和/或Na以0.5至2wt%的量存在,和/或Pt以0.05至3wt%的量存在,其中,wt%值是基于除了任何粘合剂和挤出助剂之外的最终催化剂的总重量。

实施方式37:用于烃芳构化的方法,包括:使包含6至12个碳原子/分子的烷烃与实施方式33、35、或36中任一项的催化剂接触。

实施方式38:用于烃芳构化的方法,包括:使包含6至12个碳原子/分子的烷烃与催化剂接触,该催化剂包含:在其上沉积有Pt的骨架中包含Si、Al、和Ge的沸石;其中,催化剂具有大于或等于125的Si:Al2摩尔比,40至400的Si:Ge摩尔比,以及0.9至2.5的Na:Al摩尔比,其中,催化剂具有除了任何粘合剂和挤出助剂之外的小于或等于0.75wt%的铝含量。

实施方式39:实施方式39的方法,其中,Ge以0.3至3wt%的量存在,和/或Na以0.5至2wt%的量存在,和/或Pt以0.05至3wt%的量存在,其中,wt%值是基于除了任何粘合剂和挤出助剂之外的最终催化剂的总重量。

一般而言,本发明可以可替代地包括在本文中公开的任何适当的组分、由其组成、或基本上由其组成。可以另外地或可替代地配制本发明以便不含、或基本上不含在现有技术组合物中使用的或另外地对于实现本发明的功能和/或目标不是必需的任何组分、材料、成分、佐剂或物质。

本文中所公开的所有范围包括端点,且端点可独立地彼此组合(例如,“最高达25wt%,或者更加优选地,5至20wt%”的范围包括端点和“5至25wt%”的范围的所有中间值,等等)。“组合”包括共混物、混合物、合金、反应产物等。此外,本文中的术语“第一”、“第二”等不表示任何顺序、数量或重要性,而是用于将一个元素和另一个元素区别开。在本文中术语“一个”、“一种”以及“该”并不表示对数量的限制,除非在本文中另有说明或与上下文明显矛盾,应解释为包括单数和复数两者。如本文中所用的后缀“(s)”旨在包括其修饰的术语的单数和复数两者,从而包括该术语的一个或多个(例如,膜(film(s))包括一个或多个膜)。贯穿本说明书提及“一个实施方式”、“另一个实施方式”、“实施方式”等是指与该实施方式结合描述的具体要素(例如,特征、结构和/或特性),包括在本文中描述的至少一个实施方式中,且可以存在或不存在于其他实施方式中。此外,应理解,在各种的实施方式中,描述的要素可以以任何合适的方式组合。

虽然已经描述了具体的实施方式,申请人或本领域其他技术人员可以想到目前未预见的或可能未预见的替代、修改、改变、改进和实质等价物。因此,提交的和可以修改的所附权利要求旨在涵盖所有这样的替代、修改、改变、改进、和实质等价物。

除了更宽的范围之外,公开的较窄范围不表示对更宽范围的放弃。

使用标准命名法描述化合物。例如,未由任何指定基团取代的任何位置应当理解为其化合价被指定的键或氢原子填充。不在两个字母或符号之间的短线“-”用于表示取代基的连接点。例如,-CHO通过羰基的碳连接。另外,应该理解的是在多种实施方式中描述的要素可以以任何适当的方式组合。

所有引用的专利、专利申请、和其他参考文献通过引证将其全部内容合并至本文。然而,如果在本申请中的术语与结合的参考文献中的术语相矛盾或相抵触,那么本申请的术语优先于合并的参考文献的相抵触的术语。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号