首页> 美国卫生研究院文献>Chemical Science >Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements
【2h】

Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements

机译:用于CO2电解还原的单原子催化剂具有显着的活性和选择性的提高

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A single-atom catalyst (SAC) has an electronic structure that is very different from its bulk counterparts, and has shown an unexpectedly high specific activity with a significant reduction in noble metal usage for CO oxidation, fuel cell and hydrogen evolution applications, although physical origins of such performance enhancements are still poorly understood. Herein, by means of density functional theory (DFT) calculations, we for the first time investigate the great potential of single atom catalysts for CO2 electroreduction applications. In particular, we study a single transition metal atom anchored on defective graphene with single or double vacancies, denoted M@sv-Gr or M@dv-Gr, where M = Ag, Au, Co, Cu, Fe, Ir, Ni, Os, Pd, Pt, Rh or Ru, as a CO2 reduction catalyst. Many SACs are indeed shown to be highly selective for the CO2 reduction reaction over a competitive H2 evolution reaction due to favorable adsorption of carboxyl (*COOH) or formate (*OCHO) over hydrogen (*H) on the catalysts. On the basis of free energy profiles, we identified several promising candidate materials for different products; Ni@dv-Gr (limiting potential U L = –0.41 V) and Pt@dv-Gr (–0.27 V) for CH3OH production, and Os@dv-Gr (–0.52 V) and Ru@dv-Gr (–0.52 V) for CH4 production. In particular, the Pt@dv-Gr catalyst shows remarkable reduction in the limiting potential for CH3OH production compared to any existing catalysts, synthesized or predicted. To understand the origin of the activity enhancement of SACs, we find that the lack of an atomic ensemble for adsorbate binding and the unique electronic structure of the single atom catalysts as well as orbital interaction play an important role, contributing to binding energies of SACs that deviate considerably from the conventional scaling relation of bulk transition metals.
机译:单原子催化剂(SAC)的电子结构与其本体催化剂大不相同,并且显示出出乎意料的高比活度,并且显着减少了贵金属在CO氧化,燃料电池和氢气释放应用中的使用,尽管物理这种性能增强的起源仍然知之甚少。本文中,我们通过密度泛函理论(DFT)计算,首次研究了单原子催化剂在CO2电还原应用中的巨大潜力。特别是,我们研究了一个固定在具有单或双空位的缺陷石墨烯上的单一过渡金属原子,表示为M @ sv-Gr或M @ dv-Gr,其中M = Ag,Au,Co,Cu,Fe,Ir,Ni, Os,Pd,Pt,Rh或Ru,作为CO2还原催化剂。实际上,由于在催化剂上氢(* H)上羧基(* COOH)或甲酸盐(* OCHO)的良好吸附,许多SAC确实显示出对竞争性H2放出反应而言对CO2还原反应具有高度选择性。根据自由能的分布图,我们确定了几种用于不同产品的有前途的候选材料。用于产生CH3OH的Ni @ dv-Gr(极限电势UL = –0.41 V)和Pt @ dv-Gr(–0.27 V),以及Os @ dv-Gr(–0.52 V)和Ru @ dv-Gr(–0.52 V) )用于CH4生产。尤其是,与合成或预测的任何现有催化剂相比,Pt @ dv-Gr催化剂在CH3OH生产的极限电位上均显示出显着降低。为了了解SAC活性增强的起源,我们发现缺乏用于吸附物结合的原子团簇以及单原子催化剂的独特电子结构以及轨道相互作用起着重要作用,这有助于SAC的结合能与块状过渡金属的常规比例关系大不相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号