首页> 中国专利> 一种镁合金表面钙-磷-锡复合涂层的制备方法

一种镁合金表面钙-磷-锡复合涂层的制备方法

摘要

本发明公开了一种镁合金表面钙-磷-锡复合涂层的制备方法,其以乙二胺四乙酸钠、硝酸钙、磷酸二氢钠、粒径为50-70nm的纳米二氧化锡和蒸馏水为原料制备前驱体溶液;然后,将待加工处理的镁合金基材,在水热反应釜中,浸入前驱体溶液,用强碱调节pH至2.0-4.0,并加入纳米二氧化锡,采用水热法制备出厚度为50-80μm的镁合金表面钙-磷-锡复合涂层。即,利用二氧化锡掺杂钙-磷涂层,本发明相对于现有技术,具有工艺简单、流程短、易控制,生产成本低,所获得涂层结构致密、附着力强、耐腐蚀性能好等特点,所获得的产品即可用于镁合金结构用材防腐处理,又适于医用镁合金领域的应用。

著录项

  • 公开/公告号CN105200413A

    专利类型发明专利

  • 公开/公告日2015-12-30

    原文格式PDF

  • 申请/专利权人 山东科技大学;

    申请/专利号CN201510581810.5

  • 申请日2015-09-14

  • 分类号C23C22/07(20060101);

  • 代理机构37205 济南舜源专利事务所有限公司;

  • 代理人毛胜昔

  • 地址 266590 山东省青岛市经济技术开发区前湾港路579号

  • 入库时间 2023-12-18 13:18:56

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-08-18

    授权

    授权

  • 2016-01-27

    实质审查的生效 IPC(主分类):C23C22/07 申请日:20150914

    实质审查的生效

  • 2015-12-30

    公开

    公开

说明书

技术领域

本发明涉及一种镁合金表面涂层的制备方法,尤其涉及一种镁合金表面钙-磷-锡复合涂 层的制备方法。

背景技术

镁在自然界的储量丰富,价格低廉。镁及合金具备质量轻、比强度高、良好的生物相容 性和可降解性;镁离子是人体中含量仅次于钾、钠、钙的细胞内阳离子,能参与蛋白质合成, 可激活体内多种酶,调节中枢神经系统及肌肉的活动,保障心肌的正常收缩。因此,镁合金 不仅可应用于汽车、摩托车、高铁、航空航天、3C产品和手动工具等领域,而且还可作为可 降解生物医用金属材料。

镁合金的加工性能比传统的聚乳酸、磷酸钙及其他类型的可降解植入材料具有十分优越 的比较优势;其不但具有促进骨细胞的形成、加速骨愈合能力;而且,还具有高的比强度和 比刚度,其密度也十分接近人体骨骼的密度。可降解镁及镁合金与传统医用金属材料如不锈 钢、钛合金和Co-Cr合金比较,在人体内不会产生应力遮蔽效应,不需二次手术。已有研究 表明,镁及镁合金有望作为新一代医用植入材料,成为新的骨固定材料。

然而,由于镁的化学性质十分活泼(-2.36VSHE),在腐蚀介质中易于腐蚀。尤其是在氯离 子含量较高的腐蚀介质中,腐蚀更加迅速。面对日益苛刻的自然环境和复杂的人体环境,镁 及镁合金较差的耐蚀性能还不能满足产品的需要,严重地制约了其应用及发展。作为生物医 用材料,镁合金材料的适配型和功能性还不能完全满足临床要求。主要原因在于:

镁合金过快的腐蚀速率和力学性能劣化与新骨形成速率不匹配。

提高镁合金耐蚀性能的途径有合金化、后加工(快速冷却、挤压、轧制、热处理等)和 表面改性。合金化、后加工涉及材料本身,提高耐蚀性能的程度有限。表面改性是提高镁合 金耐蚀性的有效手段之一,具有成本和技术上的优势。特别是,通过结构与功能一体化表面 改性,可以赋予镁合金表面良好的耐蚀性和特定功能性,以满足不同用途的需要。例如,镁 合金表面改性可提高其在人体体液中的耐蚀性能,减缓体内降解速率,并使材料具备优良的 生物相容性。

在医用镁合金表面制备钙-磷涂层成了一种常用的改性手段,该涂层可使骨组织长入多孔 表面,促进新骨生长,还可稳定和降低镁合金的腐蚀速率,使镁合金在生理盐水和细胞溶液 中均匀腐蚀,对控制镁合金的降解速率方面具有重要作用。同时,骨骼由以生物磷灰石为主 要成分的无机物和由胶原蛋白及水组成的有机化合物构成。与生物有关的磷灰石属于正磷酸 盐,自然存在于牙齿和骨骼中,合成的羟基磷灰石与磷灰石具有非常相似的性质。因此,钙 磷涂层一直被用来防磨损、防腐蚀以及提高骨科植入材料的生物相容性。

镁合金的钙磷涂层制备方法主要有:仿生技术、电沉积、溶胶-凝胶法、微弧氧化法和水 热法等。其中,仿生技术是涂覆镁合金钙磷涂层的常用方法,但是该技术还不能在镁基体上 获得高结合力的涂层;镁合金表面电沉积钙磷涂层孔隙率较高,晶粒比较粗大,结合力较低。

溶胶-凝胶法已广泛应用于镁合金表面腐蚀防护。然而,这种方法应用于形状比较复杂的 工件较为困难。

利用微弧氧化法在镁合金表面制备钙-磷涂层具有一定的可行性。但是,其主要缺点在于, 这种技术很难获得具有晶体钙-磷相的涂层。

发明内容

本发明的目的是,提供一种镁合金表面钙-磷-锡复合涂层的制备方法,工艺简单、流程 短、易控制,生产成本低,所获得涂层结构致密、附着力强、耐腐蚀性能好;且涂层具有良 好的生物相容性,既可作结构用镁合金涂层,又可作生物医用镁合金表面涂层。

本发明为实现上述目的所采用的技术方案是,一种镁合金表面钙-磷-锡复合涂层的制备 方法,其特征在于,包括以下步骤:

第一步,前驱体溶液的配制步骤

按质量份数,分别取乙二胺四乙酸钠30-70份、硝酸钙40-90份、磷酸二氢钠10-25份、 纳米二氧化锡1-35份、水1000份;

将乙二胺四乙酸钠、硝酸钙和磷酸二氢钠共混后,加入水中溶解,用强碱调节pH值至 =2.0-4.0,制得前驱体溶液;

第二步,镁合金预处理步骤

将镁合金板材依次进行机械打磨、第一水清洗、碱处理、第二水冲洗、酸处理、第三水 冲洗,然后暖风吹干,备用;

第三步,镁合金部件表面涂层处理步骤

打开水热反应釜,将上述溶液加入聚四氟乙烯材质的水热反应釜中,加入纳米二氧化锡, 制成处理液;

然后,将经过预处理的镁合金部件浸没在处理液中,并紧固好水热反应釜;

再将水热反应釜置于鼓风干燥箱中加热到80-140℃,保温16-20h,即完成镁合金部件表 面涂层处理;

第四步,打开水热反应釜,取出已经表面涂层处理的镁合金板材,用水冲洗干净其表面 上的残留物,用暖风吹干,密封保存,即可。

上述技术方案直接带来的技术效果是,工艺简单、反应时间短、所获得的镁合金表面涂 层,其结构致密、附着力强、耐腐蚀性和生物相容性能好,既可作结构涂层又可作生物医用 镁合金表面涂层。

为更好地理解上述技术方案,现简要说明其化学反应机理:

上述技术方案中,乙二胺四乙酸钠为络合剂、纳米二氧化锡为成核剂。

上述前驱体溶液中的各组分的主要作用如下:硝酸钙与磷酸二氢钠在水溶液中电离出钙 离子、磷酸氢根离子、磷酸根离子,为形成钙磷涂层提供所需离子,同时通过水解作用调节 pH。

NaH2PO4→2Na++H2PO4-(1)

H2PO42-→HPO4-+H+(2)

HPO4-→PO43-+H+(3)

在前驱体溶液pH2.0-4.0时,镁表面发生腐蚀反应:

Mg→Mg2++2e-(4)

2H2O+2e-→2OH-+H2↑(5)

总反应:

Mg+2H2O→Mg(OH)2+H2↑(6)

根据水热反应理论,水热条件下晶体生长包括以下步骤:在溶解阶段,前驱物在水热介 质中会发生溶解,并以离子、离子团或分子团等形式进入溶液;在传递阶段,体系中十分有 效的热对流、溶解区及生长区的浓度差将溶解后的离子、分子或离子团输运至生长区,之后 离子、分子或离子团在生长界面上的吸附、分散与脱附进而在界面上运动结晶。

随着反应的进行,溶液逐渐碱化,pH值升高。在水溶液中,Na2EDTA可以H6Y2+、H5Y+、 H4Y、H3Y-、H2Y2-、HY3-和Y4-等7种形式存在,它们的分布与pH有关。在pH<1的强酸性 溶液中,主要以H6Y2+形式存在;在pH为2.67-6.16的溶液中,主要以H2Y2-形式存在;在pH >10.26的碱性溶液中,主要以Y形式存在。本专利采用pH为2.0-4.0的溶液,故Na2EDTA 主要以H2Y2-形式存在。

本发明中前驱物Na2EDTA、Ca(NO3)2和NaH2PO4在水热介质中溶解电离出H2Y2-、PO43+、 Ca2+、Na+等离子。当镁合金置于此溶液中时,镁基体表面迅速与水发生反应,形成羧基化表 面,而EDTA在溶液中主要以H2Y2-的形式存在,凭借其自身螯合作用,EDTA能迅速化学吸 附到镁基体表面,形成镁基体与EDTA结合在一起的自组装层。

之后,Mg-O层羧基的含孤对电子的氧原子将螯合溶液中的经水热对流及浓度差而向基 体表面输送的大量PO43-、Ca2+等。Na2EDTA的六个配位原子可以与Ca2+、Mg2+等离子形成 稳定的水溶性络合物,可以控制整个反应体系的反应速度。

在镁合金表面成膜过程中,当pH值上升到10时,乙二胺四乙酸钠优先络合镁离子,而 不是钙离子;当溶液pH值上升到12-13时,乙二胺四乙酸钠络合钙离子。

因此,乙二胺四乙酸钠可以有效控制镁离子不会与钙离子继续争夺磷酸根离子,这有利 于形成钙-磷涂层;

2H2PO43-+Ca2+→Ca(H2PO4)2·(7)

2PO43-+3Ca2+→Ca3(PO4)2·(8)

Ca2+离子被Mg2+替代形成

2PO43-+3Ca2++3Mg2+→(Ca,Mg)3(PO4)2·(9)

上述技术方案的镁合金部件表面涂层处理步骤中,纳米SnO2粒子作为外加成分,可以为 钙离子、镁离子、磷酸氢根离子、磷酸根离子形成钙磷晶体提供异质形核点,从而降低表面 能,促进晶粒形核,进而有效促进/控制微纳米级片层结构和弥散分布的颗粒状结构形成。

而且,纳米SnO2的粒径很小,且不与溶液中的其他离子反应,因而,纳米SnO2还可以 起到填补膜层空隙的作用。这进一步使得最终所获涂层的膜层更加致密,也为镁合金耐蚀性 的提高起到有效作用。

即,上述技术方案的核心技术思想在于:利用乙二胺四乙酸钠优先络合Mg2+离子,后引 入的纳米SnO2为Ca2+、Mg2+、PO43-、HPO43-离子提供形异质核点,以降低表面能,促进晶 粒细化,形成一种二氧化锡掺杂钙-磷的复合涂层,该膜层结构致密、附着力强,因而具有良 好的耐腐蚀性能。一方面,其适于作为镁合金结构涂层;另一方面,由于所采用化学原料均 无毒无害,并且其主要成分(钙、磷、锡)均为人体所必需,在体内缓释过程中可为人体吸 收(其余成分可经人体代谢后排出),并具有良好的生物可降解性。因而,所制得的涂层具有 良好的生物相容性,适于体内植入使用,可作为医用镁合金表面涂层处理。

上述技术方案中,将主要化学反应集中在水热反应釜中进行,原因在于:

在水热反应釜中,进行高温、高压、蒸汽反应,可以有效保证在相对较低的热应力条件 下生长的水热晶体(其位错密度远远低于高温熔体中生长的晶体);

而且,由于在密闭系统中进行,还有利于氧化还原反应条件的控制,还能够合成某些难 以合成的物相,这种方法能在较低的温度下在镁合金表面制备纯度高、结合力强、膜层厚度 可观的保护性膜层;并且,相对于其他方法,水热法的反应时间短、生产效率高。而且,水 热法具有以下特点:

(1)高温高压条件下水处于超临界状态,提高了反应物的活性。

(2)水热合成法具有可控性和调变性,根据反应需要调节温度,介质,反应时间等,适 于纳米涂层。

更为重要的是,水热法制备出的Ca-P-Sn涂层,其晶粒细小,结合力强、结构致密、耐 腐蚀性能好。并且,由于水热反应釜反应温度较低(80-140度),可以有效避免高温所致的镁 合金基体的溶解,以及羟基磷灰石晶体分解等系列技术问题的出现。

上述技术方案中,引入二氧化锡成分除满足生物相容性能的基础上,其另一个原因在于: 金属锡耐蚀良好,同时也是人体必需的微量元素之一。人体每天消耗的锡量很少,但是这些 微量的锡可为人体带来较为显著的作用。例如:锡在人体的胸腺中能够产生抗肿瘤的锡化合 物,抑制癌细胞的生成。此外,锡还促进蛋白质和核酸的合成,有利于身体的生长发育;并 且组成多种酶以及参与黄素酶的生物反应,能够增强体内环境的稳定性等。

优选为,上述纳米二氧化锡的粒径为50-70nm。

该优选技术方案直接带来的技术效果是,粒径为50-70nm的纳米SnO2可以起到更好的填 补膜层空隙的作用,使得所获涂层的膜层结构更加致密。

进一步优选,上述镁合金板材的材质为Mg-Al、Mg-Mn、Mg-Zn、Mg-Ca、Mg-Li、Mg-RE 系合金,或Mg与合金元素Al、Mn、Zn、Ca、Li、RE或Y或Nd或Ce构成的二元、三元、 四元、五元合金。

该优选技术方案直接带来的技术效果是,上述技术方案的镁合金的钙-磷-锡复合涂层的 制备方法对镁合金基材材质无特殊要求,具有普适性。这进一步保证了所获镁合金涂层可依 基体材质的本身强度、硬度等物理指标,在医用、结构用材使用方面的可供选择性。

进一步优选,上述乙二胺四乙酸钠、硝酸钙、磷酸二氢钠和纳米二氧化锡均为分析纯。

该优选技术方案直接带来的技术效果是,乙二胺四乙酸钠、硝酸钙、磷酸二氢钠和纳米 二氧化锡均为分析纯,这主要是因为目标产品对于纯度的特殊要求(防止产生或者引入其他 有害异物成分)。

进一步优选,上述强碱为NaOH、KOH或者Ca(OH)2

该优选技术方案直接带来的技术效果是,NaOH、KOH或者Ca(OH)2为常用化学试剂, 易于获得。

进一步优选,上述钙-磷-锡复合涂层包括有两层:靠近镁合金基材的底层富含O、P和 Mg、远离镁合金基材的顶层富含Ca、P和O;整个钙-磷-锡复合涂层厚度为50-80μm,其中 含有微量的Sn元素。

该优选技术方案直接带来的技术效果是,复合涂层具有两层结构,其组织致密、涂层与 镁合金基材的粘结十分牢固;并且,我们的实验检测结果表明,钙-磷-锡复合涂层的厚度为 50-80μm,可以较好地满足成品的使用要求。

进一步优选,上述钙-磷-锡复合涂层的化学组成为:

(Ca,Mg)3(PO4)2·Ca(H2PO4)2·Mg(OH)2·SnO2

该优选技术方案直接带来的技术效果是,上述化学成分:一方面,均为人体所包容或人 体所必需,具有良好的生物相容性;另一方面,由于其无毒无害,在自然界中使用,也绿色 环保。

综上所述,本发明相对于现有技术,具有工艺简单、、流程短、易控制,生产成本低,所 获得的镁合金表面涂层,具有结构致密、附着力强、耐腐蚀性、生物可降解性和生物相容性 能好,适于医用涂层或结构涂层使用等有益效果。

附图说明

图1为实验例4所制得的复合涂层的表面微观(整体)形貌的SEM图(放大倍数为:100 倍);

图2为实施例4所制得的复合涂层(图1局部)形貌的SEM图(放大倍数为1000倍);

图3为实施例4所制得的复合涂层(图2局部)形貌的SEM图(放大倍数为:10,000倍);

图4为实施例17(除以等当量的Na2SnO3替代纳米二氧化锡外,其余,均同实施例4) 所制得的复合涂层截面(Mg、O、Ca、P、Sn)能谱图;

图5为实施例4所制得的复合涂层截面(Mg、O、Ca、P、Sn)能谱图;

图6为实施例4所制得的复合涂层(图1中的A点位置)的EDS图;

图7为实施例4所制得的复合涂层(图2中的B点位置)的EDS图;

图8为实施例4所制得的复合涂层(图2中的C点位置)的EDS图;

图9为实施例4所制得的产品与不带复合涂层的镁合金基材在Hank’s溶液中的对比析氢 速率曲线图;

图10为实施例4所制得的产品与不带复合涂层的镁合金基材在Hank’s溶液中的对比极 化曲线;

图11为实施例4所制得的产品与不带复合涂层的镁合金基材在Hank’s溶液中的对比交 流阻抗图;

图12为实施例13所制得的带有复合涂层的镁合金产品与不带复合涂层的镁合金 Mg-6Zn-1Mn-4Sn-0.5Y基材,在Hank’s溶液中的对比析氢曲线;

图13为16-20小时的各不同水热时间所制得的产品的对比XRD图。

具体实施方式

下面结合实施例,对本发明进行详细说明。

实施例1

镁合金基材:成分为Mg-1Li-1Ca。

制备方法如下:

第一步,前驱体溶液的配制步骤

按质量份数,分别取乙二胺四乙酸钠30份、硝酸钙40份、磷酸二氢钠10份、纳米二氧 化锡1份、水1000份;

将乙二胺四乙酸钠、硝酸钙和磷酸二氢钠共混后,加入水中溶解,用强碱(NaOH、KOH 或Ca(OH)2)调节pH值至2.0-4.0,制得前驱体溶液;

第二步,镁合金预处理步骤

将镁合金基材依次进行机械打磨、第一水清洗、碱处理、第二水冲洗、酸处理、第三水 冲洗,然后暖风吹干,备用;

第三步,镁合金基材表面涂层处理步骤

打开水热反应釜,将上述溶液加入聚四氟乙烯材质的水热反应釜中,加入纳米二氧化锡, 制成处理液;

然后,将经过预处理的镁合金基材浸没在处理液中,并紧固好水热反应釜;

再将水热反应釜置于鼓风干燥箱中加热到80℃,保温16h,即完成镁合金基材表面涂层 处理;

第四步,打开水热反应釜,取出已经表面涂层处理的镁合金基材,用水冲洗干净其表面 上的残留物,用暖风吹干,密封保存,即可。

实施例2:

镁合金基材:成分为Mg-1Li-1Ca。

制备方法如下:

第一步,前驱体溶液的配制步骤

按质量份数,分别取乙二胺四乙酸钠50份、硝酸钙60份、磷酸二氢钠20份、纳米二氧 化锡15份、水1000份;

将乙二胺四乙酸钠、硝酸钙和磷酸二氢钠共混后,加入水中溶解,用强碱(NaOH、KOH 或Ca(OH)2)调节pH值至2.0-4.0,制得前驱体溶液;

第二步,镁合金预处理步骤

将镁合金基材依次进行机械打磨、第一水清洗、碱处理、第二水冲洗、酸处理、第三水 冲洗,然后暖风吹干,备用;

第三步,镁合金基材表面涂层处理步骤

打开水热反应釜,将上述溶液加入聚四氟乙烯材质的水热反应釜中,加入纳米二氧化锡, 制成处理液;

然后,将经过预处理的镁合金基材浸没在处理液中,并紧固好水热反应釜;

再将水热反应釜置于鼓风干燥箱中加热到100℃,保温18h,即完成镁合金基材表面涂层 处理;

第四步,打开水热反应釜,取出已经表面涂层处理的镁合金基材,用水冲洗干净其表面 上的残留物,用暖风吹干,密封保存,即可。

实施例3

镁合金基材:成分为Mg-1Li-1Ca。

制备方法如下:

第一步,前驱体溶液的配制步骤

按质量份数,分别取乙二胺四乙酸钠70份、硝酸钙90份、磷酸二氢钠25份、纳米二氧 化锡35份、水1000份;

将乙二胺四乙酸钠、硝酸钙和磷酸二氢钠共混后,加入水中溶解,用强碱(NaOH、KOH 或Ca(OH)2)调节pH值至2.0-4.0,制得前驱体溶液;

第二步,镁合金预处理步骤

将镁合金基材依次进行机械打磨、第一水清洗、碱处理、第二水冲洗、酸处理、第三水 冲洗,然后暖风吹干,备用;

第三步,镁合金基材表面涂层处理步骤

打开水热反应釜,将上述溶液加入聚四氟乙烯材质的水热反应釜中,加入纳米二氧化锡, 制成处理液;

然后,将经过预处理的镁合金基材浸没在处理液中,并紧固好水热反应釜;

再将水热反应釜置于鼓风干燥箱中加热到140℃,保温20h,即完成镁合金基材表面涂层 处理;

第四步,打开水热反应釜,取出已经表面涂层处理的镁合金基材,用水冲洗干净其表面 上的残留物,用暖风吹干,密封保存,即可。

实施例4:

镁合金基材:成分为Mg-1Li-1Ca。

制备方法如下:

第一步,前驱体溶液的配制步骤

按质量份数,分别取乙二胺四乙酸钠56份、硝酸钙75份、磷酸二氢钠20份、纳米二氧 化锡7份、水1000份;

将乙二胺四乙酸钠、硝酸钙和磷酸二氢钠共混后,加入水中溶解,用强碱(NaOH、KOH 或Ca(OH)2)调节pH值至2.0-4.0,制得前驱体溶液;

第二步,镁合金预处理步骤

将镁合金基材依次进行机械打磨、第一水清洗、碱处理、第二水冲洗、酸处理、第三水 冲洗,然后暖风吹干,备用;

第三步,镁合金基材表面涂层处理步骤

打开水热反应釜,将上述溶液加入聚四氟乙烯材质的水热反应釜中,加入纳米二氧化锡, 制成处理液;

然后,将经过预处理的镁合金基材浸没在处理液中,并紧固好水热反应釜;

再将水热反应釜置于鼓风干燥箱中加热到120℃,保温22h,即完成镁合金基材表面涂层 处理;

第四步,打开水热反应釜,取出已经表面涂层处理的镁合金基材,用水冲洗干净其表面 上的残留物,用暖风吹干,密封保存,即可。

实施例5

除镁合金基材:成分为Mg-9Li-1Ca外;其余,均同实施例4。

实施例6

除镁合金基材:镁合金AZ31板材(成分为Mg-3Al-1Zn)外;其余,均同实施例4。

实施例7

除镁合金基材:镁合金AZ91板材(成分为Mg-9Al-1Zn)外;其余,均同实施例4。

实施例8

除镁合金基材:镁合金ZK60板材(成分为Mg-6Zn-0.6Zr)外;其余,均同实施例4。

实施例9

除镁合金基材:镁合金WE43板材(成分为Mg-4Y-3.3RE(Nd,Gd)-0.5Zr)外;其余,均 同实施例4。

实施例10

除镁合金基材:镁合金AM60板材(成分为Mg-6Al-0.5Mn)外;其余,均同实施例4。

实施例11

除镁合金基材:成分为Mg-1Ca外;其余,均同实施例4。

实施例12

除镁合金基材:成分为Mg-6Zn-1Mn-4Sn-0.5Y外;其余,均同实施例4。

实施例13

除镁合金基材:镁合金AZ31管材(成分为Mg-3Al-1Al)外;其余,均同实施例4。

实施例14

除镁合金基材:镁合金LAE442板材(成分为Mg-4LI-4Al-2RE)外;其余,均同实施例 4。

实施例15

除镁合金基材:镁合金AM30管材(成分为Mg-3Al-0.5Mn)外;其余,均同实施例4。

实施例16

除镁合金基材:成分为Mg-4Li-1Ca-1Y外;其余,均同实施例4。

实施例17

除以等当量的Na2SnO3替代纳米二氧化锡之外;其余,均同实施例4。

产品检测方法及检测结果:

(一)、分别对上述实施例1-16所获得的涂层截面进行SEM观察,可以看出,保温时间 方面的测试结果为:16h时,可以观察到颗粒状结构,膜层较致密,出现了团簇花朵状产物, 花朵状物质与氢氧化镁膜紧密接触,基体已完全被膜层覆盖,孔隙较少;

16-20h,随着水热时间的延长,膜层明显出现两种显著不同的结构,且紧密结合在一起, 孔隙逐渐被填补,膜层也逐渐增厚,团簇花朵状、颗粒状纳米级结构数量增多同时与下方膜 层无缝衔接。

随着水热时间继续延长至20h以上,膜层表面形貌趋于稳定,未见有较明显的变化。

(二)、选择实施例4作为代表实施例,对所获得镁合金涂层分别进行整体、局部的不同 放大倍数的电镜观察,选择不同位置点进行能谱分析,在Hank’s溶液中进行析氢速率曲线、 极化曲线和交流阻抗测试。结果如下:

图1为实验例4所制得的复合涂层的表面微观(整体)形貌的SEM图(放大倍数为:100 倍)。

如图1所示,该复合涂层具有两种形态:层片状结构组成的团簇和颗粒状结构。从图中 可以清晰看出:涂层结构致密,空隙少。

图2为实施例4所制得的复合涂层(局部)形貌的SEM图(放大倍数为1000倍);由 于放大倍数增大,可见十分清晰的层片状紧密结构和颗粒状结构;

图3为实施例4所制得的复合涂层(局部)形貌的SEM图(放大倍数为:10,000倍);

如图3所示,复合涂层表面的纳米球由锯齿状、片状晶体堆积生长而成,形状规则且排 列整齐紧凑致密。

图4为实施例17(除以等当量的Na2SnO3替代纳米二氧化锡外;其余,均同实施例4) 所制得涂层(局部)形貌的SEM图(放大倍数为1000倍);

如图4所示,复合涂层没有晶态组织形成,表面膜层存在诸多龟裂纹。

这一对比实施例,证明:本发明的溶液体系中,锡酸盐无法实现而不能是异质形核。

图5为实施例4所制得的复合涂层截面(Mg、O、Ca、P、Sn)能谱图;

如图5所示,复合涂层表面具有两层结构:靠近镁合金基材的底层富含O、P、Mg;远 离镁合金基材的顶层富含Ca、P、O;整个复合涂层中Sn元素含量极低。

从上述图1-5,可以证明,实施例4所制得复合涂层具有两层结构,组织致密、涂层与基 体粘结牢固。

图6为实施例4所制得的复合涂层(图1中的A点位置)的EDS图。

如图6所示,这种复合涂层中,主要包括有O、P和Ca等元素。

图7为实施例4所制得的复合涂层(图2中的B点位置)的EDS图。

如图7所示,这种复合涂层中,主要包括有O、P和Ca等元素。另外,还有微量Sn。

图8为实施例4所制得的复合涂层(图2中的C点位置)的EDS图。

如图8所示,这种复合涂层中,主要包括有O、P和Ca等元素。另外,还有少量Mg和 Sn。

从上述图5-8,可以证明,这种复合涂层主要包括有O、P、Ca和Mg及微量Sn,可能为 化合物(Ca,Mg)3(PO4)2、Ca(H2PO4)2、Mg(OH)2、SnO2

图9为实施例4所制得的产品与不带复合涂层的镁合金基材在Hank’s溶液中的对比析氢 速率曲线图。

如图9所示,不带复合涂层的镁合金基材,在Hank’s溶液中的析氢速率急剧增加,然后 较为缓慢降低,直至最后因腐蚀产物膜的形成而稳定。

而带有复合涂层的镁合金产品,在Hank’s溶液中的析氢速率几乎不变。

说明,带有复合涂层的镁合金产品,在Hank’s溶液中具有良好的耐腐蚀性能。

图10为实施例4所制得的产品与不带复合涂层的镁合金基材在Hank’s溶液中的对比极 化曲线;

如图10所示,在Hank’s溶液中,带有复合涂层的镁合金产品的腐蚀电流密度,较不带 复合涂层的镁合金基材降低了1个多数量级。

这进一步说明了,带有复合涂层的镁合金产品具有较好的耐蚀性能。

图11为实施例4所制得的产品(曲线2)与不带复合涂层的镁合金基材(曲线1)在Hank’s 溶液中的对比交流阻抗图;

如图11所示,在Hank’s溶液中,带有复合涂层的镁合金产品的阻抗值,比不带复合涂层 的镁合金基材大2个数量级。

说明,带有复合涂层的镁合金产品耐腐蚀性能十分优越。

二、选取实施例12所获得的产品,与其对应的镁合金基材,在Hank’s溶液中,进行析氢 曲线分析。结果如下:

图12为实施例12所制得的带有复合涂层的镁合金产品与不带复合涂层的镁合金 Mg-6Zn-1Mn-4Sn-0.5Y基材,在Hank’s溶液中的对比析氢曲线。

如图12所示,在Hank’s溶液中随浸泡时间的增加,基材和带涂层的产品析氢速率首先 急剧降低,然后逐渐稳定。不带复合涂层的镁合金基材是因腐蚀产物膜的形成而稳定。

带有复合涂层的镁合金产品,在Hank’s溶液中具有比基材更好的耐腐蚀性能,可作为镁 合金底涂层;

说明:本发明的复合涂层制备方法所制得产品,在Hank’s溶液中,其耐腐蚀性能受基体 材质的影响较小。

也就是说,其耐蚀性能主要来自于复合涂层的贡献。

三、分别选取不同的水热时间所制得的产品进行对比XRD分析,以检验水热时间对产品 质量的影响程度,结果如下:

图13为16-20小时的各不同水热时间所制得的产品的对比XRD图。

如图13所示,复合涂层中,含有(Ca,Mg)3(PO4)2、Ca(H2PO4)2、Mg(OH)2、SnO2等成分, 并且,随着水热时间由16小时直至20小时的延长,这些物质的衍射峰强度显著增加。

这说明:本发明的制备方法所获得的产品质量与水热时间有关;

并且,随着水热时间的延长,复合涂层的生长成膜情况将不断改善和提高。

补充说明:我们的实验表明,在超过20小时以后,水热时间继续延长,复合涂层的生长 成膜情况变化不明显。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号