首页> 中国专利> 一种单关节助力外骨骼反演自适应鲁棒力控制的方法

一种单关节助力外骨骼反演自适应鲁棒力控制的方法

摘要

本发明公开了一种单关节助力外骨骼反演自适应鲁棒力控制的方法,针对液压缸驱动单关节助力外骨骼的增力和跟随问题,基于整体单关节助力外骨骼动力学模型,考虑不同层动力学之间的耦合作用,采用了反演控制器设计方法,克服了助力外骨骼传统级联控制带来的频宽限制,获得了更大的闭环频宽。本发明在外骨骼承担重物时最小化人机作用力以实现助力和跟随人运动,采用了反演自适应鲁棒力控制算法(ARC),有效克服了单关节助力外骨骼系统的模型不确定性的影响,具有很好的鲁棒性能以及更快的闭环响应,实现了单关节外骨骼对人运动的良好跟随及助力效果,具有较强的应用价值。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-02-27

    授权

    授权

  • 2017-04-19

    专利申请权的转移 IPC(主分类):G05B13/04 登记生效日:20170331 变更前: 变更后: 申请日:20150814

    专利申请权、专利权的转移

  • 2015-12-30

    实质审查的生效 IPC(主分类):G05B13/04 申请日:20150814

    实质审查的生效

  • 2015-12-02

    公开

    公开

说明书

技术领域

本发明涉及机器人领域,尤其涉及一种单关节助力外骨骼反演自适应鲁棒力控制的方法。

背景技术

军队士兵经常需要背负重物进行长距离行走或作战,过重的负载常会对士兵身体造成一 定的伤害,在这种背景下,需要开发一款能在战场环境中增强士兵速度、力量以及耐力的外 骨骼装备;在科考、消防营救等领域,科考人员及消防营救人员常常需要长距离行走、背负 重物、运送伤员、野外作战、登山探险等,传统的轮式交通工具难以在这些特殊场合发挥作 用。除此之外,外骨骼也可以被用于仓库的货物装卸,以减轻搬运工人的劳动强度。外骨骼 与人的组合能适应非结构化的环境,拥有极好的灵活性,可以完成一些复杂的装卸的工作, 如为战斗机装卸导弹等,这是其他的装卸设备难以比拟的。外骨骼在这些领域的应用将对这 些领域起到非常积极的作用。另外,老龄化正在全球蔓延,外骨骼的出现不仅可以帮助一些 老年人解决体力较差、行走不变的问题,也可以帮助一些丧失行动能力的人恢复部分的行动 能力。助力外骨骼的特点是要求在非结构环境下与穿戴者进行协作,这要求研究人员需要解 决非结构性环境下高度协调的人机一体化问题,包括有效、可靠的人机间交互问题,对人体 运动意图的快速响应问题,轻便、灵活的仿生结构设计,人机系统的安全性问题等,这些技 术问题还处于初级摸索阶段,并不成熟,还需要进行深入的研究。

发明内容

本发明的目的是针对现有技术的不足,提供一种单关节助力外骨骼反演自适应鲁棒力控 制的方法,该方法能实现有效、可靠人机间交互,并能对人体运动意图进行快速响应。

为了达到上述目的,本发明所采用的技术方案如下:一种单关节助力外骨骼反演自适应 鲁棒力控制的方法,所述单关节助力外骨骼包括液压缸、关节旋转编码器、力传感器、第一 杆件、第二杆件、绷带、电液伺服阀、伺服放大板、实时控制器等;所述第一杆件和第二杆 件通过铰链连接,在铰接处设置关节旋转编码器;液压缸的一端与第一杆件铰接,另一端与 第二杆件铰接;力传感器设置在第二杆件上,绑带与力传感器相连;液压缸与电液伺服阀相 连,电液伺服阀与伺服放大板相连,伺服放大板、关节旋转编码器和力传感器均与实时控制 器相连;该方法包括如下步骤:

(1)初始化实时控制器的采样周期T,取T的值在10到20毫秒之间;

(2)将单关节助力外骨骼第一杆件和第二杆件旋转至平行位置,此时,初始化单关节助力外 骨骼上的关节旋转编码器,将关节旋转编码器的数值调零;

(3)初始化位于第二杆件上的力传感器,将力传感器的数值调零;

(4)建立单关节助力外骨骼的物理模型,并将其转化为状态方程,所述物理模型包括:人机 接口模型、液压缸负载运动模型、液压缸两腔压力模型和伺服阀的流量模型;

(5)通过绑带将人与外骨骼单关节上的力传感器相连,测定力传感器上的作用力Thm,测定 安装在单关节外骨骼关节处的关节编码器得到关节实际角度值;

(6)将人机作用力Thm和实际关节角度值作为反演自适应鲁棒(ARC)力控制器的输入量, 反演自适应鲁棒(ARC)力控制器的输出为单关节助力外骨骼的控制电压u;

(7)通过伺服阀放大板将步骤6得到的控制电压u转化为伺服阀的控制电流;

(8)控制电流控制伺服阀的阀芯开口从而控制液压缸两端的压力,推动液压缸运动,实现单 关节助力外骨骼的运动跟随。

进一步地,所述步骤4具体步骤为:

建立单关节助力外骨骼的物理模型,所述物理模型包括:

人机接口模型:Thm=K(qh-q)+D~1---(1)

液压缸负载运动模型:Jq··=-h(P1A1-P2A2)-mglcsinq-Bq··-A·S(q·)+Thm+D~2---(2)

液压缸两腔压力模型:V1βeP·1=A1hq·+Q1+D~31V2βeP·1=-A2hq·-Q2+D~32---(3)

伺服阀的流量模型:Q1=kq1xv|ΔP1|,ΔP1=Ps-P1ifxv0P2-Prifxv<0Q2=kq2xv|ΔP2|,ΔP2=P2-Prifxv0Ps-Psifxv<0xv=u---(4)

其中,Thm是人机作用力,K是人机接口的刚度,qh和q分别是人的位移和外骨骼的位 移,是外骨骼的位移的一阶导数,为外骨骼的位移的二阶导数;是在人机接口上的集中 模型不确定性和干扰,J是单关节助力外骨骼的转动惯量,h是液压缸输出力的力臂,P1和 P2分别是液压缸两腔的压力,A1和A2分别是两腔的面积,m是负载质量,g是重力加速度, lc是关节到力传感的距离,B是阻尼粘滞摩擦系数,A是未知的库仑摩擦系数,是用来 拟合符号函数的光滑函数,是单关节助力外骨骼上的集中 模型不确定性和干扰,V1和V2分别是液压缸两腔的体积,βe是油液的体积弹性模量,Q1,Q2分 别是进油流量和出油流量,分别是在进口和出口油路上的集中模型不确定性和干 扰,xv是阀芯位移,kq1,kq2分别是进出口的流量增益系数,Ps是泵的供油压力,Pr是出 油口上的压力,u是伺服阀的控制电压;

由于人机接口模型是一个静态的方程,所以Thm、qh和q之间的关系是静态的,为了可 以动态控制人机作用力Thm,用人机作用力的积分来代替Thm

将物理模型转化为状态方程的步骤如下:

令状态变量x=0tThmqq·P1P2,其中,x1=0tThm,x2=q,x3=q·,x4=P1,x5=P2,设 集中模型不确定性为:Δ~1=Kqh+D~1Δ~3=1JD~2Δ~4=D~31βeA1V1+D~32βeA2V2,

将集中模型不确定性分为常数和时变函数两部分,即Δ~i=Δin+Δi,i=1,3,4,其中,Δin为常数,Δi为时变函数;设θ=KΔ1n1JmglcJBJAJΔ3nβeΔ4n,其中, θ1=K,θ2=Δ1n7=Δ3n8=βe9=Δ4n,则单关节助力外骨骼 的物理模型的状态方程为:

x·2=x3---(6)

其中:

进一步地,所述步骤6具体步骤为:

设计反演自适应鲁棒(ARC)力控制器的具体步骤为:

(6.1)令z1=x1-x1d,其中z1是第一误差函数,x1d为期望的人机作用力的积分,其值为0;

令z2=x21,其中z2是第二误差函数,第一虚拟控制输入α1设计为:α1=α1a1s11s2K1s1=g1||Γφ1||2+K1,K1,g1均是任意选取的非负 数;其中是对参数θ1,θ的估计值,根据物理模型,可以得到这个估计值的范围为: 其中i=1,2,3,4,5,6,7,8,9,为对参数θi的估计值的最小值,为对 参数θi的估计值的最大值;而这个估计值的值在反演自适应鲁棒(ARC)力控制器中 由自适应率θ^·=Projθ^(Γτ4)得到,其中,θ^=θ^1θ^2θ^3θ^4θ^5θ^6θ^7θ^8θ^9T,τ4是由步 骤(6.4)得到,对角阵Γ=diag(γ1γ2γ3γ4γ5γ6γ7γ8γ9),γi是任意非负数,其中 i=1,2,3,4,5,6,7,8,9;的映射函数为

其中·i为自变量;

Δ1=Δ1,τ1=w1φ1z1,其中w1是第一权重系数, 其值为任意非负数;根据反演自适应鲁棒(ARC)控制算法,α1s2必须满足以下两个条件,即:

z1(-φ1Tθ~+Δ1+(-θ1α1s2))ϵ1-θ1z1α1s20

其中,ε1是第一阈值,其值为任意非负数;

(6.2)令z3=x32,其中z3是第三误差函数,第二虚拟控制输入α2设计为: α2=α2a2s12s2,其中α2s1=-k2s1z2φ2=-w1w2z100000000T,k2s1=g2||Γφ2||2+d2||α1θ^||2+k2,g2,d2,k2均是增益 量;设其中w2是第二权重系数,其值为任意非负数;

根据反演自适应鲁棒(ARC)控制算法,α2s2必须满足以下两个条件,即:

z2(-φ2Tθ~+Δ2+α2s2)ϵ2z2α2s20

其中,ε2是第二阈值,其值为任意非负数;

(6.3)令z4=A1x4-A2x53,其中z4是第四误差函数,第三虚拟控制输入α3设计为: α3=α3a3s13s2,其中,w3是第三权重系数,其值为任意非负数, 其中,g3,d3,k3均是增益量,

令根据反演自适应鲁棒(ARC)控制算法,α3s2必须满足以下两个 条件,即:

z3(-φ3Tθ~+Δ3-θ3hα3s2)ϵ3-z3θ33s20

其中,ε3是第三阈值,其值为任意非负数;

(6.4)设其中z5是第五误差函数,第四虚拟控制输入α4设计为: α4=α4a4s14s2α4a=1θ^8(-θ^8Tφ4c+α3x1Thm+α3x2x3+α3t),α4s1=1θ8min(-k4s1z4);其中, w4是第四权重系数, 其值为任意非负数;其中,g4,d4,k4均是增益量,设 Δ4=Δ4-α3x3Δ3,τ4=τ3+w4φ4z4,得到的τ4用于(6.1)中的自适应率,得到估计的参数

根据反演自适应鲁棒(ARC)控制算法,α4s2必须满足以下两个条件,即:

z4(-φ4Tθ~+Δ4+θ9α4s2)ϵ4z4θ9α4s20

其中,ε4是第四阈值,其值为任意非负数;

根据第四虚拟控制输入α4,得到伺服阀的控制电压u为:

u=α4A1V1kq1|ΔP1|+A2V2kq2|ΔP2|.

本发明与背景技术相比,具有的有益效果是:本发明主要针对在长时间负重作业环境下 辅助或者增强人们的步行能力。其动力系统采用具有体积小、质量轻、布局灵活、机构紧凑, 而且能够输出较大力或扭矩、动作响应灵敏,易于控制等特点的液压驱动方式。传感器系统 主要有力传感器和旋转编码器来实现较有效、可靠的人机交互。针对单关节助力外骨骼的增 力和跟随问题,采用了反演自适应鲁棒力控制算法(ARC),有效克服了单关节助力外骨骼系 统单关节的模型不确定性的影响,具有很好的鲁棒性能以及,更快的闭环响应频响,实现了 单关节助力外骨骼对人运动的良好跟随及和助力效果,具有较强的应用价值。

附图说明

图1是本发明的整体形状结构示意图;

图2是本发明的控制框图

图3是本发明的控制流程图;

图中,液压缸1、关节处旋转编码器2、力传感器3、第一杆件4、第二杆件5、绷带6。

具体实施方式

下面结合附图和实施例对本发明作进一步的说明。

如图1所示,一种单关节助力外骨骼包括:液压缸1、关节旋转编码器2、力传感器3、 第一杆件4、第二杆件5、绷带6、电液伺服阀(图中未示出)、伺服放大板(图中未示出)、 实时控制器(图中未示出);所述第一杆件4和第二杆件5通过铰链连接,在铰接处设置关节 旋转编码器2;液压缸1的一端与第一杆件4铰接,另一端与第二杆件5铰接;力传感器3 设置在第二杆件5上,绑带6与力传感器3相连。

液压缸1与电液伺服阀相连,电液伺服阀与伺服放大板相连,伺服放大板、关节旋转编 码器2和力传感器3均与实时控制器相连。所述实时控制器可采用的型号为NIcRIO‐9031的 产品,但不限于此;所述伺服阀放大板可采用的型号为StarWO36829/1的产品,但不限于此。

为了克服单关节助力外骨骼在建模过程中存在的不确定性和非线性性,实现了助力外骨 骼对人运动的良好跟随和助力效果,本发明中助力外骨骼单关节控制策略采用了可以很好克 服模型不确定性影响的自适应鲁棒控制(ARC)。自适应鲁棒控制(ARC)的原理是通过设计自 适应率来不断调整模型参数,对控制模型做前馈补偿来保证静态下的零跟踪误差,通过设计 的鲁棒反馈来保证助力外骨骼单关节系统的动态特性和稳定性。同时,利用反演控制器设计 方法,考虑了单关节助力外骨骼不同层动力学之间的耦合作用,与传统的级联控制方法相比, 提高了系统的工作频宽,控制算法实现简单,易于工程实现,且控制灵活。

如图2所示,一种单关节助力外骨骼反演自适应鲁棒力控制的方法,具体包括如下步骤:

(1)通过绑带6将单关节助力外骨骼固定在人的小腿上;初始化实时控制器的采样周期T, 取T的值在10到20毫秒之间;

(2)将单关节助力外骨骼第一杆件4和第二杆件5旋转至平行位置,此时,初始化单关节助 力外骨骼上的关节旋转编码器2,将关节旋转编码器2的数值调零;

(3)初始化位于第二杆件5上的力传感器3,将力传感器3的数值调零;

(4)建立单关节助力外骨骼的物理模型,并将其转化为状态方程,所述物理模型包括:

人机接口模型:Thm=K(qh-q)+D~1---(1)

液压缸负载运动模型:Jq··=-h(P1A1-P2A2)-mglcsin>q-Bq··-A·S(q·)+Thm+D~2---(2)

液压缸两腔压力模型:V1βeP·1=A1hq·+Q1+D~31V2βeP·1=-A2hq·-Q2+D~32---(3)

伺服阀的流量模型:Q1=kq1xv|ΔP1|,ΔP1=Ps-P1ifxv0P2-Prifxv<0Q2=kq2xv|ΔP2|,ΔP2=P2-Prifxv0Ps-Psifxv<0xv=u---(4)

其中,Thm是人机作用力,K是人机接口的刚度,qh和q分别是人的位移和外骨骼的位 移,是外骨骼的位移的一阶导数,为外骨骼的位移的二阶导数;是在人机接口上的集中 模型不确定性和干扰,J是单关节助力外骨骼的转动惯量,h是液压缸输出力的力臂,P1和 P2分别是液压缸两腔的压力,A1和A2分别是两腔的面积,m是负载质量,g是重力加速度, lc是关节到力传感的距离,B是阻尼粘滞摩擦系数,A是未知的库仑摩擦系数,是用来 拟合符号函数的光滑函数,是单关节助力外骨骼上的集中 模型不确定性和干扰,V1和V2分别是液压缸两腔的体积,βe是油液的体积弹性模量,Q1,Q2分 别是进油流量和出油流量,分别是在进口和出口油路上的集中模型不确定性和干 扰,xv是阀芯位移,kq1,kq2分别是进出口的流量增益系数,Ps是泵的供油压力,Pr是出 油口上的压力,u是伺服阀的控制电压;

由于人机接口模型是一个静态的方程,所以Thm、qh和q之间的关系是静态的,为了可 以动态控制人机作用力Thm,用人机作用力的积分来代替Thm

将物理模型转化为状态方程的步骤如下:

令状态变量x=0tThmqq·P1P2,其中,x1=0tThm,x2=q,x3=q·,x4=P1,x5=P2,设 集中模型不确定性为:Δ~1=Kqh+D~1Δ~3=1JD~2Δ~4=D~31βeA1V1+D~32βeA2V2,

将集中模型不确定性分为常数和时变函数两部分,即其中,Δin为常数,Δi为时变函数;设θ=KΔ1n1JmglcJBJAJΔ3nβeΔ4n,其中, θ1=K,θ2=Δ1n7=Δ3n8=βe9=Δ4n,则单关节助力外骨骼 的物理模型的状态方程为:

x·2=x3---(6)

其中:

(5)通过绑带6将人与外骨骼单关节上的力传感器3相连,测定力传感器上的作用力Thm, 测定安装在单关节外骨骼关节处的关节编码器2得到关节实际角度值;

(6)将人机作用力Thm和实际关节角度值作为反演自适应鲁棒(ARC)力控制器的输入量, 反演自适应鲁棒(ARC)力控制器的输出为单关节助力外骨骼的控制电压;

设计反演自适应鲁棒(ARC)力控制器步骤为:

(6.1)令z1=x1-x1d,其中z1是第一误差函数,x1d为期望的人机作用力的积分,其值为0;

令z2=x21,其中z2是第二误差函数,第一虚拟控制输入α1设计为:α1=α1a1s11s2K1s1=g1||Γφ1||2+K1,K1,g1均是任意选取的非负 数,在本实施例中,选取K1s1=g1||Γφ1||2+K1=10;其中是对参数θ1,θ的估计值,根据 物理模型,可以得到这个估计值的范围为:其中i=1,2,3,4,5,6,7,8,9,为 对参数θi的估计值的最小值,为对参数θi的估计值的最大值;而这个估计值的 值在反演自适应鲁棒(ARC)力控制器中由自适应率得到,其中, θ^=θ^1θ^2θ^3θ^4θ^5θ^6θ^7θ^8θ^9T,τ4是由步骤(6.4)得到,对角阵 Γ=diag(γ1γ2γ3γ4γ5γ6γ7γ8γ9),γi是任意非负数,其中i=1,2,3,4,5,6,7,8,9, 本实施例中设定为Γ=diag(0140000000.0000100);的映射函数为

其中·i为自变量;

Δ1=Δ1,τ1=w1φ1z1,其中w1是第一权重系数, 其值为任意非负数;在本实施例中,设为1;根据反演自适应鲁棒(ARC)控制算法,α1s2必 须满足以下两个条件,即:

z1(-φ1Tθ~+Δ1+(-θ1α1s2))ϵ1-θ1z1α1s20

其中,ε1是第一阈值,其值为任意非负数;在本实施例中,ε1=1,选取α1s2=0;

(6.2)令z3=x32,其中z3是第三误差函数,第二虚拟控制输入α2设计为: α2=α2a2s12s2,其中α2s1=-k2s1z2φ2=-w1w2z100000000T,k2s1=g2||Γφ2||2+d2||α1θ^||2+k2,g2,d2,k2均是增益 量,其值任意选取;在实施例中,取k2s1=g2||Γφ2||2+d2||α1θ^||2+k2=300,Δ2=0,τ2=τ1+w2φ2z2,其中w2是第二权重系数,其值为任意非负数,本实施例中设定为1,但不限定于1;

根据反演自适应鲁棒(ARC)控制算法,α2s2必须满足以下两个条件,即:

z2(-φ2Tθ~+Δ2+α2s2)ϵ2z2α2s20

其中,ε2是第二阈值,其值为任意非负数,本实施例中设定为1,但不限于1,选取α2s2=0;

(6.3)令z4=A1x4-A2x53,其中z4是第四误差函数,第三虚拟控制输入α3设计为: α3=α3a3s13s2,其中,w3是第三权重系数,其值为任意非负数,本实施例 中设定为1,但不限定于1,其中,g3,d3,k3均是增益量,其值 任意选取,在本实施例中,选取

令根据反演自适应鲁棒(ARC)控制算法,α3s2必须满足以下两个 条件,即:

z3(-φ3Tθ~+Δ3-θ3hα3s2)ϵ3-z3θ33s20

其中,ε3是第三阈值,其值为任意非负数,本实施例中设定为1,但不限于1,选取α3s2=0;

(6.4)设其中z5是第五误差函数,第四虚拟控制输入α4设计为: α4=α4a4s14s2α4a=1θ^8(-θ^8Tφ4c+α3x1Thm+α3x2x3+α3t),α4s1=1θ8min(-k4s1z4);其中, w4是第四权重系数, 其值为任意非负数,本实施例中设定为1,但不限定于1;其 中,g4,d4,k4均是增益量,其值任意选取,在本实施例中,选取设Δ4=Δ4-α3x3Δ3,τ4=τ3+w4φ4z4,得到的τ4用于(6.1)中的自适应率,得到估计的参数θ^;

根据反演自适应鲁棒(ARC)控制算法,α4s2必须满足以下两个条件,即:

z4(-φ4Tθ~+Δ4+θ9α4s2)ϵ4z4θ9α4s20

其中,ε4是第四阈值,其值为任意非负数,本实施例中设定为1,但不限于1,选取α4s2=0;

根据第四虚拟控制输入α4,得到伺服阀的控制电压u为:

u=α4A1V1kq1|ΔP1|+A2V2kq2|ΔP2|

(7)通过伺服阀放大板将步骤6得到的控制电压u转化为伺服阀的控制电流;

(8)控制电流控制伺服阀的阀芯开口从而控制液压缸两端的压力,推动液压缸运动,实现单 关节助力外骨骼的运动跟随。

以上描述了本发明的基本原理,主要特征,并非限制本发明所描述的技术方案,一切不 脱离发明精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围当中。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号