首页> 中国专利> 基于PCBM修饰ZnO纳米棒阵列的钙钛矿太阳能电池及其制备方法

基于PCBM修饰ZnO纳米棒阵列的钙钛矿太阳能电池及其制备方法

摘要

本发明涉及一种基于ZnO/PCBM/CH3NH3PbI3光吸收层的有机无机杂化钙钛矿太阳能电池及其制备方法,电池组成包括有玻璃衬底、作为阳极的FTO层、ZnO种子层、ZnO纳米棒骨架层、有机PCBM层、钙钛矿层、Spiro-MeOTAD空穴传输层以及作为电池阴极的Au膜层。本发明制备方法简便,反应条件要求较低,效果显著,在保持较高的效率的同时,也能在某种程度上克服性能稳定性的问题。该种结构将有机和无机材料有效的结合在了一起,充分发挥各自的优点,为钙钛矿太阳能电池的发展拓展了一条新的路径。

著录项

  • 公开/公告号CN105047820A

    专利类型发明专利

  • 公开/公告日2015-11-11

    原文格式PDF

  • 申请/专利权人 湖北大学;

    申请/专利号CN201510229488.X

  • 申请日2015-05-07

  • 分类号H01L51/42(20060101);H01L51/46(20060101);H01L51/48(20060101);B82Y30/00(20110101);

  • 代理机构武汉河山金堂专利事务所(普通合伙);

  • 代理人丁齐旭

  • 地址 430062 湖北省武汉市武昌区友谊大道368号

  • 入库时间 2023-12-18 12:02:04

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-04-24

    未缴年费专利权终止 IPC(主分类):H01L51/42 授权公告日:20180417 终止日期:20190507 申请日:20150507

    专利权的终止

  • 2018-04-17

    授权

    授权

  • 2015-12-09

    实质审查的生效 IPC(主分类):H01L51/42 申请日:20150507

    实质审查的生效

  • 2015-11-11

    公开

    公开

说明书

技术领域

本发明涉及半导体纳米材料技术以及钙钛矿太阳能电池技术领域,尤其是涉及一种利用有机物PCBM(富勒烯衍生物C72H14O2C72H14O2)来修饰ZnO纳米棒阵列组成电子传输层,以及利用两步法合成的CH3NH3PbI3薄膜的钙钛矿太阳能电池及其制备过程。

背景技术

近年来,钙钛矿太阳能电池发展迅猛,其光电转换效率从最初的3.81%上升到了19%[1-3],甚至还有的报道达到了20%以上,钙钛矿太阳能电池已成为目前研究太阳能电池的热点。钙钛矿材料由于具有合适和易调节的带隙(如CH3NH3PbI3为1.5eV,CH3NH3PbBr3为2.3eV等)[4]、较高的吸收系数(>104cm-1)[5-6]、优异的载流子传输性能以及对杂质和缺陷的良好容忍度等特性[7-9],使钙钛矿太阳能电池成为一种全新、高效率、价格便宜、制备简单、结构多样的新型无机-有机杂化异质结太阳能电池。

钙钛矿太阳能电池一般是由透明导电玻璃、致密层、钙钛矿吸收层、有机空穴传输层、金属背电极五部分组成,当有太阳光照射时,钙钛矿化合物(又称AMX3)吸收光子,其价带电子跃迁到导带,然后导带电子通过致密层传输到FTO,同时,空穴通过有机空穴传输层传输到对电极上,从而完成电子-空穴对的分离,当接通外电路时,电子与空穴的移动将会产生电流。太阳能电池的光伏性能和长期稳定性主要是受致密层、钙钛矿吸收层、有机空穴传输层的材料、微结构和性质的影响,而目前的研究大部分都集中在钙钛矿的吸收层上,钙钛矿吸收层主要有两种结构:(1)有骨架层;(2)无骨架层(或称平面结构)的钙钛矿吸收层。骨架层的材料主要有TiO2、Al2O3、ZrO2和ZnO,目前做的光电转化效率比较高的是以TiO2为骨架层材料的钙钛矿吸收层,而由这种钙钛矿吸收层组成的太阳能电池一般都不稳定,对空气非常敏感,效率衰减快,这些不良因素都将严重阻碍太阳能电池的发展。因此,人们转而开始研究以Al2O3和ZnO的为骨架层的太阳能电池,特别是ZnO,不仅可以使太阳能电池具有良好的光稳定性,而且还能得到相对较高的光电转化效率。如何进一步提高太阳能电池的光电转化效率和稳定性,推动是太阳能电池的发展是科技工作者孜孜求索的问题。

本发明是以ZnO纳米棒为骨架层,并在ZnO纳米棒中掺入少量的有机物PCBM,然后与钙钛矿材料CH3NH3PbI3组成钙钛矿吸收层,该种结构不仅能够有效的促进电子-空穴对的分离,加强对光的吸收作用,而且它们之间能带的阶梯结构能够减少电子和空穴在传输过程中的能量损失,从而提高电池的光电转化效率,同时该种结构的太阳能电池相对稳定,存放两个星期后效率仍然能够保持在原效率的80%以上,这种独特的结构为钙钛矿太阳能电池的发展提供一条新的途径。

【参考文献】

[1]A.Kojima,K.Teshima,T.Miyasaka,etal.J.Am.Chem.Soc.,131,6050(2009).

[2]R.F.Service,Science,344,458(2014).

[3]H.Zhou,Q.Chen,G.Li,etal.,Science,345,542(2014).

[4]J.H.Noh,S.H.Im,S.I.Seok,etal.NanoLett.,13,1764(2013).

[5]H.S.Kim,M.N.G.Park,etal.,Sci.Rep.,2,591(2012).

[6]J.H.Im,C.R.Lee,N.G.Park,etal.Nanoscale,3,4088(2011).

[7]Q.Wang,Y.B.Yuan,J.S.Huang,etal.,EnergyEnviron.Sci.,7,2359(2014).

[8]A.Dualeh,M.K.Nazeeruddin,M.etal.,Adv.Funct.Mater.,24,3250(2014).

[9]K.Wojciechoeski,M.Saliba,H.J.Snaith,etal.,EnergyEnviron.Sci.,7,1142(2014).

发明内容

基于上述技术背景,本发明提供一种FTO/ZnO纳米棒/PCBM/CH3NH3PbI3/Spiro-MeOTAD/Au有机无机杂化结构及其钙钛矿太阳能电池的制备方法,该方法不仅解决了电流密度过小的问题,而且还在某种程度上提高了钙钛矿太阳能电池的稳定性。其操作步骤简单,对实验设备的要求低,实验成本低廉,此外,所制备的ZnO纳米棒/PCBM/CH3NH3PbI3杂化结构的整体结构清晰,ZnO纳米棒均匀,而且长度可控,具有良好的发展前景。

本发明是这样实现的。它主要由透明导电玻璃、致密层、骨架层、有机修饰层、钙钛矿层、有机空穴传输层、金属电极组成,其中,致密层是由ZnO种子层组成,在致密层上还设有ZnO纳米棒作为骨架层和有机PCBM薄膜作为骨架修饰层,钙钛矿是通过两步法合成的CH3NH3PbI3层,也可简写为AMI3层,有机空穴传输层是由有机物Spiro-MeOTAD薄膜组成,金属电极是由Au膜组成。

本发明的具体制备流程和工艺如下:

(1)FTO的预处理:将FTO玻璃片切成面积为2cm*2cm的正方形玻璃样片,依次用去离子水,丙酮,酒精,去离子水进行超声清洗,再用紫外臭氧剂(UV)清洗15min;

(2)ZnO种子层的制备:以甲醇为溶剂,配制3mmol/L的醋酸锌(Zn(CH3COO)2)溶液,搅拌10分钟,然后开始在FTO玻璃样片上旋涂,旋涂的转速为3000r/min,时间为15s,在100℃条件下烘干15分钟,然后转移到马弗炉中退火1h。

(3)ZnO纳米棒的制备:在生长有ZnO种子层FTO玻璃样片上,用水浴法生长ZnO纳米棒,水浴溶液成分为50mmol/L的六水硝酸锌(Zn(NO3)2·6H2O)、30mmol/L的六次甲基四铵(C6H12N4)和0.6g的PEI(聚醚酰亚胺),同时利用氨水将溶液的PH值控制在10.6-10.8范围内,水浴的温度为85℃-90℃,根据不同棒长需求来控制水浴的时间。水浴结束后,先后用去离子水和酒精冲洗,去除表面的杂物,最后转移到马弗炉中退火处理2h。

(4)PCBM(富勒烯衍生物C72H14O2C72H14O2)的掺入:先将生长有ZnO纳米棒的FTO玻璃样片用紫外臭氧剂(UV)清洗15分钟,然后以氯苯为溶剂,配制浓度为2--2.5wt%的PCBM溶液,采用旋涂法将PCBM甩到ZnO纳米棒里,完全填充到ZnO纳米棒里面去。旋涂转速为3000r/min,旋涂时间为10s,然后在手套箱中放置一晚上。

(5)两步法合成钙钛矿层(CH3NH3PbI3):第一步是旋涂PbI2,即以DMF(N,N-二甲基甲酰胺)为溶剂,配制1mmol/L(0.462g)的PbI2溶液,在70℃的恒温条件下搅拌4h,然后采用旋涂法将PbI2甩在PCBM层上,旋涂转速为3000r/min,时间为15s,旋涂好后放置在烘干台上烘烤5min;第二步是PbI2与碘甲胺反应合成钙钛矿,即以甲胺和氢碘酸、或氢氯酸、或氢溴酸为原料在低温下采用旋转蒸发法制备CH3NH3X(X为I、Br、Cl等卤素)晶体,并在乙醇与乙醚溶剂中进行重结晶。以异丙醇为溶剂,配制0.1g/10ml的CH3NHI溶液,然后将烘干后FTO样片(上面已经旋有PbI2)放在溶液中浸泡40s,然后再在烘干台上烘烤10min;

(6)制备空穴传输层:将有机物Spiro-MeOTAD(2,2',7,7'-四溴-9,9'-螺二、三(4-碘苯)胺)用旋涂的方法甩在钙钛矿层的上面,旋涂的转速为3000r/min,旋涂时间为10s,并用吹风机吹干。

(7)对电极的制备:以Au为电极材料,采用蒸镀的方法,在空穴传输层上蒸镀一层Au,蒸镀的速率控制在蒸镀的Au的厚度为40nm,即可制作成一个完整钙钛矿太阳能电池。

将所制备得到的ZnO纳米棒/PCBM/CH3NH3PbI3杂化结构进行了X射线衍射(XRD)、扫描电子显微镜(SEM)分析。X射线衍射分析使用的仪器是D8Advance,测定条件是0.02°/步扫描。扫描电子显微镜的测定电压是在20KV的条件下进行的。将组装好的钙钛矿太阳能电池测试其光电性能。这些分析结果分别列于附图中。

本发明的优点和特色之处在于:

(1)本发明先通过制备ZnO纳米棒阵列作为骨架层,然后采用简单的溶液旋涂法在棒子表面旋涂一定量的PCBM进行修饰,再利用两步法合成钙钛矿层,此法制备的钙钛矿吸收层有效的加强了对电子的吸收作用,同时在某种程度上隔绝了有机物PCBM和空气的接触,环保安全,而且还可以增加太阳能电池的稳定性。

(2)本发明中得到ZnO纳米棒/PCBM/CH3NH3PbI3的杂化结构,可以用能带理论很好的作出解释(如附图1),有机物PCBM的价带导带处于ZnO纳米棒和CH3NH3PbI3之间,使电子和空穴的传输呈现出阶梯状,减小了电子和空穴在传输过程中的能量损失,有效的增加了短路电流(从17mA/cm2增加到了21.3mA/cm2)和开路电压(从0.6V增加到了0.7V)。

(3)本发明的大部分实验操作都是在空气中进行,实验操作简单,对设备要求低,实验周期短,可行性高,主要步骤都是采用溶液法,方便以后进行大规模的生产,在光伏材料和低价太阳能电池器件领域具有很大的应用价值。

附图说明

图1是本发明的电池结构能带图。

图2是本发明的ZnO纳米棒/PCBM/CH3NH3PbI3的XRD图。

图3是本发明的ZnO纳米棒、ZnO纳米棒/CH3NH3PbI3和ZnO纳米棒/PCBM/CH3NH3PbI3的UV光吸收图。

图4是本发明的ZnO纳米棒/PCBM/CH3NH3PbI3纳米阵列有机无机杂化钙钛矿太阳能电池的I-V特性曲线图。

图5是本发明的ZnO纳米棒/PCBM/CH3NH3PbI3中相关的SEM图。

具体实施方式

下面通过实施例将能够更好地理解本发明。

实施例1:ZnO纳米棒/CH3NH3PbI3钙钛矿太阳能电池的制备:

(1)FTO的预处理:将FTO玻璃片切成面积为2cm*2cm的正方形玻璃样片,然后依次采用用去离子水,丙酮,酒精,去离子水进行超声清洗20分钟,将玻璃片表面的杂质清洗干净,再用紫外臭氧(UV)清洗15min,除去表面附着的有机物。

(2)ZnO种子层的制备:以甲醇为溶剂,配制3mmol/L的醋酸锌(Zn(CH3COO)2)溶液,搅拌10分钟,然后开始在FTO玻璃样片上旋涂,旋涂的转速为3000r/min,时间为15s,在100℃条件下烘干15分钟,然后转移到马弗炉中退火1h。

(3)ZnO纳米棒的制备:在生长有ZnO种子层FTO玻璃样片上,用水浴法生长ZnO纳米棒,水浴溶液成分为50mmol/L的六水硝酸锌(Zn(NO3)2·6H2O)、30mmol/L的六次甲基四铵(C6H12N4)和0.6g的PEI(聚醚酰亚胺),同时利用氨水将溶液的PH值控制在10.6-10.8范围内,水浴的温度为85℃-90℃,根据不同棒长需求来控制水浴的时间。水浴结束后,先后用去离子水和酒精冲洗,去除表面的杂物,最后将其放入马弗炉中退火2h。

(4)两步法合成钙钛矿层(CH3NH3PbI3):第一步是旋涂PbI2,即以DMF(N,N-二甲基甲酰胺)为溶剂,配制1mmol/L(0.462g)的PbI2溶液,在70℃的恒温条件下搅拌4h,然后采用旋涂法将PbI2甩在PCBM层上,旋涂转速为3000r/min,时间为15s,旋涂好后放置在烘干台上烘烤5min;第二步是PbI2与碘甲胺反应合成钙钛矿,即以甲胺和氢碘酸、或氢氯酸、或氢溴酸为原料在低温下采用旋转蒸发法制备CH3NH3X(X为I、Br、Cl等卤素)晶体,并在乙醇与乙醚溶剂中进行重结晶。以异丙醇为溶剂,配制0.1g/10ml的CH3NHI溶液,然后将烘干后FTO样片(上面已经旋有PbI2)的放在溶液中浸泡40s,然后再在烘干台上烘烤10min;

(5)制备空穴传输层:将有机物Spiro-MeOTAD用旋涂的方法甩在钙钛矿层的上面,旋涂的转速为3000r/min,旋涂时间为10s,并用吹风机吹干。

(6)对电极的制备:以Au为电极材料,采用蒸镀的方法,蒸镀的速率控制在蒸镀的Au的厚度为40nm,即可制作成一个完整钙钛矿太阳能电池。

组装好电池后,测试效率,并测试UV光吸收和形貌表征(SEM和TEM)。

实施例2:ZnO纳米棒/PCBM/CH3NH3PbI3有机无机杂化钙钛矿太阳能电池的制备:

(1)、(2)、(3)步骤与实施例1相同;

(4)PCBM的掺入:先将ZnO纳米棒用紫外臭氧(UV)清洗15分钟,然后以氯苯为溶剂,配制一定浓度的PCBM溶液,采用旋涂法将PCBM甩到ZnO纳米棒里,旋涂转速为3000r/min,旋涂时间为10s,然后在手套箱中放置一晚上。

(5)两步法合成钙钛矿层(CH3NH3PbI3):第一步是旋涂PbI2,即以DMF(N,N-二甲基甲酰胺)为溶剂,配制1mmol/L(0.462g)的PbI2溶液,在70℃的恒温条件下搅拌4h,然后采用旋涂法将PbI2甩在PCBM层上,旋涂转速为3000r/min,时间为15s,旋涂好后放置在烘干台上烘烤5min;第二步是PbI2与碘甲胺反应合成钙钛矿,即以甲胺和氢碘酸、或氢氯酸、或氢溴酸为原料在低温下采用旋转蒸发法制备CH3NH3X(X为I、Br、Cl等卤素)晶体,并在乙醇与乙醚溶剂中进行重结晶。以异丙醇为溶剂,配制0.1g/10ml的CH3NHI溶液,然后将烘干后FTO样片(上面已经旋有PbI2)的放在溶液中浸泡40s,然后再在烘干台上烘烤10min;

(6)制备空穴传输层:将有机物Spiro-MeOTAD用旋涂的方法甩在钙钛矿层的上面,旋涂的转速为3000r/min,旋涂时间为10s,并用吹风机吹干。

(7)对电极的制备:以Au为电极材料,采用蒸镀的方法,蒸镀的速率控制在蒸镀的Au的厚度为40nm,即可制作成一个完整钙钛矿太阳能电池。

将所制备得到的ZnO纳米棒/PCBM/CH3NH3PbI3杂化结构进行了X射线衍射(XRD)、扫描电子显微镜(SEM)分析。X射线衍射分析使用的仪器是D8Advance,测定条件是0.02°/步扫描。扫描电子显微镜的测定电压是在20KV的条件下进行的。将组装好的钙钛矿太阳能电池测试其光电性能。

实施例3:PCBM/CH3NH3PbI3结构钙钛矿太阳能电池的制备

(1)FTO的预处理:将FTO玻璃片切成面积为2cm*2cm的正方形玻璃片,然后依次采用用去离子水,丙酮,酒精,去离子水进行超声清洗20分钟,将玻璃片表面的杂质清洗干净,再用紫外臭氧(UV)清洗15min,除去表面附着的有机物。

(2)ZnO种子层的制备:以甲醇为溶剂,配制3mM的醋酸锌(Zn(CH3COO)2)溶液,搅拌10分钟,然后开始旋涂,旋涂的转速为3000r/min,时间为15s,在100℃条件下烘干15分钟,然后转移到马弗炉中退火1h。

(3)PCBM的掺入:先将ZnO纳米棒用UV清洗15分钟,以氯苯为溶剂,配制浓度为2--2.5wt%的的PCBM溶液,采用旋涂法将PCBM甩到ZnO种子层上,旋涂转速为3000r/min,旋涂时间为10s,然后在手套箱中放置一晚上。

(4)两步法合成钙钛矿层(CH3NH3PbI3):第一步是旋涂PbI2,即以DMF(N,N-二甲基甲酰胺)为溶剂,配制1mmol/L(0.462g)的PbI2溶液,在70℃的恒温条件下搅拌4h,然后采用旋涂法将PbI2甩在PCBM层上,旋涂转速为3000r/min,时间为15s,旋涂好后放置在烘干台上烘烤5min;第二步是PbI2与碘甲胺反应合成钙钛矿,即以甲胺和氢碘酸、或氢氯酸、或氢溴酸为原料在低温下采用旋转蒸发法制备CH3NH3X(X为I、Br、Cl等卤素)晶体,并在乙醇与乙醚溶剂中进行重结晶。以异丙醇为溶剂,配制0.1g/10ml的CH3NHI溶液,然后将烘干后FTO片子(上面已经旋有PbI2)的放在溶液中浸泡40s,然后再在烘干台上烘烤10分钟;

(5)制备空穴传输层:将有机物Spiro-MeOTAD用旋涂的方法甩在钙钛矿层的上面,旋涂的转速为3000r/min,旋涂时间为10s,并用吹风机吹干。

(6)对电极的制备:以Au为电极材料,采用蒸镀的方法,蒸镀的速率控制在蒸镀的Au的厚度为40nm,即可制作成一个完整钙钛矿太阳能电池。

将所制备得到的PCBM/CH3NH3PbI3杂化结构进行了X射线衍射(XRD)、扫描电子显微镜(SEM)分析。X射线衍射分析使用的仪器是D8Advance,测定条件是0.02°/步扫描。扫描电子显微镜的测定电压是在20KV的条件下进行的。将组装好的钙钛矿太阳能电池测试其光电性能。

上述三个实施例电池性能测试结果详见表1:

电池>Voc(V)>Jsc(mA/cm-2)>FF>η(%)>ZnO/CH3NH3PbI30.60>17.69>49.1>5.3>ZnO/PCBM/CH3NH3PbI30.69>21.3>49.0>7.0>

PCBM/CH3NH3PbI30.99>6.82>36.5>2.5>

注:J-V性能测试在实验室环境中完成的,电池的有效面积为8mm2;Voc、Jsc、FF和η分别为电池的开路电压、短路电流、填充因子和光电转换效率,η=Jsc*Voc*FF/Pin

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号