首页> 中国专利> 一种高置换率散体材料桩复合地基固结度计算方法

一种高置换率散体材料桩复合地基固结度计算方法

摘要

一种高置换率散体材料桩复合地基固结度计算方法,属于复合地基固结度计算方法。方法步骤:1.根据桩体的平面布置形式,确定桩体置换率,判断是否必须采用此法计算;2.确定加载参数;3.确定桩体施工扰动效应参数;4.确定桩体和土体的渗透系数及桩-土压缩模量比;5.将计算参数进行无量纲化;6.计算Fc;7.计算复合地基固结度。适用于道路工程、工业与民用建筑工程、港口与航道工程等领域采用高置换率(大直径)桩加速软土地基固结时的固结度计算。优点:该计算方法可用于道路工程、工业与民用建筑工程、港口与航道工程等领域采用散体材料桩加速软土地基固结时的固结度计算,特别适用于散体材料桩置换率高于15%的工况,通过迭代计算即可获得想要的结果。

著录项

  • 公开/公告号CN105040674A

    专利类型发明专利

  • 公开/公告日2015-11-11

    原文格式PDF

  • 申请/专利权人 中国矿业大学;

    申请/专利号CN201510381515.5

  • 申请日2015-07-02

  • 分类号E02D3/08(20060101);E02D3/10(20060101);

  • 代理机构南京瑞弘专利商标事务所(普通合伙);

  • 代理人杨晓玲

  • 地址 221116 江苏省徐州市大学路1号中国矿业大学科研院

  • 入库时间 2023-12-18 12:02:04

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-01-18

    授权

    授权

  • 2015-12-09

    实质审查的生效 IPC(主分类):E02D3/08 申请日:20150702

    实质审查的生效

  • 2015-11-11

    公开

    公开

说明书

技术领域

本发明涉及一种复合地基固结度计算方法,特别是一种高置换率散体材料桩复合地基 固结度计算方法。

背景技术

目前,我国《建筑地基处理技术规范》(JGJ79-2012)尚无关于高置换率散体材料桩复 合地基固结速率的计算方法,对于其计算方法仍然沿用砂井地基固结度计算公式。该法目 前存在以下不足:①只适用于低置换率的砂井(砂桩)复合地基;②不考虑桩体压缩模 量高于土体的特点;③假定扰动区土体的水平渗透系数保持不变。

砂井地基一般置换率较低,例如塑料排水板或袋装砂井的置换率一般在0.2~0.45%之 间,而普通砂井的置换率一般在1.6~2.8%之间,而实际工程中有些高置换率桩的置换率 可高达35%,沿用普通的砂井地基固结理论往往高估了地基的固结速率,因而日本的相关 规范《TechnicalStandardsandCommentariesforPortandHarbourFacilitiesinJapan》则采用 经验法,针对高置换率桩复合地基,在现有计算方法得到复合地基固结速率的基础上乘以 折减系数,以此来考虑高置换率桩对复合地基固结速率增速的减弱作用。

另外,现行《建筑地基处理技术规范》(JGJ79-2012)推荐的方法假定桩体和土体的压 缩模量相同,而实际上散体材料桩(尤其是袋装散体材料桩)的压缩模量高于周边土体, 土体中的应力在固结过程中会逐渐向桩体转移从而形成应力集中现象。而且,桩体的压缩 模量越高,桩体应力集中效应越明显,地基的固结速率也越快。因此,现行规范中推荐的 砂井地基固结度计算方法不适用于散体材料桩复合地基。

散体材料桩采用挤土方式施工时,由于沉管管壁涂抹和周边土的扰动而使土的渗透系 数降低,因而影响土层的固结速率,此即为扰动效应。扰动效应对土层固结速率的影响大 小取决于扰动区直径ds和扰动区土体水平渗透系数的大小及其变化形式。

国内外大量研究结果表明:扰动区土体的渗透系数呈抛物线形分布,越是靠近桩体的 土体其渗透系数越小。而现行《建筑地基处理技术规范》(JGJ79-2012)中推荐的方法则 假定扰动区土体的水平渗透系数保持不变且小于未扰动区土体的水平渗透系数。实际上, 扰动区土体水平渗透系数大小和变化形式对地基固结速率有着明显的影响。

发明内容

本发明的目的是要提供一种计算可靠,精度较高,有利于工程设计人员使用高置换率 散体材料桩复合地基固结度计算方法,同时解决现有方法不考虑桩体压缩模量和扰动区土 体水平渗透系数假定不变的问题。

本发明的目的是这样实现的:该计算方法包括以下步骤:

步骤1、确定桩体置换率m′;

根据桩体排列形式,确定单桩影响区直径de即有效排水直径;当桩体等边三角形排列 时,de=1.05l;当桩体正方形排列时,de=1.13l,l为桩体的间距;据此进一步确定桩体 置换率m′,表达式为dc为桩体直径;

步骤2、确定加载参数;

若堆载先施加于地表然后再进行桩体施工,则荷载为瞬时施加;若先桩体施工,然后 分级施加堆载则为多级加载;荷载p(t)表示为:

p(t)=pug(t)(1)

对于瞬时荷载:

g(t)=1(2)

对于多级荷载:

g(t)=ai-1+Ri(t-t2i-2),t2i-2<tt2i-1ai,t2i-1<tt2i---(3)

式中:i指第i级荷载,i=1,2,3…;pi是第i级荷载的最终值;pu是 各级荷载加载完成后的最终荷载值;t2i-2,t2i-1,t2i分别为第i级荷载开始时间、达到最 大值时间和结束时间;

步骤3、确定桩体施工扰动参数;

确定桩体扰动区直径ds和桩体直径dc之比s和扰动区土体的水平向渗透系数ks和原状 土水平向渗透系数kh之比α;

s=ds/dc;α=ks/kh

可取s=2.0~3.0,α=1/5~1/3,对中等灵敏土取低值,对高灵敏土取高值;

步骤4、确定桩体和土体的固结参数;

分别获取桩体的水平向和竖向渗透系数khc和kvc,两者可取值相同,即khc=kvc;未扰 动土体水平向和竖向渗透系数kh和kv,可取kh=(2~3)kv;土体的竖向固结系数cv;桩体压 缩模量Ec和土体压缩模量Es之比Y=Ec/Es

步骤5、将参数进行无量纲化;

需获取的无量纲参数包括s=dsdc,α=kskh,Y=EcEs,kvckh,kvckhc=1,kvkh,kvkhc,kvckv,Hdc;

步骤6、计算Fc

扰动区土体的水平向渗透系数沿径向呈抛物线型变化,越靠近桩体,土体的水平向渗 透系数越小;此种变化模式对应的Fc可按下列公式计算:

Fc=mA21-mFc1+11-mFc2---(4)

Fc1=1(A2-B2)[(s2ln>s-s22+12)-1C2(A22lnα+ABE2+12-B-B2lnα)]+(1-ms2)m(A2-B2)[ln>s-12(BEA-lnα)]+1A2(s22-12mln(ms2)-12m)---(5)

Fc2=m2A2C4[(A22+B2)lnα+3BAE2+12-3B]-A2C2m-m2s22(lnα+BEA)-(1-ms2)24---(6)

A=11-α,B=ss-1,C=1s-1,E=lnA+1A-1---(7)

步骤7、计算固结度U(t);

瞬时加载条件和多级加载条件下,考虑桩体渗透性和施工扰动影响的复合地基固结度 可分别按下式计算:

U(t)=1-Σm=12M2e-βmt---(8)

U(t)=g(t)-Σm=12M2βmΣj=1iRj(e-βm(t-ts)-e-βm(t-t2j-2))---(9)

式中:ts=min(t,th(2j-1)),j=1,2,…i;M=2m-12π,m=1,2,3,...;

βm=cv(1m-1+Y){M24(dcH)2[Fc21mkvckh+(1-m)8mkvckhc]+[(1m-1)+kvckv]}dc24{4m2M2(Hdc)2+[(1m-1)kvckv+1][1mFc2kvkh+(1-m)8mkvkhc]}---(10)

式中:H为土层厚度;cv为土体的竖向固结系数,cv=kvEsw

具体的:

所述的步骤4中,cv根据《土工试验方法标准》(GB/T50123-1999)推荐的时间平方 根法或时间对数法确定。

所述的步骤4中,土体和桩体的渗透系数根据《土工试验方法标准》(GB/T 50123-1999)推荐的常水头渗透试验或者变水头渗透试验确定。

所述的步骤5中,桩体和土体的压缩模量比Y可近似取桩-土应力比,桩-土应力比取 值可由《建筑地基处理技术规范》(JGJ79-2012)推荐的复合地基静载荷试验确定,如缺 少试验资料,可取2~4,土体较软时取低值,较硬时取高值。

有益效果,由于采用上述方案,该计算方法理论上是精确解,而且无需先计算瞬时荷 载条件下的固结度,再根据逐级加载条件进行修正,而是直接给出地基平均固结度。另外, 计算步骤系统条理,计算参数容易获取,充分考虑了桩体高置换率、桩体压缩模量以及扰 动区土体水平渗透系数抛物线变化对复合地基固结速率的影响,并提出了相应的解决方 法。考虑桩体高置换率、桩体压缩模量、桩体有限渗透系数、扰动区土体水平渗透系数呈 抛物线形变化以及荷载多级施加和瞬时时间的高置换率散体材料桩复合地基固结度计算 方法。

通过引入桩体内径、竖向组合渗流,可解释采用以往碎石桩复合地基固结理论计算高 置换率桩(置换率大于15%)复合地基固结速率结果偏高的现象,同时该法也适用于桩体 置换率小于15%时的复合地基固结度计算。本发明可同时考虑桩体压缩模量、桩体施工扰 动造成的扰动区土体水平向渗透系数呈抛物线变化、桩体的有限渗透性(桩阻)以及荷载 瞬时施加和多级施加(含单级施加)等多种因素,属于一种软基处理领域复合地基固结度 的计算方法。

优点:该计算方法可用于道路工程、工业与民用建筑工程、港口与航道工程等领域采 用散体材料桩加速软土地基固结时的固结度计算,特别适用于散体材料桩置换率高于15% 的工况。同时填补了现有方法不能考虑桩体压缩模量和扰动区土体水平渗透系数抛物线变 化对复合地基固结速率影响的空白。

本发明的计算可采用Matlab、Excel、Fortran等软件实现,只需通过其中简单的迭代 计算即可获得想要的结果。

附图说明:

图1为本发明的地基固结度计算方法的流程图。

图2为多级加载的曲线图。

图3为桩体施工扰动造成的土体水平向渗透系数在扰动区和未扰动区的变化图。

图4为采用本发明计算某软土地基的固结度曲线图。

具体实施方式

下面结合实施例,对本发明的具体实施方式作进一步详细描述,来说明本发明具体实 施步骤和效果。以下实施例用于说明本发明,但不用来限制本发明的范围。

实施例1:该计算方法包括以下步骤:该计算方法包括以下步骤:

步骤1、确定桩体置换率m′;

根据桩体排列形式,确定单桩影响区直径de即有效排水直径;当桩体等边三角形排列 时,de=1.05l;当桩体正方形排列时,de=1.13l,l为桩体的间距;据此进一步确定桩体 置换率m′,表达式为dc为桩体直径;

步骤2、确定加载参数;

若堆载先施加于地表然后再进行桩体施工,则荷载为瞬时施加;若先桩体施工,然后 分级施加堆载则为多级加载;荷载p(t)表示为:

p(t)=pug(t)(1)

对于瞬时荷载:

g(t)=1(2)

对于多级荷载:

g(t)=ai-1+Ri(t-t2i-2),t2i-2<tt2i-1ai,t2i-1<tt2i---(3)

式中:i指第i级荷载,i=1,2,3…;pi是第i级荷载的最终值;pu是 各级荷载加载完成后的最终荷载值;t2i-2,t2i-1,t2i分别为第i级荷载开始时间、达到最 大值时间和结束时间;

步骤3、确定桩体施工扰动参数;

确定桩体扰动区直径ds和桩体直径dc之比s和扰动区土体的水平向渗透系数ks和原状 土水平向渗透系数kh之比α;

s=ds/dc;α=ks/kh

可取s=2.0~3.0,α=1/5~1/3,对中等灵敏土取低值,对高灵敏土取高值;

步骤4、确定桩体和土体的固结参数;

分别获取桩体的水平向和竖向渗透系数khc和kvc,两者可取值相同,即khc=kvc;未扰 动土体水平向和竖向渗透系数kh和kv,可取kh=(2~3)kv;土体的竖向固结系数cv;桩体压 缩模量Ec和土体压缩模量Es之比Y=Ec/Es

步骤5、将参数进行无量纲化;

需获取的无量纲参数包括s=dsdc,α=kskh,Y=EcEs,kvckh,kvckhc=1,kvkh,kvkhc,kvckv,Hdc;

步骤6、计算Fc

扰动区土体的水平向渗透系数沿径向呈抛物线型变化,越靠近桩体,土体的水平向渗 透系数越小;此种变化模式对应的Fc可按下列公式计算:

Fc=mA21-mFc1+11-mFc2---(4)

Fc1=1(A2-B2)[(s2ln>s-s22+12)-1C2(A22lnα+ABE2+12-B-B2lnα)]+(1-ms2)m(A2-B2)[ln>s-12(BEA-lnα)]+1A2(s22-12mln(ms2)-12m)---(5)

Fc2=m2A2C4[(A22+B2)lnα+3BAE2+12-3B]-A2C2m-m2s22(lnα+BEA)-(1-ms2)24---(6)

A=11-α,B=ss-1,C=1s-1,E=lnA+1A-1---(7)

步骤7、计算固结度U(t);

瞬时加载条件和多级加载条件下,考虑桩体渗透性和施工扰动影响的复合地基固结度 可分别按下式计算:

U(t)=1-Σm=12M2e-βmt---(8)

U(t)=g(t)-Σm=12M2βmΣj=1iRj(e-βm(t-ts)-e-βm(t-t2j-2))---(9)

式中:ts=min(t,th(2j-1)),j=1,2,…i;

βm=cv(1m-1+Y){M24(dcH)2[Fc21mkvckh+(1-m)8mkvckhc]+[(1m-1)+kvckv]}dc24{4m2M2(Hdc)2+[(1m-1)kvckv+1][1mFc2kvkh+(1-m)8mkvkhc]}---(10)

式中:H为土层厚度;cv为土体的竖向固结系数,cv=kvEsw

具体的:

所述的步骤4中,cv根据《土工试验方法标准》(GB/T50123-1999)推荐的时间平方 根法或时间对数法确定。

所述的步骤4中,土体和桩体的渗透系数根据《土工试验方法标准》(GB/T 50123-1999)推荐的常水头渗透试验或者变水头渗透试验确定。

所述的步骤5中,桩体和土体的压缩模量比Y可近似取桩-土应力比,桩-土应力比取 值可由《建筑地基处理技术规范》(JGJ79-2012)推荐的复合地基静载荷试验确定,如缺 少试验资料,可取2~4,土体较软时取低值,较硬时取高值。

通过引入桩体内的径、竖向组合渗流,可反映桩体置换率较高时(大于15%),复合 地基固结速率增幅随桩体置换率增大而减小的现象,同时也适用于桩体置换率小于15%时 的复合地基固结度计算。

能够反映实际工程中扰动区土体水平渗透系数一般呈抛物线变化的特点,而现有方法 则假定扰动区土体水平渗透系数保持不变;

能够考虑桩体压缩模量大与土体的特点,而现有方法则假定桩、土压缩模量相同;

采用上述方法对下述案例进行计算。

某地基为淤泥质黏土层,水平向渗透系数为1.0×10-7cm/s,水平向和竖向固结系数均 为1.8×10-3cm2/s。采用袋装散体材料桩加速地基土固结,桩体直径为0.8米,桩料渗透系 数为2.0×10-2cm/s,桩体呈正三角形布置,间距为1.4米,深度为20米,桩体底部为不透 水层,桩体打穿受压土层。扰动区土体水平渗透系数为0.2×10-7cm/s,取扰动区半径为桩 体半径2倍,桩-土压缩模量比取2。预压荷载总压力为100kPa,分两级等速加载, p1=60kPa,p2=100kPa,t1=15d,t2=40d,t3=55d。

求:加载开始60天和80天后受压土层的平均固结度。

计算可知,桩体置换率m′=30%,属于高置换率桩,应采用本发明计算。图4为本发 明计算得到的该算例复合地基固结度随时间的变化曲线。由于本发明给出的解为级数解, 图中分别给出了级数解1,2,100项三种情况下的固结曲线,可以看出,该解的收敛性极 佳,至100项时该解已经完全收敛稳定。取1项和100项的结果误差在2-3%左右,取2 项和100项的误差更小,在1-2%之间。所以,在实际工程中,最多只需要取两项即可保 证足够的精度。

另外,由图4可以看出,加载60天时,地基固结度为96%。也就是说,对于本算例 的高置换率的复合地基而言,地基荷载分两级施加完成后,地基的固结也接近于尾声,在 80天左右时,地基固结已基本结束,固结度接近100%。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号