首页> 中国专利> 一种基于大数据的移动通信网降水分布及动态测量方法

一种基于大数据的移动通信网降水分布及动态测量方法

摘要

一种基于大数据的移动通信网降水分布及动态测量方法,(1)搭建连接移动终端基站的中心服务器,建立移动终端、基站与中心服务器之间数据通信的链路;(2)实时采集各基站的发射功率和基站接收到对应的各移动终端的功率;(3)建立各移动终端与某基站的一一对应关系,基于此计算每个移动终端与基站通信之间的链路路径衰减;(4)以基站发射功率为基准,计算自由空间传播损耗、建筑物、植被、不固定障碍等非气象因素引起每个移动终端信号的衰减;得到单位距离内移动终端信号的雨致衰减值;建立移动终端信号衰减特征与雨强分布的相关关系;并与雨量计、天气雷达等专业气象资料进行融合分析得到降水的区域分布及其动态变化。

著录项

  • 公开/公告号CN104656163A

    专利类型发明专利

  • 公开/公告日2015-05-27

    原文格式PDF

  • 申请/专利权人 中国人民解放军理工大学;

    申请/专利号CN201510058019.6

  • 申请日2015-02-04

  • 分类号

  • 代理机构南京瑞弘专利商标事务所(普通合伙);

  • 代理人陈建和

  • 地址 211101 江苏省南京市江宁区双龙街60号理工大学

  • 入库时间 2023-12-18 08:54:31

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-04-05

    授权

    授权

  • 2015-06-24

    实质审查的生效 IPC(主分类):G01W1/00 申请日:20150204

    实质审查的生效

  • 2015-05-27

    公开

    公开

说明书

技术领域

本发明涉及一种基于大数据的移动通信网降水分布及动态测量方法,主要用于自动化气象探测中。

背景技术

降水的时空分布异常是引发洪涝灾害、山体滑坡、泥石流等自然灾害的重要因素,我国每年由洪涝灾害引发的直接经济损失超过千亿元,平均受灾人口超过1.2亿人。虽然雨量计、天气雷达和气象卫星等多种降水测量手段已经广泛应用,但是降水在城市、山区等重点区域存在极为复杂的时空变化,雨量计站点分布不均匀,即使在城市等站点相对密集的地区,仍难以监测到降水的精细时空变化;天气雷达在高仰角条件下只能测量到部分降水体或云体,在低仰角条件下易受地物回波影响,因而在城市和山区的测量效果有限;测雨卫星只能自上而下测量云顶或穿透云顶,与降落到地表附近的实际降水之间存在较大差别,难以根据回波反演准确的降水分布。目前来看,准确获取城市、山区等重点区域的高时空分辨率降水分布资料仍是降水测量的难点,尚未得到有效解决。

近年来气象领域的专家提出了利用微波通讯信号传播的衰减信息来反演降水的设想。当前大气层内广泛存在着不同频段、不同体制和不同应用的微波信号,但是微波信号在近地层大气中传播时会受到大气介质的影响而发生吸收、衰减、散射、极化以及传播路径的弯曲等,其中雨、雪等降水粒子对微波的影响尤为明显,这一影响在通讯领域是需要尽量避免并消除的。将其引入到气象应用中,微波在近地表传播可以保证电磁波与降水粒子直接作用,有效解决了扫描方式和地物影响等问题,根据降水粒子对微波传播路径上的衰减、极化等效应可以反演得到高时空分辨率的降水分布。

由于降水对高频微波的影响显著,目前相关研究大多利用高频微波链路反演降水。而实际上,低频微波也同样会受到降水的影响。移动终端所用频段为800MHz~2.1GHz,在该频段电磁波也同样受到降水的衰减、极化等影响,电磁波的衰减与降水强度存在一定的相关关系。在移动终端通讯网络中,移动终端基站一直在监测移动终端的接收功率,当大雨造成移动终端信号强烈衰减而影响通话时,会通过增大基站发射功率来提高信号 质量。目前移动终端信号以及广泛覆盖广大的城市和乡村地区,利用降水对移动终端信号的衰减影响,就可以测量降水的分布。目前利用移动终端进行气象服务主要分为两种:一是在智能移动终端上加装气象传感器,进行气象探测和信息服务(如CN201310084836.X),额外加装气象传感器所获取的资料与专业气象探测资料在代表性、准确性和比较性上存在差异;二是利用移动终端的上网功能来接收气象局公布的气象实况和预报资料(如CN201320107347.7),只能被动接收,用户无自主获取资料的能力。目前,移动终端已经遍布城市和乡村的各个角落,移动终端与基站之间的通信链路包含了丰富的气象信息,但是对这些海量数据的充分挖掘和应用尚未展开。在大数据时代利用移动终端信号的衰减信息进行气象探测和公共气象服务这一领域还是空白。

发明内容

本发明的目的是:提出一种基于大数据的移动通信网降水分布及动态测量方法,利用目前广泛分布的移动通信网,提取移动终端(手机)与基站之间信号传播的衰减信息,利用大数据分析和数据挖掘技术,建立移动终端信号衰减特征(包括但不限于衰减量值、时间、梯度和整体波动等)与降水的相关关系,从海量移动终端衰减特征中挖掘有效降水信息,并与雨量计资料、天气雷达资料进行融合分析,得到降水的区域分布及其动态变化。并通过可视化界面显示为公众提供公共气象服务。

本发明的技术方案为:一种基于大数据的移动通信网降水分布及动态测量方法,包括如下步骤:

(1)搭建连接移动终端基站的中心服务器,建立移动终端、基站与中心服务器之间数据通信的链路;

(2)实时采集各基站的发射功率Pstation和基站接收到对应的各移动终端的功率Pphone

(3)建立各移动终端与某基站的一一对应关系,基于此计算每个移动终端与基站通信之间的链路路径衰减ΔPattenuation=Pstation-Pphone

(4)基于地理信息系统(GIS),计算移动终端及其对应基站的地理位置和相对距离,以基站发射功率为基准,计算自由空间传播损耗、建筑物、植被、不固定障碍等非气象因素引起每个移动终端信号的衰减ΔPpath

(5)将链路路径衰减扣除掉非气象因素导致的衰减,计算得到每个移动终端雨致衰减ΔPrain=ΔPattenuation-ΔPpath

(6)对每个移动终端与基站之间的链路雨衰值进行距离订正,求解得到单位距离内移动终端信号的雨致衰减值ΔPmean=ΔPrain/L;

(7)针对每个移动终端的移动情况和基站覆盖范围,对各移动终端信号的雨致衰减值进行归一化处理,对没有移动终端信号覆盖的格点进行插值处理,对有多个移动终端信号覆盖的格点进行权重估计或平均处理,最终得到移动通信网全部或选择的部分移动终端信号覆盖范围内每一个格点的雨致衰减值ΔPgrid

(8)步骤(2)—(7)实时进行,得到每个时刻的移动终端信号每一个格点衰减值,将这些信息嵌入到GIS地图中,并通过可视化界面显示移动终端信号衰减的区域分布及其随时刻的动态变化;移动终端信号的衰减特征值及其变化反映了信号覆盖范围内的降水状况。

(9)在时间匹配和空间匹配的基础上,利用大数据分析和数据挖掘技术,建立移动终端信号衰减特征(包括但不限于衰减量值、时间、梯度和整体波动等)与降水的相关关系,从海量移动终端衰减特征中挖掘有效降水信息,并与雨量计、天气雷达等专业气象资料进行融合分析,得到降水的区域分布及其动态变化;

(10)利用互联网将降水分布及其动态变化发送到具有联网功能的移动终端或计算机,并通过可视化界面显示降水分布及其动态,以类似实时路况的直观方式为公众提供公共气象服务。

与现有技术相比,本发明具有如下优点和有益效果:利用大数据分析和数据挖掘技术,从海量移动终端信号的衰减量值、时间、梯度和整体波动等特征中挖掘有效降水信息,建立移动终端信号衰减特征与雨强分布的相关关系;并与雨量计、天气雷达等专业气象资料进行融合分析,最终得到降水的区域分布及其动态变化。该方法具有覆盖范围广、盲区少、硬件成本低等优点。移动终端既是探测终端,又是服务终端,公众携带移动终端直接参与气象探测;所获取的气象信息又推送到公众;

(1)利用目前广泛覆盖的移动通信网络对降水区域分布进行测量,丰富了一种区域降水分布资料的获取方式,只要有移动终端及其信号覆盖的区域,就可以获取降水资料,具有覆盖范围广、盲区少、硬件成本低等优点,弥补了雨量计站点少和天气雷达分辨率低的不足,可以作为现有业务降水观测的一种补充手段。

(2)任意移动终端均可以用于感知和传输移动终端信号强度,通过信号强度来反演气象信息,无需额外增加外置气象传感器,解决了气象传感器易受人为携带、室内外环 境、建筑物等对气象要素测量效果的影响,导致测量值不能代表真实气象环境的问题。

(3)移动终端既是探测终端,又是服务终端,公众携带移动终端直接参与气象探测,所获取的气象信息又推送到公众(通过APP可以实时看到大数据分析得到的雨量或其它气象信息),可以满足不同公众对气象资料的需求,提高了公共气象服务能力。

(4)采用大数据分析和数据挖掘技术,建立移动终端信号衰减特征(包括但不限于衰减量值、时间、梯度和整体波动等)与降水的相关关系,从海量移动终端衰减特征中挖掘有效降水信息,并与雨量计、天气雷达观测资料相融合,充分提高降水观测资料的应用效率,大大提高了降水资料的覆盖范围、时空分辨率和精细化程度。

(5)降水观测资料以类似于实时路况的方式可视化显示给公众,公共气象服务更为人性化。

附图说明

图1是本发明的基于大数据的移动通信网降水分布及动态测量系统的结构框图;

图2是本发明的基于大数据的移动通信网降水分布及动态测量方法的工作示意图;

图3是以卡曼滤波方法为例,进行移动终端信号衰减、雨量计和天气雷达的大数据挖掘与降水场重构流程。

具体实施方式

如图1所示的基于大数据的移动通信网降水分布及动态测量系统,主要包括移动终端信号采集单元、专业降水资料获取单元、数据采集与处理单元、公共信息服务单元。工作示意图如图2所示。移动终端信号采集单元实时采集所有移动终端的信号强度信息,并通过移动互联网传输到数据采集与处理单元;专业降水资料获取单元实时采集气象业务中雨量计的降雨强度和天气雷达的雷达反射率因子、反演雨强等信息,并通过互联网同步传输到数据采集与处理单元;数据采集与处理单元采用大数据处理和信息挖掘技术,从海量移动终端信号衰减特征(包括但不限于衰减量值、时间、梯度和整体波动等)中挖掘有效降水信息,然后与单点降雨强度、雷达反射率因子的区域分布等资料进行融合处理,通过插值和最优化等方法,最终反演得到降水区域分布及其动态变化情况。公共信息服务单元以可视化的形式向公众提供公共气象服务。

具体地说,移动终端信号采集单元主要由移动终端基站及其信号覆盖范围内的移动终端终端组成,移动终端终端包括智能移动终端与非智能移动终端,无需额外增加气象传感器。移动终端信号采集单元通过移动互联网连接到数据采集与处理单元,将基站的发射强度和移动终端信号的接收强度、地理位置等信息实时传输到采集与处理单元。

专业降水资料获取单元主要由气象业务中已经布设的自动雨量计和天气雷达组成,这些观测资料可以通过无线和有线方式传输到采集与处理单元。

数据采集与处理单元主要由中心服务器组成,其核心是移动终端衰减信号提取算法、大数据处理和信息挖掘算法。移动终端衰减信号提取算法主要是在基站信号和移动终端信号的基础上,通过剔除非气象因素影响、距离订正和归一化处理,得到雨致信号衰减的区域分布。大数据处理和信息挖掘算法主要是通过建立移动终端信号衰减特征(包括但不限于衰减量值、时间、梯度和整体波动等)与降水的相关关系,从海量移动终端衰减特征中挖掘有效降水信息,然后与单点降雨强度、雷达反射率因子的区域分布等资料进行融合处理,通过插值和最优化等方法,最终反演得到降水区域分布及其动态变化情况。

公共信息服务单元主要由移动终端APP、电脑客户端及相应网站等可视化交互软件组成,结合GIS地图,将降水区域分布及其动态直观地展示给公众和用户。不同用户可以根据具体需求,通过可视化软件的交互和反馈,得到特殊定制的气象服务。

系统主要包括移动终端信号采集单元,中心服务器包括专业降水资料获取单元、数据采集与处理单元、公共信息服务单元。

各个移动终端基站移动终端信号采集单元实时采集所有移动终端的信号强度信息,并通过移动互联网传输到数据采集与处理单元;各个移动终端基站的发射功率Pstation、移动终端的接收功率Pphone以及各自的地理位置等通过移动互联网实时发送到中心服务器。

专业降水资料获取单元实时采集气象观测业务中降水观测仪器的资料,并通过互联网同步传输到数据采集与处理单元;

数据采集与处理单元采用大数据处理和信息挖掘技术,通过建立移动终端信号衰减量值、时间、梯度和整体波动等特征与降水的相关关系,从海量移动终端衰减特征中挖掘有效降水信息,并与单点降雨强度、雷达反射率因子的区域分布等资料进行融合处理,反演得到降水区域分布及其动态。

公共信息服务单元以可视化界面的形式向公众提供公共气象服务。

移动终端终端包括智能移动终端与非智能移动终端,无需额外增加气象传感器。移动终端信号采集单元通过移动互联网连接到数据采集与处理单元,将基站的发射强度和移动终端信号的接收强度、地理位置等信息实时传输到采集与处理单元。

现有气象业务中已经布设的自动雨量计和天气雷达等观测资料均可以通过无线和有线方式传输到采集与处理单元。

雨致移动终端衰减信号提取算法主要是在基站信号和移动终端信号的基础上,通过剔除非气象因素影响、距离订正和归一化处理,得到雨致移动终端信号衰减特征,包括但不限于衰减量值、时间、梯度和整体波动等,基于此进一步得到雨致信号衰减的区域分布。

大数据处理和信息挖掘算法主要是通过建立移动终端信号衰减特征(包括但不限于衰减量值、时间、梯度和整体波动等)与降水的相关关系,从海量移动终端衰减特征中挖掘有效降水信息。并与雨量计、天气雷达等专业气象资料进行融合分析,通过插值和最优化等方法,最终反演得到降水区域分布及其动态变化。

公共信息服务单元主要由移动终端APP、电脑客户端及相应网站等可视化交互软件组成,结合GIS地图,将降水分布及其动态直观地展示给公众和用户。不同用户可以根据具体需求,通过可视化软件的交互和反馈,得到特殊定制的气象服务。

逐时刻逐格点将雨致移动终端信号衰减特征嵌入到GIS地图中,并通过可视化界面显示移动终端信号雨衰的区域分布及其动态变化。

中心服务器将重构得到的降水分布及其动态信息通过互联网发送到具有联网功能的移动终端或计算机,移动终端APP、电脑客户端和相应网站具备可视化界面和互动反馈功能,结合GIS地图,以类似于实时路况的动态、静态图(表)等多种直观形式为公众提供公共气象服务。

采集移动终端信号覆盖范围内雨量计和天气雷达等仪器的观测资料,但不限于这两种仪器,通过无线或有线网络传输到采集与处理单元,并根据站点位置和扫描范围将资料嵌入到GIS地图中。

具体实施方式如下:

1)各个移动终端基站(设有专门软件模块采集数据及计算每一个格点的雨致衰减值ΔPgrid专门软件模块)的发射功率Pstation、接收移动终端的接收功率Pphone以及各自的地 理位置等通过移动互联网实时发送到中心服务器。

2)移动终端信号雨衰(雨致衰减)特征区域分布的获取:

步骤1:计算每个移动终端与基站通信之间的链路路径衰减ΔPattenuation

ΔPattenuation=Pstation-Pphone   (1)

步骤2:基于地理信息系统(GIS),计算移动终端及其对应基站的地理位置和相对距离,以基站发射功率为基准,计算自由空间传播损耗、建筑物、植被、不固定障碍等非气象因素引起移动终端信号的衰减ΔPpath。以Okumura-Hata信号传播模型为例,但不限于此模型:

ΔPpath=69.55+26.16lg fc-13.82lg ht-α(hr)

+(44.9-6.55lg ht)lg L+Ccell+Cterrain   (2)

其中,fc为移动终端信号的频率,ht为基站天线高度,hr为移动终端天线高度,L为基站和移动终端之间的水平距离,α(hr)为有效天线修正因子,Ccell为小区类型校正因子,Cterrain为地形校正因子。

步骤3:将链路路径衰减扣除掉非气象因素导致的衰减,计算得到雨致衰减ΔPrain

ΔPrain=ΔPattenuation-ΔPpath   (3) 

步骤4:对移动终端与基站之间的链路雨衰值进行距离订正,求解得到单位距离内移动终端信号的雨致衰减值ΔPmean

ΔPmean=ΔPrain/L   (4)

步骤5:由于基站和移动终端的覆盖范围和密度存在不同,对移动终端信号的雨致衰减值进行归一化处理,使其具有一致的空间分辨率。具体为:①针对基站和移动终端的分布情况,划分固定或自适应调整的网格;②对于没有移动终端信号覆盖的格点,通过时间或空间插值处理得到格点数据;③对于多个移动终端信号覆盖的格点,在权重估计的基础上得到格点数据;④最终得到移动终端信号覆盖范围内每一个格点的衰减值ΔPgrid

3)雨致移动终端信号衰减的可视化:在GIS技术的基础上,逐时刻逐格点将移动终端信号雨衰值嵌入到GIS地图中,并通过可视化界面显示移动终端信号雨衰的区域分布及其动态变化。

4)专业降水观测资料的获取:采集移动终端信号覆盖范围内可用的雨量计资料和天气雷达观测资料,通过无线或有线网络传输到采集与处理单元,并根据站点位置和扫描范围将观测资料嵌入到GIS地图中。

5)大数据融合分析和降水场的重构。在时间匹配和空间匹配的基础上,利用大数据分析和数据挖掘技术,建立移动终端信号衰减特征(包括但不限于衰减量值、时间、梯度和整体波动等)与降水的相关关系,从海量移动终端信号衰减特征中挖掘有效降水信息,并与雨量计、天气雷达等专业气象资料进行融合分析,得到降水的区域分布及其动态变化。

下面以卡曼滤波为例进行降水场的重构,如图3所示,但不限于此方法:

步骤1:建立观测初始场。对雨致移动终端信号衰减特征(包括但不限于衰减量值、时间、梯度和整体波动等)、雨量计的降雨强度、天气雷达的反射率因子等多源观测资料进行滤波去噪、时空匹配等预处理,建立状态方程:

R(k+1)=R(k)+W(k)   (5)

其中,R(k+1)和R(k)为状态偏差,W(k)为均值为0的白噪声。

建立测量方程:

Y(k)=R(k)+M(k)   (6)

其中,Y(k)为测量偏差,M(k)为均值为0的白噪声。 

步骤2:计算最优预测值。

R^(k|k-1)=R^(k-1|k-1)---(7)

其中,为根据(k-1)时刻滤波输出量而做出k时刻的偏差的估计值。 

步骤3:预测误差方差。

P(k|k-1)=P(k-1)+Q(k-1)   (8)

其中,P(k|k-1)为预测时存在的误差方差,Q(k)为状态噪声方差。

步骤4:最优滤波增益。

K(k)=P(k|k-1)/[P(k|k-1)+F(k)]   (9)

其中,K(k)为k时刻的滤波增益,F(k)为测量噪声方差。

步骤5:计算最优滤波值。

R^(k)=R^(k|k-1)+K(k)[Y(k)-R^(k|k-1)]---(10)

步骤6:计算滤波方差误差。

P(k)=[1-K(k)]P(k|k-1)   (11)

步骤7:重复步骤2~6,迭代求解得到不同时刻的降水场。

6)降水分布及动态的可视化气象服务。中心服务器将重构生成的降水分布及其动态信息通过互联网发送到具有联网功能的移动终端或计算机,移动终端APP、电脑客户端和相应网站具备可视化界面和互动反馈功能,结合GIS地图,可以以动态、静态图(表)等多种直观形式为公众提供公共气象服务。

虽然上述说明描述了完整的实施例,包括移动终端衰减信号的提取方法、基于大数据的降水场重构方法等,但并不限于上述举例。本领域的技术人员,在本发明的实质范围做出的变型、修改或替换,都应属于本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号