首页> 中国专利> 一种泡沫过渡金属固(气)态磷化自支撑析氢电极及其制备方法

一种泡沫过渡金属固(气)态磷化自支撑析氢电极及其制备方法

摘要

本发明涉及一种泡沫过渡金属固(气)态磷化自支撑析氢电极及其制备方法;将泡沫金属为单/双组元泡沫金属或表面经过多元素修饰的复合泡沫金属在管式气氛炉中,利用固态红磷粉末作为磷源,采用惰性气氛保护,使其表面与红磷或其蒸气发生磷化反应,最终形成一种自支撑三维多孔模式过渡金属磷化物析氢电极;制得的析氢电极比表面积大、催化活性高、化学性能稳定,适应性好,在酸性、中性和碱性环境中可以表现出良好的析氢活性。并且该电极制备方法工艺简单,成本低廉,原材料易获得,生产工艺易于控制且可重复性高,获得电极的种类多样且成分可调。

著录项

  • 公开/公告号CN104630822A

    专利类型发明专利

  • 公开/公告日2015-05-20

    原文格式PDF

  • 申请/专利权人 太原理工大学;

    申请/专利号CN201510017609.4

  • 发明设计人 王孝广;马自在;

    申请日2015-01-14

  • 分类号C25B11/03(20060101);C25B11/04(20060101);C25B1/04(20060101);

  • 代理机构太原高欣科创专利代理事务所(普通合伙);

  • 代理人冷锦超;王博飞

  • 地址 030024 山西省太原市万柏林区迎泽西大街79号

  • 入库时间 2023-12-18 08:44:53

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-03-22

    授权

    授权

  • 2015-06-17

    实质审查的生效 IPC(主分类):C25B11/03 申请日:20150114

    实质审查的生效

  • 2015-05-20

    公开

    公开

说明书

技术领域

本发明涉及一种泡沫过渡金属固(气)态磷化自支撑析氢电极及其制备方法,属于材料科学技术与电催化制氢技术领域。

背景技术

随着煤炭、石油等不可再生化石燃料的日益减少及其对环境污染的加剧,氢能因其可再生、无污染、可储存等优点受到高度关注。常用的制氢方法有电解水制氢、光催化制氢、化石燃料制氢、生物制氢等。光催化制氢和生物制氢成本高、效率低,化石燃料制氢会产生二氧化碳等温室气体,而电解水制氢简单、高效、环保,制得的氢气纯度高,因此是未来大规模制氢的重要途径。Pt等贵金属及其合金由于具有低析氢过电位,因而具有优越的电解水析氢催化性能,但其价格昂贵并且资源有限,极大地限制了它们的大规模应用。研究表明,通过开发高催化活性的新型催化材料或增大电极的比表面积能达到降低析氢过电位的目的。目前,尽管一些过渡族金属元素如Ni可以在碱性环境下被用作析氢电极材料,但是在酸性环境和中性环境下进行析氢反应更加具有应用前景,相应高活性电解水析氢催化材料的研究也不断展开,相继开发出了金属硫化物和碳化物等新型电解水析氢材料。

最新研究表明,金属磷化物是一种非常有前景的电催化析氢材料,具有可以与Pt相比拟的低析氢过电位,然而目前多采用水热合成等方法首先制备出过渡金属磷化物纳米粒子,然后利用粘合剂粘结到钛片或者碳网等支撑物上作为电极使用;制备磷化物纳米粒子的过渡金属源多来自相应化合物盐类,同时磷化过程多涉及到有机磷化合物作为磷源,具有较高的毒性和易燃性,其复杂的制备过程和组装步骤极大的阻碍了磷化物析氢电极的大规模生产和实际应用,因此迫切需求寻找一种原材料来源丰富,制备工艺简单,危险性及毒性小,易于操控和大规模制备的磷化物析氢电极及其方法。

发明内容

本发明克服现有技术的不足,所要解决的技术问题是提供一种析氢过电位低,催化活性高,原材料来源丰富,制备工艺简单,适于大规模生产的泡沫过渡金属固(气)态磷化自支撑析氢电极及其制备方法。该方法制得的析氢电极比表面积大、催化活性高、导电性能好、化学性能稳定,既能在酸性环境又能在中性及碱性环境下作为良好的析氢电极。并且该方法工艺简单,成本低廉,易于控制且可重复性高。

为解决上述技术问题,本发明所采用的技术方案为:一种泡沫过渡金属固(气)态磷化自支撑析氢电极:所述电极的骨架为具有三维多孔结构的泡沫金属,泡沫金属的表层为纳米尺度的过渡金属磷化物,过渡金属磷化物原位生长于泡沫金属的孔壁上。纳米过渡金属磷化物的形貌为纳米丝,纳米棒,纳米片等,电极的厚度由所用泡沫金属的厚度决定。

所述的一种泡沫金属固(气)态磷化自支撑析氢电极的制备方法,包括以下步骤:

a. 将表面去除氧化层的泡沫金属作为金属源,悬挂于陶瓷舟上方,在陶瓷舟底部撒上红磷作为磷源,磷源与金属源的质量比为0.1-10;

b. 将步骤a中放置好泡沫金属源和磷源的陶瓷舟放入管式气氛炉中,首先通20-60min保护气体,保护气体可以为氩气,氮气及氢气中的一种或几种的混合,排净管式炉腔室中的空气;

c. 设置磷化工艺与参数,先将炉腔内温度以升温速率为1-10 ℃ /min升至400-700℃, 保温1-10h;然后在以1-10 ℃ /min速率降温至250℃左右,继续保温1-10h;然后自然冷却至室温;整个升温与降温的过程均处于气氛保护下进行,即可得到磷化自支撑析氢电极。

所述的泡沫金属为单/双组元泡沫金属或表面经过多元素修饰的复合泡沫金属。

所述的单/双组元泡沫金属为泡沫铜、泡沫镍、泡沫钴,泡沫铁、泡沫钼、泡沫钨、泡沫铁镍、覆钴泡沫镍;其使用前去除氧化层的方法为将泡沫金属在5-20wt.%的盐酸溶液中浸泡并超声1-30min以除去表面的氧化层,之后用超纯水清洗至中性,然后晾干备用。

所述的多元素修饰材料为铁,铜,镍,钴,钼,钨,镍钼,镍铁,镍钴,钴铁,镍铜,以及其相互之间的匹配组合;所述的多元素修饰的复合泡沫金属的制备方法为首先利用单/双组元泡沫金属为基底,除去表面的氧化层,之后用超纯水清洗至中性,然后晾干,露出新鲜金属表面;然后利用电化学沉积、化学沉积、磁控溅射、蒸发镀、渗金属、离子注入等方式在其孔壁上沉积或者渗入单金属层或者多金属合金单层或多层,获得表面经过多元素修饰的复合泡沫金属。

所述的一种泡沫金属固(气)态磷化自支撑析氢电极的制备方法,步骤 c中采用的磷化工艺是将固态单质红磷放入管式炉中,通过高温使得红磷蒸发,与过渡金属源相互作用,从而达到在泡沫金属表面形成纳米结构过渡金属磷化物的目的,其样品磷化程度可以通过调节磷化温度和保温时间进行控制。

所述的一种泡沫金属固(气)态磷化自支撑析氢电极的制备方法,步骤a中所选用的泡沫金属,厚度为0.1mm-100mm,孔隙率为5-130ppi。

所述的一种泡沫金属固(气)态磷化自支撑析氢电极,制得的电极在酸性、中性和碱性环境下均可以作为性能良好的析氢电极。

与现有技术相比本发明具有以下有益效果。

1、本发明制备的泡沫过渡金属固(气)态磷化自支撑析氢电极,由于使用三维多孔泡沫金属作为磷化前驱体或者作为三维支撑基底,极大增加了析氢电极的反应接触面积,提高了金属及其上磷化物的利用效率。

2、本发明直接将常见泡沫金属作为过渡金属磷化前驱体;或者先将其作为三维导电基底,在其上沉积一种或几种过渡金属,然后作为过渡金属磷化物三维析氢电极的金属源,其原材料来源广泛、可设计性强、成本低廉,避免了Pt等贵金属的使用,大大降低了生产成本。

3、本发明中的多孔泡沫金属表面多组元修饰方法,包括电化学沉积、化学沉积、磁控溅射、蒸发镀、渗金属、离子注入等,使得该三维多孔自支撑磷化物析氢电极的种类多样、成分可调、适应性强、应用范围广。

4、本发明采用红磷作为磷源,其磷化工艺简单、原料易得、成本低廉、反应易于控制,相比以往采用有机磷化合物作为磷源,该磷化工艺毒性低,环境污染小,安全性高。

5、本发明制得的电极催化性能高、稳定性好、既能在酸性环境又能在中性及碱性环境下作为良好的析氢材料。

附图说明

图1为本发明实例1中泡沫铜基底及在泡沫铜表面电沉积镍-钼合金层并进行磷化处理后样品宏观照片对比图。

图2为本发明实例1中泡沫铜表面电化学沉积镍-钼合金层磷化后获得的析氢电极XRD谱图。

图3为本发明实例1中泡沫铜表面电化学沉积镍-钼合金层磷化后获得的析氢电极SEM图。

图4为本发明实例1中泡沫铜表面电化学沉积镍-钼合金层磷化后获得的析氢电极表面EDX化学成分谱图。

图5为本发明实例1中泡沫铜表面电化学沉积镍-钼合金层磷化后获得的析氢电极在0.5M硫酸水溶液中的电化学析氢极化曲线图。

具体实施方式

以下结合具体实施例对本发明作进一步说明。

实施例1

一种在泡沫铜表面电化学沉积金属镍-钼合金层后固(气)态磷化自支撑析氢电极及其制备方法,按照以下步骤进行:

a.将泡沫铜(100ppi,具体形貌见附图1)在20wt.%的盐酸溶液中浸泡并超声清洗5min以除去其表面氧化层露出新鲜金属表面,之后用超纯水清洗至中性;

b.将步骤a处理过的泡沫铜作为阴极,放入硫酸镍(5.26 g/L)、钼酸钠(6.18 g/L)、柠檬酸三钠(29.41 g/L)、柠檬酸铵(22.61 g/L)和硫脲(7.61 g/L)的混合电镀溶液中,以碳棒为阳极,电流密度为2mA/cm2,电沉积时间为60min,在泡沫铜阴极表面获取电沉积镍-钼合金层;

c.将步骤b中电沉积完镍-钼合金层的泡沫铜用超纯水清洗,并置于超纯水中超声5分钟;

d.将步骤c中处理好的复合泡沫金属样品悬挂于陶瓷舟中,并将红磷粉末撒于陶瓷舟底部作为磷源,磷源与金属源的质量比为0.5;

e.将步骤d中放置好泡沫金属样品和红磷的陶瓷舟放入管式气氛炉腔中部,通入氩气作为保护气氛,通气30分钟以排净残留空气;

f.设置磷化工艺参数,先将炉腔室内温度升至500℃,并保温1h,升温速率为10℃/min;然后降温至250℃,继续保温1h,降温速率为10℃/min;最后使样品自然冷却至室温。整个升温与降温过程均使样品处在氩气保护气氛下。取出样品,即得到三维多孔自支撑的复合磷化物析氢电极。其宏观形貌见附图1,可以观察到磷化后样品呈现深黑色;X射线衍射(XRD)分析微结构发现,样品中含有Cu3P以及少部分的Ni2P和MoP(见附图2);扫描电镜(SEM)观察发现,泡沫金属孔壁上长满纳米尺度的针状物和丝状物(见附图3);X射线能谱(EDX)分析发现,磷化后样品表面成分主要为Cu, P以及少量的Ni和Mo元素(见附图4);将该三维多孔自支撑析氢电极作为工作电极,石墨作为辅助电极,进行电化学伏安扫描发现,该电极表现出优越的电化学析氢活性(见附图5)。

实施例2

一种泡沫铜固(气)态磷化自支撑析氢电极及其制备方法,按照以下步骤进行,

a.将泡沫铜(100ppi)在20wt.%的盐酸溶液中浸泡并超声清洗5min以除去表面氧化层露出新鲜金属表面,之后用超纯水清洗至中性;

b.将步骤a中处理好的泡沫铜悬挂于陶瓷舟中,并将红磷粉末撒于陶瓷舟底部作为磷源,磷源与金属源的质量比为0.7;

c.将步骤b中放置好泡沫铜样品和红磷的陶瓷舟放入管式气氛炉腔中部,通入氩气作为保护气氛,通气30分钟以排净残留空气;

d.设置磷化工艺参数,先将炉腔室内温度升至450℃,并保温2h,升温速率为10℃/min;然后降温至250℃,继续保温2h,降温速率为10℃/min;最后使样品自然冷却至室温。整个升温与降温过程均使样品处在氩气保护气氛下。取出样品,即可得到三维多孔自支撑的磷化物析氢电极。

实施例3

一种泡沫镍固(气)态磷化后自支撑析氢电极及其制备方法,按照以下步骤进行,

a.将泡沫镍(120ppi)在20wt.%的盐酸溶液中浸泡并超声清洗5min以除去表面氧化层露出新鲜金属表面,之后用超纯水清洗至中性;

b.将步骤a中处理好的泡沫镍悬挂于陶瓷舟中,并将红磷粉末撒于陶瓷舟底部作为磷源,磷源与金属源的质量比为0.7;

c.将步骤b中放置好泡沫镍样品和红磷的陶瓷舟放入管式气氛炉腔中部,通入氩气作为保护气氛,通气30分钟以排净残留空气;

d.设置磷化工艺与参数,先将炉腔室内温度升至500℃,并保温4h,升温速率为10℃/min;然后降温至250℃,继续保温4h,降温速率为10℃/min;最后使样品自然冷却至室温。整个升温与降温过程均使样品处在氩气保护气氛下。取出样品,即可得到三维多孔自支撑的磷化物析氢电极。

实施例4

一种泡沫铜上电化学沉积金属镍层后固(气)态磷化自支撑析氢电极及其制备方法,按照以下步骤进行,

a. 将泡沫铜(100ppi)在20wt.%的盐酸溶液中浸泡并超声清洗5min以除去表面氧化层露出新鲜金属表面,之后用超纯水清洗至中性;

b.将步骤a处理过的泡沫铜作为阴极,放入硫酸镍(280 g/L)、氯化镍(40 g/L)和硼酸(40g/L)的混合电镀溶液中,以碳棒为阳极,电流密度为2mA/cm2,电沉积时间为60min,在泡沫铜阴极表面获取电沉积镍层;

c.将步骤b中电沉积完镍层的泡沫铜用超纯水清洗,并置于超纯水中超声5分钟;

d.将步骤c中处理好的覆镍泡沫铜悬挂于陶瓷舟中,并将红磷粉末撒于陶瓷舟底部作为磷源,磷源与金属源的质量比为1;

e.将步骤d中放置好覆镍泡沫铜样品和红磷的陶瓷舟放入管式气氛炉腔中部,通入氩气作为保护气氛,通气30分钟以排净残留空气;

f.设置磷化工艺参数,先将炉腔室内温度升至500℃,并保温1h,升温速率为10℃/min;然后降温至250℃,继续保温1h,降温速率为10℃/min;最后使样品自然冷却至室温。整个升温与降温过程均使样品处在氩气保护气氛下。取出样品,即可得到三维多孔自支撑的复合磷化物析氢电极。

实施例5

一种在泡沫镍上电化学沉积金属铜-钴合金层后固(气)态磷化自支撑析氢电极及其制备方法,按照以下步骤进行,

a.将泡沫镍(120ppi)在20wt.%的盐酸溶液中浸泡并超声清洗5min以除去表面氧化层露出新鲜金属表面,之后用超纯水清洗至中性;

b.将步骤a处理过的泡沫镍作为阴极,放入硫酸铜(124.84 g/L)、硼酸(6.18 g/L)、氯化钴(47.59 g/L)和硫酸钴(140.58g/L)的混合电镀溶液中,以碳棒为阳极,电流密度为5mA/cm2,电沉积时间为60min,在泡沫镍阴极表面获取电沉积铜-钴合金层;

c.将步骤b中电沉积完铜-钴合金层的泡沫铜用超纯水清洗,并置于超纯水中超声5分钟;

d.将步骤c中处理好的复合泡沫金属样品悬挂于陶瓷舟中,并将红磷粉末撒于陶瓷舟底部作为磷源,磷源与金属源的质量比为0.7;

e.将步骤d中放置好泡沫金属样品和红磷的陶瓷舟放入管式气氛炉腔中部,通入氩气作为保护气氛,通气30分钟以排净残留空气;

f.设置磷化工艺参数,先将炉腔室内温度升至450℃,并保温1h,升温速率为10℃/min;然后降温至250℃,继续保温1h,降温速率为10℃/min;最后使样品自然冷却至室温。整个升温与降温过程均使样品处在氩气保护气氛下。取出样品,即得到三维多孔自支撑的复合磷化物析氢电极。

实施例6

一种在泡沫镍上电化学沉积金属铜-钴合金层后固(气)态磷化自支撑析氢电极及其制备方法,按照以下步骤进行,

a.将泡沫镍(60ppi)在20wt.%的盐酸溶液中浸泡并超声清洗5min以除去表面氧化层露出新鲜金属表面,之后用超纯水清洗至中性;

b.将步骤a处理过的泡沫镍作为阴极,放入硫酸铜(124.84 g/L)、硼酸(6.18 g/L)、氯化钴(47.59 g/L)和硫酸钴(140.58g/L)的混合电镀溶液中,以碳棒为阳极,电流密度为5mA/cm2,电沉积时间为60min,在泡沫镍阴极表面获取电沉积铜-钴合金层;

c.将步骤b中电沉积完铜-钴合金层的泡沫铜用超纯水清洗,并置于超纯水中超声5分钟;

d.将步骤c中处理好的复合泡沫金属样品悬挂于陶瓷舟中,并将红磷粉末撒于陶瓷舟底部作为磷源,磷源与金属源的质量比为5;

e.将步骤d中放置好泡沫金属样品和红磷的陶瓷舟放入管式气氛炉腔中部,通入氩气作为保护气氛,通气60分钟以排净残留空气;

f.设置磷化工艺参数,先将炉腔室内温度升至700℃,并保温6h,升温速率为10℃/min;然后降温至250℃,继续保温6h,降温速率为10℃/min;最后使样品自然冷却至室温。整个升温与降温过程均使样品处在氩气保护气氛下。取出样品,即得到三维多孔自支撑的复合磷化物析氢电极。

实施例7

一种在泡沫镍上电化学沉积金属铜-钴合金层后固(气)态磷化自支撑析氢电极及其制备方法,按照以下步骤进行,

a.将泡沫镍(60ppi)在20wt.%的盐酸溶液中浸泡并超声清洗5min以除去表面氧化层露出新鲜金属表面,之后用超纯水清洗至中性;

b.将步骤a处理过的泡沫镍作为阴极,放入硫酸铜(124.84 g/L)、硼酸(6.18 g/L)、氯化钴(47.59 g/L)和硫酸钴(140.58g/L)的混合电镀溶液中,以碳棒为阳极,电流密度为5mA/cm2,电沉积时间为60min,在泡沫镍阴极表面获取电沉积铜-钴合金层;

c.将步骤b中电沉积完铜-钴合金层的泡沫铜用超纯水清洗,并置于超纯水中超声5分钟;

d.将步骤c中处理好的复合泡沫金属样品悬挂于陶瓷舟中,并将红磷粉末撒于陶瓷舟底部作为磷源,磷源与金属源的质量比为10;

e.将步骤d中放置好泡沫金属样品和红磷的陶瓷舟放入管式气氛炉腔中部,通入氩气作为保护气氛,通气60分钟以排净残留空气;

f.设置磷化工艺参数,先将炉腔室内温度升至500℃,并保温8h,升温速率为10℃/min;然后降温至250℃,继续保温8h,降温速率为10℃/min;最后使样品自然冷却至室温。整个升温与降温过程均使样品处在氩气保护气氛下。取出样品,即得到三维多孔自支撑的复合磷化物析氢电极。

本发明可用其他的不违背本发明的精神或主要特征的具体形式来概述。因此,无论从哪一点来看,本发明的上述实施方案都只能认为是对本发明的说明而不能限制发明,权利要求书指出了本发明的范围,而上述的说明并未指出本发明的范围,因此,在与本发明的权利要求书相当的含义和范围内的任何变化,都应认为是包括在权利要求书的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号