首页> 中国专利> 用于X射线相位衬度成像的积分水桶相位测量方法

用于X射线相位衬度成像的积分水桶相位测量方法

摘要

本发明公开了一种用于X射线相位衬度成像的积分水桶相位测量方法,应用于X射线相位衬度成像系统。所述方法包括如下步骤:S1、在垂直于光路的横向平面上,沿垂直于分析光栅栅条的方向上使分析光栅在一个光栅周期内做连续的往复直线运动,同时使样品室保持连续的旋转运动,期间X射线探测器一直在采集图像,分析光栅每运动一个单位步距,探测器采集一张图像,即一张图像的曝光时间等于分析光栅移动一个单位步距的时间;S2、根据步骤S1采集的图像计算样品的相位信息。本发明有利于保证快速X射线相位衬度成像过程中机械系统的稳定性,同时能减少样品所接受的不必要的辐射剂量。

著录项

  • 公开/公告号CN104458777A

    专利类型发明专利

  • 公开/公告日2015-03-25

    原文格式PDF

  • 申请/专利权人 中国科学技术大学;

    申请/专利号CN201410841493.1

  • 申请日2014-12-30

  • 分类号G01N23/04;

  • 代理机构中科专利商标代理有限责任公司;

  • 代理人宋焰琴

  • 地址 230026 安徽省合肥市包河区金寨路96号

  • 入库时间 2023-12-18 08:05:40

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-07-03

    授权

    授权

  • 2015-04-22

    实质审查的生效 IPC(主分类):G01N23/04 申请日:20141230

    实质审查的生效

  • 2015-03-25

    公开

    公开

说明书

技术领域

本发明属于X射线相位衬度成像技术领域,具体涉及一种用于X射 线相位衬度成像的积分水桶相位测量方法。

背景技术

X射线相位衬度成像技术在生物软组织识别分辨方面有着巨大的应用 前景。在目前基于X射线晶体干涉仪和基于光栅的X射线相位衬度成像 技术中,常常利用相位步进测量方法来提取样品的相位信息。在X射线晶 体干涉仪中,主要通过分步移动楔形的相移器来实现相位步进[1,2]。在基 于光栅的X射线相位衬度成像技术中,主要通过分步移动分析光栅来实现 相位步进[3,4,5,6]。

[1]A.Momose,″Demonstration of phase-contrast X-ray computed  tomography using an X-ray interferometer,″Nuclear Instruments and Methods  in Physics Research Section A:Accelerators,Spectrometers,Detectors and  Associated Equipment,vol.352,pp.622-628,1995.

[2]A.Momose,T.Takeda,Y.Itai,and K.Hirano,″Phase-contrast  X-ray computed tomography for observing biological soft tissues,″Nature  medicine,vol.2,pp.473-475,1996.

[3]A.Momose,S.Kawamoto,I.Koyama,Y.Hamaishi,K.Takai,and  Y.Suzuki,″Demonstration of X-Ray Talbot interferometry,″Japanese Journal  ofApplied Physics Part 2-Letters,vol.42,pp.L866-L868,Jul 15 2003.

[4]T.Weitkamp,A.Diaz,C.David,F.Pfeiffer,M.Stampanoni,P. Cloetens,et al.,″X-ray phase imaging with a grating interferometer,″Optics express,vol.13,pp.6296-6304,2005.

[5]I.Zanette,M.Bech,A.Rack,G.Le Duc,P.Tafforeau,C.David,et  al.,″Trimodal low-dose X-ray tomography,″Proceedings of the National Academy of Sciences,vol.109,pp.10199-10204,2012.

[6]M.Hoshino,K.Uesugi,T.Tsukube,and N.Yagi,″Quantitative and  dynamic measurements of biological fresh samples with X-ray phase contrast  tomography,″Journal of synchrotron radiation,vol.21,pp.1347-1357,2014.

利用相位步进技术可以准确地测量出样品的相位信息,但是相位步进 测量方法的缺点主要有两个:(1)X射线相位衬度成像系统的运动模式是 断断续续的,相移器/分析光栅移动一步,探测器采集一张图像,然后相移 器/分析光栅再移动一步,探测器再采集一张图像,直到图像采集完毕。在 快速X射线相位衬度成像中,这种不连续的运动方式会影响机械系统的稳 定性。(2)在相移器/分析光栅移动过程中,图像采集停止,但是样品仍然 在接受辐射剂量(在相位步进测量技术中,解决这一问题有两种办法,一 种方法是在相移器/分析光栅移动过程中,利用铅板挡住X射线,相移器/ 分析光栅移动完成后,移开铅板,继续开始图像采集,这样可以避免样品 接受不必要的辐射损伤,但是该方法增加了成像系统的结构复杂性;另外 一种方法是在相移器/分析光栅移动过程中,关闭X光机,相移器/分析光 栅移动完成后,重新开启X光机,这种方法也可以避免样品接受不必要的 辐射损伤,但是该方法的缺点是X光机不能处于连续稳定的工作状态,X 光机出射的光子通量不稳定,进而会造成系统成像质量的下降)。

图1是基于三块光栅的X射线相位衬度成像光路结构图。如图1所示, 成像系统主要包括X光机1、源光栅2、分束光栅3、样品室4、分析光栅 5、X射线探测器6。分析光栅的周期为5μm。三块光栅对准后,探测器上 会得到无穷大的莫尔条纹,如果在垂直于光栅刻线方向移动分析光栅一个 周期(5μm),那么探测器上某一个像素的光强也会在一个周期内发生相应 的明暗变化,这个变化曲线称为光栅位移曲线。

图2是现有技术的相位步进测量方法示意图。如图2所示,一般情况 下,位移曲线是一条标准的余弦曲线。光学系统调整完毕后,采集第一张 图像①;然后在垂直于光栅栅条方向移动分析光栅1μm,光栅运动完成后, 采集第二张图像②;接着移动分析光栅1μm,光栅运动完成后,采集第三 张图像③;然后继续移动分析光栅1μm,光栅运动完成后,采集第四张图 像④;最后移动分析光栅1μm,光栅运动完成后,采集第五张图像⑤。基 于图像①、②、③、④和⑤,即可实现相位测量。

发明内容

(一)要解决的技术问题

本发明所要解决的主要是在快速X射线相位衬度成像中提高机械系 统的稳定性,同时尽量降低样品所接受的辐射剂量。

(二)技术方案

为解决上述技术问题,本发明提出一种用于X射线相位衬度成像的积 分水桶相位测量方法,应用于X射线相位衬度成像系统,该系统包括X 光机、源光栅、分束光栅、样品室、分析光栅和X射线探测器,所述方法 包括如下步骤:S1、在垂直于光路的横向平面上,沿垂直于分析光栅的栅 条方向上使分析光栅在一个光栅周期内做连续的往复直线运动,同时使样 品室保持连续的旋转运动,期间,X射线探测器一直在采集图像,分析光 栅每运动一个单位步距,探测器采集一张图像,即一张图像的曝光时间等 于分析光栅移动一个单位步距的时间;S2、根据步骤S1采集的图像计算 样品的相位信息。

根据本发明的具体实施方式,所述分析光栅的单方向位移的大小是所 述单位步距的整数倍。

根据本发明的具体实施方式,所述整数为大于或等于4的整数。

根据本发明的具体实施方式,所述样品室的旋转是连续的。

根据本发明的具体实施方式,所述样品室的旋转是间歇性的。

根据本发明的具体实施方式,所述分析光栅的周期性往复运动的运动 模式是均速运动。

根据本发明的具体实施方式,所述分析光栅的周期性往复运动的运动 模式是弹簧谐振子运动。

根据本发明的具体实施方式,在所述步骤S2中,通过如下公式计算 样品的折射图像(折射图像是相位信息的一种体现形式):

其中,是所采 集的图像的像素(m,n)处的折射角,k是累加求和过程中的变量,N是积分 水桶测量方法在位移曲线一个周期内划分区间的数量,是第k步采 集到的样品图像中像素(m,n)的灰度值,是第k步采集到的背景图 像中像素(m,n)的灰度值,d是分析光栅的周期,zT是样品和分析光栅之 间的距离。

(三)有益效果

本发明的积分水桶相位测量方法主要会产生三个优点:(1)成像系统 的运动模式是连续的,相移器/分析光栅只需要保持连续的运动即可。在快 速X射线相位衬度成像中,这种连续的运动方式有利于保证机械系统的稳 定性。(2)在成像过程中,X射线探测器的图像采集是连续的,这可以减 少样品所接受的不必要的辐射剂量。(3)积分水桶相位测量方法可以很好 的和CT技术相结合。

附图说明

图1是X射线光栅相位衬度成像光学结构图;

图2是现有应用于X射线投影成像技术中的相位步进测量方法的示意 图;

图3是本发明应用于X射线投影成像技术中的一个实施例的示意图;

图4是本发明应用于X射线计算机断层成像技术中的实施例的示意图, 其中(A)图为一个实施例,(B)图为另一个实施例;

图5是本发明的上述实施例的X射线相位衬度成像的系统架构图;

图6本发明的一个实施例X射线相位衬度成像结果图,其中(a)图 是相位步进(分为10步)测量方法示意图,(b)图是积分水桶(分为10 个区间)测量法的示意图,(c)图是利用相位步进法测得试验结果,(d) 图是利用积分水桶法测得的试验结果,(e)图是两种测量方法得到的实验 结果的断面图。

图7是本发明的另一个实施例的X射线相位衬度成像结果图,其中(a) 图是104步相位步进法示意图,(b)图是按照积分水桶(分为13个区间) 相位测量方法计算的示意图,(c)图是按照积分水桶(分为5个区间)相 位测量方法计算的示意图,(d)图是104步相位步进法测得的试验结果, (e)是图按照积分水桶(分为13个区间)相位测量方法计算得到的实验 结果,(f)图是按照积分水桶(分为5个区间)相位测量方法计算得到的 实验结果,(g)图是三种计算方法得到的实验结果的断面图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实 施例,并参照附图,对本发明作进一步的详细说明。

本发明在解决问题时采用的技术方案是:在X射线相位衬度成像中, 利用积分水桶相位测量方法代替目前普遍采用的相位步进测量技术。采用 积分水桶相位测量方法的时候,相移器/分析光栅一直在持续运动,同时X 射线探测器一直在采集图像。

具体来说,对于一个X射线相位衬度成像系统,该系统至少包括X 光机1、源光栅2、分束光栅3、样品室4、分析光栅5和X射线探测器6。 本发明的相位测量方法包括:

S1、在垂直于光路的横向平面上,沿垂直于分析光栅的栅条方向上使 分析光栅在一个光栅周期内做连续的往复直线运动,同时使样品室保持连 续的旋转运动,期间,X射线探测器一直在采集图像,分析光栅每运动一 个单位步距,探测器采集一张图像,即一张图像的曝光时间等于分析光栅 移动一个单位步距的时间;

S2、根据步骤S1采集的图像计算样品的相位信息。

在步骤S1中,优选地,所述分析光栅的单方向位移的大小是单位步 距的整数倍,通常该倍数大于或等于4,例如是5倍、8倍等。

并且,样品的旋转既可以是间歇性的,也可以是连续的。也就是说, 样品可以每隔一段时间旋转一个角度,也可以持续不停的旋转。当以间隔 性方式旋转时,可以使旋转的间隔期与光栅的周期性运动相配合。例如, 分析光栅每完成一次单向位移时,使光栅进行一次旋转,即光栅的旋转周 期为分析光栅周期性往复运动的周期的1/2。若设分析光栅的周期性往复 运动的周期为T,则样品作间歇性旋转的周期为T/2n或者nT/2,n为自然 数。

此外,本发明的分析光栅的周期性往复运动的运动模式既可以是均速 运动,也可以是非均速运动。对于非均速运动,其可以是与弹簧振子的振 动相似的运动,基于这种运动方式,机械系统的运动更加符合自然规律, 成像系统的机械稳定性很好,可以实现高速的图像采集。

通过数值模拟发现,步骤S2可以采用与现有技术同样的计算方法。 由于本图像采集方法是在一个个的小区间(水桶)内对光子进行积分,所 以本发明的方法可以称为积分水桶法。

在步骤S2中,可以通过如下公式计算样品的折射图像(折射图像是 相位信息的一种体现形式):

其中,是所采 集的图像的像素(m,n)处的折射角,k是累加求和过程中的变量,N是积分 水桶测量方法在位移曲线一个周期内划分区间的数量,是第k步采 集到的样品图像中像素(m,n)的灰度值,是第k步采集到的背景图 像中像素(m,n)的灰度值,d是分析光栅的周期,zT是样品和分析光栅之 间的距离。

为了说明本发明的技术方案和原理,下面以基于三块光栅的X射线相 位衬度成像为例,以五步积分水桶相位测量的具体实施方式来说明本发明。 所谓“五步”是指在分析光栅的每次单向位移中采集五张图像。

图3是本发明应用于X射线投影成像技术中的一个实施例的示意图。 如图3所示,光学系统调整完毕后,在垂直于分析光栅的栅条方向移动分 析光栅一个单位步距,该单位步距例如是1μm,同时采集第一张图像①, 保证光栅运动的时间和X射线探测器的曝光时间相等;然后继续在垂直于 光栅的栅条方向移动分析光栅所述步距,同时采集第二张图像②,保证光 栅运动的时间和X射线探测器的曝光时间相等;然后继续移动分析光栅所 述步距,同时采集第三张图像③,保证光栅运动的时间和X射线探测器的 曝光时间相等;然后继续移动分析光栅所述步距,同时采集第四张图像④, 保证光栅运动的时间和X射线探测器的曝光时间相等;最后继续移动分析 光栅所述步距,同时采集第五张图像⑤,保证光栅运动的时间和X射线探 测器的曝光时间相等。

基于图像①、②、③、④和⑤,即可实现相位测量。需要指出的是, 在探测器读出时间和存储时间可以忽略情况下,积分水桶相位测量方法可 以这样实施,使分析光栅在垂直于光栅的栅条方向一直运动,运动的总位 移为五个单位步距,即5μm,然后探测器依次采集图像①、②、③、④和 ⑤,每张图像的曝光时间相等,总的曝光时间等于光栅一次单方向位移运 动(5μm)的总时间。

图4是本发明应用于X射线计算机断层成像技术中的实施例的示意图。 其中(A)图是一个实施例,(B)图是另一个实施例。(A)图所示的实施 例的样品采用间歇性旋转的方式,也可称为与CT的第一结合方式。图4 的纵坐标表示分析光栅横向位置,横坐标表示样品的旋转角度。如图4的 A(图)所示,在该第一结合方式中,分析光栅在垂直于光栅的栅条方向 从起始位置开始一直运动,达到一个预定位移量(5μm)后到达一个终止 位置,探测器在运动过程中,如前所述地依次采集图像①、②、③、④和 ⑤,每张图像的曝光时间相等,总的曝光时间等于光栅运动所述位移极值 (5μm)的时间。此时样品的投影图为“投影1”。

然后将样品旋转一个单位角度,如1°,分析光栅在垂直于其栅条的 方向反向运动,也运动一个预定位移5μm,回到起始位置,探测器同样依 次采集五张图像,每张图像的曝光时间相等,总的曝光时间等于光栅本次 运动的时间。

循环上述过程,直到采集完所需要的投影图为止。

图4的(B)图的实施例的样品采用连续旋转的方式,也可称为与CT 的第二结合方式。如图4的(B)图所示,在该结合方式中,分析光栅在 垂直于光栅的栅条方向一直做周期性往复运动,同时样品室也在持续的旋 转,然后探测器在每次单向位移时依次采集图像①、②、③、④和⑤,每 张图像的曝光时间相等,总的曝光时间等于光栅运动5μm的时间。样品室 旋转360°后,图像采集完毕。

需要指出的是,上述积分水桶相位测量方法以及与CT相结合的各种 方式同样适用于基于晶体干涉仪和基于衍射增强的X射线相位衬度成像 技术中。

图5是该发明具体实施例的系统架构图。如图5所示,所述系统包括 光学平台601、第一三维光学精密位移台602、X光机603、源光栅604、 第二三维光学精密位移台605、第一光学精密倾斜台606、第三三维光学 精密位移台607、第四三维光学精密位移台608、第一光学精密旋转台609、 第二光学精密倾斜台610、第二光学精密旋转台611、分束光栅612、样品 室613、第五三维光学位移台614、第三光学精密旋转台615、第四光学精 密倾斜台616、高精密压电陶瓷直线位移台617、分析光栅618。其中X 光机603、源光栅604、分束光栅612、样品室613和分析光栅618均通过 各光学精密位移台固定在光学平台上,在分析光栅618横向运动方向,配 置有超精密的压电陶瓷电机,用于高精密的相位步进扫描,X射线探测器 通过机械部件固定在台面上。

X光机的焦点大小为1mm,工作管电压为45KV,管电流为22.5mA。 源光栅周期为100μm,金厚度为200μm,占空比为1∶1,面积为1×1cm2。 分束光栅周期为50μm,金厚度为200μm,占空比为1∶1,面积为10×10cm2。 分析光栅周期为100μm,金厚度为200μm,占空比为1∶1,面积为10×10 cm2。X射线平板探测器的像素尺寸为0.2×0.2cm2,探测器的活动区域面 积为20.48×20.48cm2。源光栅距离X光机出光点的距离为1cm,源光栅 和分束光栅的距离为60cm,样品室位于分束光栅后面,分析光栅和分束 光栅的距离为60cm,X射线探测器紧贴着分析光栅放置。

三块光栅经过精确对准后,固定好样品,在该实施例中,样品是一根 直径为10mm的PMMA玻璃棒、一根直径为5mm的POM玻璃棒、一根 直径为5mm的PMMA玻璃棒和一根直径为10mm的POM玻璃棒。

图6是本发明的一个实施例X射线相位衬度成像结果图,(a)图是相 位步进(分为10步)测量法的示意图,(b)图是积分水桶(分为10个区 间)测量方法的示意图。

为进行对比,先采用现有技术的相位步进法开展测量,选取的步进步 长是10μm,步进步数是10步,在每一步,X射线探测器采集49张图像 平均减噪,然后把样品移除视场,同样采集49张背景图像平均减噪,接 着把样品移入视场,重复以上过程,图像采集完成后,利用如下公式,即 可计算出样品的折射图像。

公式中是像素 (m,n)处的折射角,k是累加求和过程中的变量,是第k步采集到 的样品图像中像素(m,n)的灰度值,是第k步采集到的背景图像中 像素(m,n)的灰度值,d是分析光栅的周期,zT是样品和分析光栅之间的 距离。

然后利用本发明的积分水桶相位测量方法进行测量,使分析光栅在 X=0~10μm之间来回缓慢运动5次,通过精确计时发现分析光栅在X=0~ 10μm之间来回缓慢运动5次的时间是98秒,在分析光栅开始运动的时候, 同时启动探测器开始采集图像,一共连续采集49张,每张图像的曝光时 间是2秒钟。然后把样品移除视场,同样使分析光栅在X=0~10μm之间 来回运动5次,同时启动探测器开始采集背景图像,一共连续采集49张。 接着把样品移入视场,使分析光栅在X=10~20μm之间来回运动5次, 重复以上步骤。直到完成图像采集。利用如下公式,即可计算出样品的折 射图像。

公式中是像素 (m,n)处的折射角,k是累加求和过程中的变量,是第k步采集到的 样品图像中像素(m,n)的灰度值,是第k步采集到的背景图像中像 素(m,n)的灰度值,d是分析光栅的周期,zT是样品和分析光栅之间的距 离。

图6的(c)图是利用相位步进法测得试验结果,图6的(d)图是利 用积分水桶测量法提取出来的样品的折射信息。对比(c)图和(d)图可 以看出,利用积分水桶相位测量方法可以达到与传统相位步进测量方法的 一模一样的实验结果。

图6的(e)图是两种测量方法得到的实验结果的定量比较,(e)图 中的黑色实线代表相位步进法得到的实验结果的断面图,断面选取如(c) 图中的黑色实线表示的矩形所示,(e)图中的黑色虚线代表积分水桶法得 到的实验结果的断面图,断面选取如图6的(d)图中的黑色虚线表示的 矩形所示。对比图6的(e)图中的两条曲线可以发现,两种测量方法测 得的数据在整体轮廓上面几乎吻合,由于图像噪声较大,所以在细微方面, 有一些出入。该实验结果证明了积分水桶相位测量方法可以完全替代传统 相位步进测量方法。

图7显示的是另外一个实施例的结果,该实施例的原始数据是利用相 位步进法采集的,相位步进的步数为104步,每一步采集30张图像进行 平均减噪处理,X光机的工作电压为50KV,管电流为22.5mA。图7的 (d)图是利用104步相位步进计算方法提取的样品的折射信息。由于该 相位步进试验所采集的步数较多,如图7的(a)图所示,采集的点在位 移曲线中分布比较密集,这套数据可以近似的按照积分水桶相位测量方法 来计算。

第一种计算方法是把原始数据近似的作为积分水桶法(分为13个区 间)来处理,计算过程如下:把第1~8步采集到的图像平均作为积分水 桶法的第1个区间,把第9~16步采集到的图像平均作为积分水桶法的第 2个区间,把第17~24步采集到的图像平均作为积分水桶法的第3个区间, 把第25~32步采集到的图像平均作为积分水桶法的第4个区间,把第33~ 40步采集到的图像平均作为积分水桶法的第5个区间,把第41~48步采 集到的图像平均作为积分水桶法的第6个区间,把第49~56步采集到的 图像平均作为积分水桶法的第7个区间,把第57~64步采集到的图像平 均作为积分水桶法的第8个区间,把第65-72步平均作为第9个区间,把 第73~80步采集到的图像平均作为积分水桶法的第10个区间,把第81~ 88步采集到的图像平均作为积分水桶法的第11个区间,把第89~96步采 集到的图像平均作为积分水桶法的第12个区间,把第97~104步采集到 的图像平均作为积分水桶法的第13个区间。13个区间划分如图7的(b) 图所示,图7的(e)图是按照积分水桶(分为13个区间)相位测量方法 计算得到的样品的折射信息。

第二种计算方法是把原始数据近似作为积分水桶法(分为5个区间) 来处理,计算过程如下:把第1~21步采集到的图像平均作为积分水桶法 的第1个区间,把第22~42步采集到的图像平均作为积分水桶法的第2 个区间,把第43~63步采集到的图像平均作为积分水桶法的第3个区间, 把第64~84步采集到的图像平均作为积分水桶法的第4个区间,把第85~ 104步采集到的图像平均作为积分水桶法的第个区间步(需要指出的是, 在第一、二、三、四步中,我们选取了21步进行平均处理,而在第五步 中,我们只选取了20步进行平均处理)。5步区间划分如图7的(c)图所 示,图7的(f)图是按照积分水桶(分为5个区间)相位测量方法计算得 到的样品的折射信息。

对比图7的(d)、(e)、(f)图可以看出,按照13个区间和5个区间 的积分水桶相位测量方法计算,都可以得到与传统相位步进测量方法一模 一样的实验结果。图7的(g)是三种计算方法得到的实验结果的定量比 较,图7的(g)图中的黑色曲线代表104步相位步进法测得的实验结果 的断面图,断面选取如图7的(d)图中的黑色实线表示的矩形所示,图7 的(g)图中的黑色虚线(由短线构成)代表积分水桶法(分为13个区间) 测得的实验结果的断面图,断面选取如图7的(e)图中的黑色虚线(由 短线构成)表示的矩形所示,图7的(g)图中的黑色虚线(由点构成) 代表积分水桶法(分为5个区间)测得的实验结果的断面图,断面选取如 图7的(f)图中的黑色虚线(由点构成)表示的矩形所示。通过比较三条 曲线,可以发现这三种计算方法的实验结果在数值上只有微小的差别,从 而证明了积分水桶相位测量方法可以完全替代传统相位步进测量方法。

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行 了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已, 并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、 等同替换、改进等,均应包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号