首页> 中国专利> 包括在其上具有保形层的多孔基底的制品

包括在其上具有保形层的多孔基底的制品

摘要

本发明提供一种制品,所述制品包括:具有入口和出口的主体,以及至少一个多孔非陶瓷基底的至少一部分,所述基底的设置方式使得所述多孔聚合物基底将所述入口和所述出口分离。所述多孔非陶瓷基底在其内表面的至少一部分上具有保形涂层。

著录项

  • 公开/公告号CN102782179A

    专利类型发明专利

  • 公开/公告日2012-11-14

    原文格式PDF

  • 申请/专利权人 3M创新有限公司;

    申请/专利号CN201080042237.6

  • 发明设计人 比尔·H·道奇;

    申请日2010-09-17

  • 分类号C23C14/20(20060101);C23C14/04(20060101);C23C14/06(20060101);C23C14/14(20060101);

  • 代理机构11219 中原信达知识产权代理有限责任公司;

  • 代理人梁晓广;关兆辉

  • 地址 美国明尼苏达州

  • 入库时间 2023-12-18 07:21:42

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-11-25

    授权

    授权

  • 2013-01-09

    实质审查的生效 IPC(主分类):C23C14/20 申请日:20100917

    实质审查的生效

  • 2012-11-14

    公开

    公开

说明书

相关专利申请的交叉引用

本专利申请要求均于2009年9月22日提交的美国临时专利申请No.61/244,696和61/244,713的权益,这些临时专利申请的公开内容全部以引用方式并入本文。

技术领域

本发明涉及具有多孔非陶瓷基底的制品,所述基底在其内表面上具有保形涂层。

背景技术

原子层沉积(ALD)工艺最初为薄膜电致发光(TFEL)平板显示器而开发。多年来,人们对ALD的兴趣明显升温,硅基微电子(晶片)成为了关注的焦点,原因是这种工艺能够通过在原子水平上控制膜的组成和厚度而产生非常薄的可保形膜。ALD因其自限制性顺次表面反应过程而能够涂覆高高宽比的表面也为人们所熟知。然而,该过程涂覆这些高高宽比表面的能力受到反应性气体扩散进这些区域并在添加下一前驱体前被完全清除掉所需的时间的挑战。此扩散问题极大地阻碍了该技术推广到多孔材料领域,进而也阻碍了该技术推广到具有带ALD涂层的多孔基底的制品领域。

发明内容

本发明使得能够在多孔基底中使用ALD涂层,继而使得可能制造出各种各样的制品,例如在其内表面的至少一部分上具有保形涂层的过滤器、萃取柱、催化反应器等。在一个方面,本发明提供一种制品,其包括:具有入口和出口的主体;以及至少一个多孔非陶瓷基底的至少一部分,该基底的设置方式使得多孔聚合物基底将入口与出口分离。该多孔非陶瓷基底在其内表面的至少一部分上具有保形涂层。在第二方面,本发明提供一种制品,其包括多孔非陶瓷基底,该基底在其所有内表面上具有贯穿其整个厚度的保形涂层。

定义

与本发明有关的词语“多孔的”是指基底包含足以让至少一种气体可从中通过的开口(即“孔”)。

词语“微孔的”是指基底包含中值内部横截面尺寸(“中值孔径”,例如,就圆柱形孔而言为直径)不大于1,000微米的孔使得气体可经孔通过基底。优选的微孔基底包含中值孔径为0.01至1,000微米(包括端值)、更优选0.1至100微米(包括端值)、甚至更优选0.2至20微米(包括端值)以及最优选0.3至3微米或甚至1微米(包括端值)的孔。如本说明书全文所用,使用ASTM标准F316-03中所述的泡点压力测量方法测定中值孔径。

词语“无孔的”是指基底基本上不含孔。

与沉积保形涂层前的基底相关的词语“非陶瓷的”是指基底基本上不含无机金属氧化物、金属氮化物、金属碳化物或其他陶瓷材料。优选的“非陶瓷的”基底完全不含陶瓷材料,更优选地基本上由纤维有机材料(如聚合纤维、天然纤维、碳纤维等)组成,甚至更优选地只由有机材料组成。

词语“保形涂层”是指能良好粘附到下面的基底上并与下面基底的形状紧密贴合的相对薄的材料涂层。

附图说明

图1示出了通过根据本发明的制品观察到的横截面视图。

图2示出了在实例1的实验中基于过程重复次数对应基底两侧压降升高的曲线图。

具体实施方式

本发明的制品在非陶瓷基底内表面的至少一部分上具有保形涂层。在许多适宜的实施例中,将保形涂层以贯穿基底整个厚度的方式施加到至少一个区域上。优选地,将保形涂层施加到基底的所有内表面上。在许多适宜的实施例中,保形涂层包含金属氧化物、金属氮化物、金属硫化物或它们的组合。在这些情况下的金属可具有各种类别,但硅、钛、铝、锆和钇被认为是尤其合适的。优选地,该金属为硅、钛或铝;更优选地,该金属为铝。在一些优选的实施例中,保形涂层包含氧化铝。

可通过原子层控制生长技术施加的涂层是优选的。可容易地以此方式施加的涂层包括二元材料,即具有QxRy形式的材料,其中Q和R表示不同的原子,x和y为反映静电中性材料的数值。合适的二元材料包括多种无机氧化物(例如二氧化硅和金属氧化物,如氧化锆、氧化铝、二氧化硅、氧化硼、氧化钇、氧化锌、氧化镁、TiO2等)、无机氮化物(例如氮化硅、AlN和BN)、无机硫化物(例如硫化镓、二硫化钨和硫化钼)以及无机磷化物。此外,多种金属涂层是可用的,包括钴、钯、铂、锌、铼、钼、锑、硒、铊、铬、铂、钌、铱、锗和钨。

对自限制性顺次涂层的应用的有用论述可见于例如美国专利No.6,713,177、6,913,827和6,613,383。

熟悉ALD反应领域的人员可容易地确定哪一种第一和第二反应性气体才是自限制性反应的合适选择以便形成上述保形涂层。例如,如果需要含铝化合物,则可将三甲基铝或三异丁基铝气体用作两种反应性气体之一。当所需的含铝化合物为氧化铝时,重复中的另一种反应性气体可以是水蒸气或臭氧。当所需的含铝化合物为氮化铝时,重复中的另一种反应性气体可以是氨或氮/氢等离子体。当所需的含铝化合物为硫化铝时,重复中的另一种反应性气体可以是硫化氢。

同样,如果保形涂层中需要的是硅化合物而非铝化合物,两种反应性气体之一可以是例如四甲基硅烷或四氯化硅。上文并入的参考文献对取决于所需的最终结果的合适的反应性气体给出了进一步的指导。

虽然采用所讨论的反应性气体的单次重复可沉积对某些目的可能合适的分子层,但是该方法的许多有用的实施例将使执行步骤重复至少8次、10次、20次或更多次。每次重复都将为保形涂层增加厚度。因此,在一些实施例中,选择重复次数以在多孔非陶瓷基底中实现预定的孔隙度或平均内部孔径。在一些实施例中,通过控制执行的重复次数,可将保形涂层用于可控制地减小多孔非陶瓷基底的孔隙度(例如,以控制基底的表观孔径),从而实现所需的孔隙度(例如,所需的平均内部孔径)。例如,保形涂层可将多孔非陶瓷基底的孔隙度减小5%或更多、25%或更多、或甚至50%或更多。相似地,如果基底包含孔,则保形涂层可将平均内部孔径减小5nm或更多。

在一些应用中,应用该方法的目的是在基底的内表面上实现亲水性。在这些应用中,重复该步骤,直到实现目标表面能,例如72达因/厘米(亲水性的一种常用定义)。此外,还可能有利的是,多孔非陶瓷基底最靠近出口的外表面也具有大于72达因/厘米的表面能,在这些情况下,应重复执行步骤直到实现所述目标。反之,在一些特殊化实施例中,可能有利的是,让内表面为亲水的,而让多孔非陶瓷基底最靠近出口的外表面保持疏水的(例如,小于72达因/厘米)。

可在不损坏基底的任何可用的温度下,将保形涂层施加到本发明的制品上。在一些实施例中,例如在约300℃或更低、约200℃或更低、约70℃或更低、或甚至约60℃或更低的温度下实施所述方法。

在本发明的许多有用的实施例中,多孔非陶瓷基底为多孔聚合物基底。在此类实施例中,通常适宜的是,在低于多孔聚合物基底熔融温度的温度下引入第一和第二反应性气体,以使得不会导致基底或孔发生热变形。例如,本发明的方法可在例如低于300℃的温度(如果该温度对基底的结构完整性是可取的)下进行。

当采用多孔聚合物基底时,可能适宜的是,使用已通过诱导相分离技术(例如热诱导相分离(TIPS)、蒸气诱导相分离(TIPS))或诱导相分离的共浇铸方法(美国专利申请公开No.US 2008/0241503中所讨论)赋予了多孔性的基底。

由聚合物材料形成多孔基底的其他方式对使用本发明的普通技术人员而言将是显而易见的。例如,可以使用针刺非织造布例如缝编或水刺纤网,以及纺粘法非织造布例如熔喷或纺粘纤网。对于其他应用,非聚合物非陶瓷材料例如天然织物、碳纤维、烧结金属或玻璃可能是合适的。

与本发明有关的是,多孔非陶瓷基底的物理形貌并不是关键性的。取决于最终用途,多孔非陶瓷基底可以是平坦的、褶皱的、管状的、薄中空纤维形式的、单纤维的或作为筒式纤维滤芯或任何其他可用的构造。

当在具有入口和出口的反应器中制备根据本发明的制品时,可能的是(有时适宜的是)设置至少第二多孔非陶瓷基底的至少一部分,使得第二多孔非陶瓷基底也将入口和出口分离。已表明,可使用该方法同时地成功处理三个或更多个多孔非陶瓷基底。

多孔非陶瓷基底可在间歇工艺中处理,或者多孔非陶瓷基底可以为无限长度的材料卷形式,而定位装置可为允许实施卷绕法的类型。此卷绕法可以为分步重复类型,或者它也可以是连续运动过程。

该方法的一种适宜的变型形式是在间歇式反应器中执行所述工艺,使得将反应器本身结合到旨在提供给最终消费者的产品中。例如,反应器可以是过滤器主体的形式,而过滤器主体和具有其原位施加的保形涂层的多孔非陶瓷基底均可以是销售给最终使用者的过滤器的一部分。在一些实施例中,可在串联或并联流程中同时处理多个过滤器。

在许多适宜的实施例中,一旦将保形涂层施加到内表面上后多孔非陶瓷基底将适于其最终用途。然而,有时有用的是对保形涂层进行二次操作。这可在反应器中完成或在另一适宜的设备中完成。例如,即使在多孔非陶瓷基底的内表面已被赋予亲水性的情况下,多孔非陶瓷基底的外表面的一个或两个也可用最终复胶涂层处理以赋予疏水性。这一技术可用来制备(例如)只应通过气体和水蒸气而不通过液态水的气管内导管的通气过滤器。

可执行的另一种二次操作是将化学部分接枝到保形涂层上。例如,对据推测可提供具有其根据本发明的保形涂层(其又具有例如选自聚乙烯亚胺配体基团和双胍配体基团的接枝配体基团)的多孔非陶瓷基底的技术的论述可见于美国专利申请公开No.US 2010/0075131和US2010/0075560。通过辐射能或粒子能进行接枝也可用于连接其他有用的配体,例如硅烷、生物活性部分例如抗体、螯合剂和催化涂层。

具有根据本发明方法的保形涂层的多孔非陶瓷基底适合于多种用途。例如,液体和气体的过滤都可通过使用处理过的基底而增强。至于(例如)水过滤,为多孔过滤元件提供亲水性的保形涂层可用于减小阻力并增强通过过滤器的流动。当将过滤器在重力流条件下和低压应用中使用时,这是尤其有用的。可选择孔的物理尺寸和间距以及保形涂层,以实现特定的效应。例如,多孔非陶瓷基底可以是细纤维熔喷纤网或纳米纤网,其纤维与纤维之间的间距可防止液体在低于某一压力时通过开口,即“液体保留”。

如上所述的某些保形涂层可用于减少在根据本发明制备的过滤元件中形成积垢。这可通过在二次操作中施加设计为减小与积垢物质相容性的涂层而实现。银或其他抗微生物物质也可结合到所述涂层的一些中,以有助于避免在多孔非陶瓷基底的表面上形成和生长生物膜或用于处理正在过滤的液体。此外,据信,例如未经二次处理的金属氧化物涂层本身可允许此类过滤器在较高的工作温度下运行,从而可能实现涉及热水或水/蒸气的应用。

除水及其溶液之外的其他液体的过滤也可得益于根据本发明的处理过的基底。例如,可实现较高工作温度的保形涂层可允许热油的过滤。一些保形涂层可在酸或高pH环境中提供耐化学性。可提供具有多个过滤元件的过滤器,而每个元件则具有本发明的各种变型形式,这些变型形式使其适于限制或吸附不同的化学污染物,从而提供“深层过滤”。

上述处理还使其适用于空气过滤应用。如上所述,保形涂层也可在空气过滤应用中实现较高的工作温度。预计,通过足够的重复次数,可根据本发明提供具有足够耐热性(用于例如柴油废气过滤)的空气过滤器。第二抗微生物、吸附性或催化涂层可使例如熔喷基底适于用作生物医学用面罩或用作个人防护装备。例如,可将纳米金催化剂结合到保形涂层上,以允许其作为防护面具中的一氧化碳清除剂。

除过滤之外,本发明的方法还适用于多孔绝热处理。在二次操作中施加的抗微生物物质可减小在例如潮湿环境中的生物污染的可能性。预计,通过充分的重复,可提供具有阻燃性的绝热材料。

此外,预计根据本发明的多孔非陶瓷基底(尤其是具有在二次操作中添加的生物相容层)可用作组织支架以用于各种各样的医学应用。

根据本发明的某些多孔非陶瓷基底可尤其适用于某些应用。例如,亲水性聚偏二氟乙烯(PVDF)可尤其适合应用于过滤、阴离子交换膜的基底、气管内导管的通气过滤器以及食品安全领域的样品制备装置;亲水性尼龙可尤其适合应用于蛋白纯化和水纯化(例如,通过连接四硅烷);以及亲水性非织造织物可尤其适合应用于例如预防感染的清洁擦拭物、深层过滤和食品安全领域的样品制备装置。

参见图1,图中示出了通过本发明的制品20观察到的横截面视图。示出的制品20适于与本发明有关的间歇工艺,其具有包括入口24和出口26的主体22。入口24和出口26位于三个单独的多孔非陶瓷基底部分30a、30b和30c的相对侧上,使得以方向D1在入口24引入的反应性气体必须通过所有多孔非陶瓷基底部分30a、30b和30c,以按方向D2通向出口26。在所示的实施例中,基底部分30a、30b和30c可在其边缘处通过双面法兰32a、32b、32c和32d方便地夹紧,然而技术人员将认识到其他手段也可用于实现此目的。

实例

下面的实例进一步说明本发明的目的和优点,但这些实例中列举的具体材料及其量以及其他条件和细节不应被解释为是对本发明的不当限制。

测试样品表面能的方法

下文结合实例描述若干在其上具有保形层或涂层的多孔基底样品。当讨论样品的表面能时,相应的读数按以下方式获得:获得多种水平的达因测试溶液。根据ASTM标准D-2578水平范围在30至70达因/厘米的溶液购自Jemmco,LLC(Mequon,WI)。水平范围在72至86达因/厘米的溶液通过将表1中所示量的MgCl2·6H2O与足够的去离子水混合总共得到25g溶液而制备。

使用这些达因测试溶液,让如下所述需要进行测试的基底接受ASTM标准ASTM D7541-09第12节中所述的液滴测试(Drop Test)。

基底A的制备

使用大致如美国专利No.5,120,594(Mrozinski)和4,726,989(Mrozinski)中所述的热诱导相分离(TIPS)工艺制备微孔聚丙烯基底。更具体地讲,制备成核聚丙烯/矿物油共混物,然后挤入到平滑的冷铸轮中,材料在其中发生固液相分离。收集此材料的连续基底,让其通过1,1,1-三氯乙烷浴,以除去矿物油。由此形成的微孔聚丙烯基底的厚度为244μm(9.6密耳)。然后根据ASTM标准F316-03测试微孔聚丙烯基底,发现其具有69.7kPa(10.11psi)的异丙醇泡点压力,对应于0.90μm的泡点孔径。此外,其孔隙度为83.3%,纯水渗透性为477L/(m2-h-kPa)。基底为强疏水性的,表面能为29达因/厘米。

基底B的制备

由可按商品名和等级命名HALAR 902从Solvay AdvancedPolymers,L.L.C.(Alpharetta,GA)商购获得的乙烯-三氟氯乙烯共聚物(ECTFE)制备另一微孔基底。这通过大致如美国专利申请公开No.US2009/0067807中所述的TIPS工艺完成。更具体讲,使用配备熔体泵、颈管和设置在图案化浇铸轮(其又设置在充水淬火浴之上)之上的薄片模具的双螺杆挤出机制备微孔ECTFE基底。使用此装置,通过以下方式制备微孔ECTFE基底:熔融挤出包含ECTFE、稀释剂和溶剂的浇铸料;浇铸然后淬火浇铸料;溶剂清洗以除去稀释剂;干燥以除去溶剂;以及拉伸所得的基底,得到48μm(1.9密耳)的最终厚度。然后根据ASTM标准F316-03测试微孔ECTFE基底。据发现,其具有186.1kPa(26.99psi)的异丙醇泡点压力(对应于0.34μm的泡点孔径)、65.3%的孔隙度以及48L/(m2-h-kPa)的纯水渗透性。膜为疏水的,表面能为37达因/厘米。

基底C的制备

如下制备另一微孔基底,即非织造(熔喷)聚丙烯纤网。通过常规技术使用以Total 3960从Total Petrochemical(Houston,TX)商购获得的聚丙烯粒料形成熔喷纤网,具体地讲,以7.6磅/小时的速率和285℃(标称)的熔体温度通过10英寸宽的Naval Research Lab(NRL)型熔喷模具朝向与模具的距离设为12英寸(30.5cm)的收集滚筒挤出熔融的聚丙烯。以10英尺/分钟(305cm/min)的速率收集所得的纤网。测得的基重为67g/m2。调节空气温度和速度以达到7.9微米的有效纤维直径(EFD)。根据Davies,C.N.,“The Separation of Airborne Dust andParticles,”Institution of Mechanical Engineers,London Proceedings 1B,1952(Davies,C.N.,“空气携带的灰尘和颗粒的分离”,Institution ofMechanical Engineers,London,论文集1B,1952年)中所述的方法计算该EFD。

基底D的制备

以“GRADE GH”从Fiber Materials,Inc.(Biddeford,ME)购得石墨毡形式的另一微孔基底,其标称厚度为0.25英寸(6.35mm)。

基底E的制备

以“1210NC”从3M公司(St.Paul,MN)购得玻璃纤维垫形式的另一微孔基底。

反应器

使用三个6英寸(15.24cm)直径的双面法兰(以ConFlat双面法兰(ConFlat Double Side Flange)(600-400-D CF)从Kimball Physics Inc.(Wilton,NH)商购获得)构造大致如图1所示的反应器。在此法兰层叠件要作为上游侧的一面连接一个6英寸(15.24cm)直径的ConFlat双面法兰(600DXSP12)(得自Kimball Physics Inc.,其具有一个1/8英寸(0.32cm)的NPT侧孔)。将该侧孔用于连接Baratron(10托)压力计(从MKSInstruments(Andover,MA)商购获得),使得可以监控工艺过程中的压力。在此元件层叠件的每一端用6英寸(15.24cm)直径的从KimballPhysics Inc.商购获得的ConFlat零长度异径法兰(ConFlat Zero-LengthReducer Flange)(600×275-150-0-T1)封上。在此层叠件的每个接合处,使用合适大小的铜垫圈以实现良好的真空密封。

向此元件层叠件的入口侧连接第一个2.75英寸(7cm)直径的ConFlat双面法兰(275-150-D CF),然后连接具有2个1/8英寸(0.32cm)NPT侧孔的2.75英寸(7cm)直径的ConFlat双面法兰(275DXSP12改进型,其具有2个侧孔,而标准形式为1个侧孔),再连接2.75英寸(7cm)直径的ConFlat实心/盲法兰。使用这两个侧孔引入将如下文所述的反应性气体。

向此元件层叠件的出口侧连接25ISO至275CF异径管(QF25X275)。将该元件连到275ConFlat四通(ConFlat 4wayCross)(275-150-X)的底部,而该四通本身也配有25ISO至275CF异径管。此办法建立起更简易的装置,能更快地从支撑系统上拆下反应器主体,以进行样品装卸。然后将275ConFlat四通通过不锈钢真空软管(配有用于真空源和真空控制的闸门阀)连到XDS-5涡旋泵(配有吹扫功能)、具有旁路采样的SRS PPR300残留气体分析仪(SRS PPR300Residual Gas Analyzer)以及用于膜后压力读数的MKS Baratron(10托)计。将具有1/16英寸(0.16cm)钻孔的装有阀门的粗抽/旁通管路安装在闸门阀周围,以允许减小泵送量,但也发现其可用作二次泵送管,以在表面处理中实现更大的反应器压力。

用如上所述的2.75英寸(7cm)直径ConFlat双面法兰中的1/8英寸NPT侧孔设置第一和第二反应性气体的入口。通过让第一和第二反应性气体的每一者在其自身的端口处进入,使在入口管中发生反应的任何可能性降至最低。此外,将第一反应性气体的入口管配上“T”形接头,其允许将工艺氮气(N2)加入管线中以维持离开端口的气体的连续正流,从而确保不存在任何第二反应性气体回流进第一反应性气体的供应管。

为进一步避免第一和第二反应性气体入口管的不慎交叉污染,将第一反应性气体的管线引导经过常闭阀,而将第二反应性气体的管线引导经过常开阀。将这些控制端口的两个阀门设置为由同一开关一前一后地激活,以确保两条管不会同时向反应器添加前驱体气体。

通过配有SS计量波纹管式密封阀(SS Metering Bellows-SealedValve)类型的管道针状阀的单独阀门系统对每条管的开与关进行二次控制,以精确地控制每种前驱体气体的流速。在这些计量阀每一个的上游为流量控制阀,其以316L VIM/VAR UHP隔膜密封阀(316LVIM/VAR UHP Diaphragm-S ealed Valve)从Swagelok公司(Solon,OH)商购获得。在这些流量控制阀每一个的上游则为300mL容量的不锈钢鼓泡器(以目录号Z527068从Sigma-Aldrich(St.Louis,MO)商购获得)形式的反应性气体供应罐。将该如上所述的反应器/设备配上不同的带式加热器、加热带和常规类型的筒式加热器,以控制反应器及其气体供应的温度。

实例1

将反应器的双面法兰的每一个用于支撑从上文以基底A讨论的多孔聚丙烯膜切割而来的圆盘。将三个圆盘样品的每一个按以下方式放入反应器内:用双面胶带将圆盘连到铜垫圈上,然后将铜垫圈放入6英寸(15.24cm)直径ConFlat双面法兰之间的正常密封位。随着将反应器密封在一起并紧固以形成反应器主体,ConFlat双面法兰密封件刺入膜,并通过常规铜垫圈密封机构形成气密封。此密封的反应器壁还有助于将膜固定到位,并密封膜的边缘以防止任何反应性气体绕过膜。

然后将膜已就位的反应器连到如前文所述的真空和气体处理系统。将第一反应性气体供应罐装上三甲基铝(TMA)97%(以目录号257222从Sigma-Aldrich(St.Louis,MO)商购获得)。将第二反应性气体供应罐装上ACS试剂水(以目录号320072从Sigma-Aldrich商购获得)。将系统通过真空旁通阀缓慢置于真空下,达到1至10托的压力。一旦完全抽取真空后,在真空系统仍在运行下,用N2以10至25sccm的流速净化吹扫反应器,以除去残余的过量水和大气气体和/或污染物。在此过程中,将反应器、第一和第二入口管以及净化气体管用加热器加热到50℃。类似地将第一气体供应罐加热到30℃。

当系统完成净化以及各加热器在其各自的设定点稳定后,将第一反应性气体从第一反应性气体供应罐中释放出来。调节第一反应性气体管上的针阀,使得对真空系统产生影响的气流对应于从圆盘流向出口的1至25sccm的N2当量流速。当第一反应性气体完全饱和三个圆盘的表面后(采用RGA根据前驱体的存在量以及离开最终膜的副产物气体的减少量进行检测),终止第一反应性气体的流动,再次用N2以10至25sccm的流速净化吹扫系统。完成净化后,将第二反应性气体以相似的方式(虽然是不同的端口)从第二供应罐中释放出来,直到三个圆盘再次完全饱和。以10至25sccm的流速进行另一次N2净化吹扫。继续此添加循环(即第一反应性气体-净化-第二反应性气体-净化),直到圆盘经历35次重复。

在每次重复完成,用干燥氮气进行最终净化结束时,观测反应器中圆盘入口和出口侧之间的压差。记录此数据,以确定在一致的气体流速下通过在整个膜中添加氧化铝而导致的压差。据发现,当进行到一半的循环次数时,对于工艺气体,出现了可检测的膜两侧的压力升高。此升高(以压差表示)通过图2中所示的曲线图展示。

执行完35次重复后,打开反应器,评估样品A三个圆盘每一个的表面能。发现每个圆盘都具有超过86达因/厘米的表面能,表明具有高度的亲水性。

实例2

大致根据实例1的程序开展实验,不同的是使用的基底为基底B而不是基底A;用加热器将反应器、第一和第二入口管以及净化气体管加热到60℃;以及重复次数为20次而不是35次。执行完20次重复后,打开反应器,评估样品B三个圆盘每一个的表面能。发现每个圆盘都具有超过86达因/厘米的表面能,表明具有高度的亲水性。

实例3

大致根据实例1的程序开展实验,不同的是使用的基底为基底C而不是基底A;用加热器将反应器、第一和第二入口管以及净化气体管加热到60℃;以及重复次数为17次而不是35次。执行完17次重复后,打开反应器,评估样品C三个圆盘每一个的表面能。发现每个圆盘都具有超过86达因/厘米的表面能,表明具有高度的亲水性。

实例4

大致根据实例1的程序开展实验,不同的是使用的基底为基底D而不是样品A;用加热器将反应器加热到60℃;用加热器将第一和第二入口管以及净化气体管加热到70℃;以及重复次数为20次而不是35次。执行完20次重复后,打开反应器。进行X射线分析,以证实基底已被涂覆。

实例5

大致根据实例1的程序开展实验,不同的是使用的基底为基底E而不是样品A;用加热器将反应器加热到60℃;用加热器将第一和第二入口管以及净化气体管加热到70℃;以及重复次数为20次而不是35次。执行完20次重复后,打开反应器。进行X射线分析,以证实基底已被涂覆。

本文所引述的出版物的全部公开内容以引用方式全文并入本文,如同每种出版物单独并入本文。在不脱离本发明的范围和精神的前提下,本发明的各种修改和更改对本领域的技术人员而言将是显而易见的。应当理解,本发明并非意图受本文提出的示例性实施例和实例的不当限制,并且此类实例和实施例仅以举例的方式提出,本发明的范围旨在仅受下文提出的权利要求书的限制。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号