首页> 中国专利> 一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统及其使用方法

一种用于多种高纯度含氟电子气体分析的气相色谱阀路系统及其使用方法

摘要

本发明公开了一种用于多种高纯度含氟电子特气分析的气相色谱阀路系统及其使用方法。具体包括2个四通阀、2个十通阀、1个八通阀、1个定量环、4根色谱柱、14个压力平衡调节阀和1个放电离子化检测器,系统载气为高纯氦气。本发明采用五阀四柱的阀路系统,一次进样可完成多种气相杂质的测定。该阀路系统操作方便,适用于高纯度含氟电子气体领域工业化生产中使用。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-08-11

    专利权的转移 IPC(主分类):G01N30/20 专利号:ZL2012101121108 登记生效日:20230728 变更事项:专利权人 变更前权利人:洛阳昊华气体科技有限公司 变更后权利人:昊华气体有限公司 变更事项:地址 变更前权利人:471012 河南省洛阳市吉利区吉利科技园道南路黎明化工研究设计院吉利产业园办公楼103室 变更后权利人:471000 河南省洛阳市孟津区吉利科技园道南路12号

    专利申请权、专利权的转移

  • 2022-01-21

    专利权人的姓名或者名称、地址的变更 IPC(主分类):G01N30/20 专利号:ZL2012101121108 变更事项:专利权人 变更前:洛阳黎明大成氟化工有限公司 变更后:洛阳昊华气体科技有限公司 变更事项:地址 变更前:471012 河南省洛阳市吉利区吉利科技园道南路黎明化工研究设计院吉利产业园办公楼103室 变更后:471012 河南省洛阳市吉利区吉利科技园道南路黎明化工研究设计院吉利产业园办公楼103室

    专利权人的姓名或者名称、地址的变更

  • 2017-09-05

    专利权的转移 IPC(主分类):G01N30/20 登记生效日:20170816 变更前: 变更后: 申请日:20120410

    专利申请权、专利权的转移

  • 2015-10-14

    专利权人的姓名或者名称、地址的变更 IPC(主分类):G01N30/20 变更前: 变更后: 申请日:20120410

    专利权人的姓名或者名称、地址的变更

  • 2014-03-05

    授权

    授权

  • 2012-10-03

    实质审查的生效 IPC(主分类):G01N30/20 申请日:20120410

    实质审查的生效

  • 2012-08-15

    公开

    公开

查看全部

说明书

技术领域

本发明涉及多维气相色谱阀路系统,特别涉及用于多种高纯度含氟电子气 体分析用气相色谱阀路系统。

背景技术

含氟电子气体主要用途是在电子、半导体工业和光伏产业中化学气相沉积 的清洗剂和等离子蚀刻剂。随着近几年TFT-LCD面板业、半导体业和太阳能面 板业等相关领域的迅猛发展,含氟电子气体的用量也在不断增加。

若高纯度含氟电子气体中杂质如H2、O2、N2、CH4、CO、CO2、N2O等含 量过高,将严重影响其在清洗蚀刻方面的使用性能,因此在分析检测方面要求 较高。目前,涉及以上高纯度含氟电子气体检测的国家标准和国外标准(如IEC、 SEMI、ASTM等)中,对其中气体杂质的分析方法做了相应规定,有些明确的 给出了阀路系统,例如《工业六氟化硫》(GB/T 12022-2006)、《电子工业用气体 六氟化硫》(GB/T 18867-2002)、ASTM D2472-00(SF6)、SEMI C3.24-0301(SF6)、 IEC 60376-2005(SF6)、《电子工业用气体三氟化氮》(GB/T 21287-2007)、SEMI C3.39-0999(NF3)、SEMI C3.40-1000(CF4)、SEMI C3.21-90(CF4)、SEMI C3.37-0701(C2F6)、SEMI C3.52-0200(WF6)、SEMI C3.58-0303(C4F8)等, 但这些标准所列分析方法中气路相对单一,要完成一种气体杂质的分析需要多 台仪器或多次进样,分析效率低,操作繁琐,分析成本高,不适合工业化生产 中的分析检测。

US 20100154511A1中介绍了一种多维气相色谱法的装置和方法,采用单阀 三柱两检测器的阀路系统,重点介绍了其不同类型切换阀的工作原理,若主组 分中杂质种类较多时,无法满足分析需要;CN102053129A中介绍了一种采用两 阀两柱分析电子级四氟化碳的色谱流程,从阀路配置和实施例中说明其无法满 足电子级四氟化碳中N2、O2和CO的分离和分析;CN201780285U和 CN101915811A中介绍了一种分析检测高纯度非腐蚀性气体中杂质的装置和方 法,采用四阀五柱两种进样方式来分析高纯氧和其它非腐蚀性气体,介绍了其 工作原理,通过阀路切换分析主组分中大分子量和小分子量杂质组分,只能实 现组分的粗略分离。

发明内容

本发明要解决的第一个技术问题是提供一种用于多种高纯度含氟电子气体 分析的气相色谱阀路系统。

本发明要解决的第二个技术问题是提供一种该系统的使用方法。

为解决上述第一个问题,本发明采用五阀四柱的阀路系统,一次进样可完 成多种气相杂质的测定。该阀路系统操作方便,适用于高纯度含氟电子气体领 域工业化生产中使用。具体包括2个四通阀、2个十通阀、1个八通阀、1个定 量环、4根色谱柱、14个压力平衡调节阀和1个放电离子化检测器,系统载气 为高纯氦气,其中四通阀1的接口①、②分别连接样品出口、样品进口,④连 接第一路载气,③通过管路与第一十通阀2的接口①连接;

第一十通阀2的接口②连接气体出口,③和⑩之间连接定量环24,④连接 第三路载气,⑤和⑨之间连接预分离色谱柱6,⑥通过管路与八通阀3的接口① 连接,⑦连接第二路载气,⑧连接压力平衡调节阀21后接气体出口;

八通阀3的接口②通过管路与第二十通阀4的接口①连接,③连接第五路 载气,④连接压力平衡调节阀19后接气体出口,⑤通过管路与第二四通阀5的 接口①连接,⑥连接压力平衡调节阀20后接气体出口,⑦连接第四路载气,⑧ 连接第一分析色谱柱7;

第二十通阀4的接口②和⑤之间连接管路和压力平衡调节阀17,③和⑧之 间连接管路,④连接压力平衡调节阀18后接气体出口,⑥连接第三分析色谱柱 9,⑦和⑩之间连接第二分析色谱柱8,⑨连接第六路载气;

第二四通阀5的接口②连接第三分析色谱柱9,③连接压力平衡调节阀22 后接放电离子化检测器25,④连接第一分析色谱柱7。

预分离色谱柱6可采用Hayesep Q色谱柱、硅胶色谱柱或氟油色谱柱等中 的一种,其中氟油柱可作为具有腐蚀性或分解后产生腐蚀性物质的预分离柱, 如主组分为六氟化钨的预分离。

第一分析色谱柱7优选5A分子筛色谱柱。

第二分析色谱柱8优选Hayesep Q色谱柱。

第三分析色谱柱9优选Hayesep Q色谱柱。

本发明阀路系统可分为三部分:载气平衡调节系统、组分分离气路系统和 检测器。

1、载气平衡调节系统包括压力平衡调节阀10~23及其载气连接管路,通过 压力平衡调节阀10将高纯度氦气引入阀路系统,确保各路载气使用同一稳定气 源,通过压力平衡调节阀11~16将氦气引入第一至六路载气系统,通过压力平 衡调节阀23将氦气引入放电离子化检测器。

2、组分分离系统包括第一至六路载气系统、第一四通阀1、第一十通阀2、 八通阀3、第二十通阀4、第二四通阀5、预分离色谱柱6、3个分析色谱柱。

3、检测器为放电离子化检测器25。

本发明装置具有以下特点:

1、第一四通阀1可以进行样品和吹扫气体的切换,既可实现对进样之前管 路中杂质的吹扫,降低管路中杂质对样品的污染,又可实现对有腐蚀性气体分 析结束后,对阀路系统中样品管线的吹扫,降低腐蚀气体在管线中的残留时间, 减少对管线的腐蚀和影响。

2、第一十通阀2和定量环24可以完成样品的采集,预分离色谱柱6可实 现对被测组分的预分离,若被测样品是非腐蚀性气体,预分离色谱柱6可采用 Hayesep Q色谱柱或硅胶色谱柱,若被测样品具腐蚀性或性质不稳定,则该柱采 用氟油色谱柱。

3、八通阀3、第二十通阀4、第二四通阀5、分析色谱柱7、8、9可以实现 对被测样品中主组分和杂质的切割分离,其中第一分析色谱柱7可采用5A分子 筛色谱柱,第二分析色谱柱8和第三分析色谱柱9均可采用Hayesep Q色谱柱。

4、放电离子化检测器(DID)25可以实现对微量杂质的检测。

5、压力平衡调节阀10~23可以实现阀路系统中各通道流量和压力平衡控制, 确保阀路内气体流速和压力稳定,其中压力平衡调节阀23用来控制放电离子化 检测器的放电气。

6、载气通过压力平衡调节阀10进入阀路系统。

7、八通阀3、第二十通阀4和第二四通阀5三个阀不同组合的切换,可以 完成对被测组分的切割、分离,实现对被测组分的分析检测。

8、通过第二四通阀5的开与关,可以确保从第一分析色谱柱7和第三分析 色谱柱9分离出的组分依次进入检测器25中,实现被测组分的全分析。

如图1所示的状态,本发明装置的使用过程是:

1、使用初始状态各阀均处于“关”状态,一次阀动后处于“开”状态,再次阀 动后处于“关”状态;

2、通过压力平衡调节阀11将载气引入第一四通阀1,通过接口④、③进入 第一十通阀2的接口①→⑩→定量环24→③→②,放空,对定量环进行充分吹 扫和置换;

3、样品进口与第一四通阀1的接口②连接,通过接口①进行放空或收集处 理,开通第一四通阀1,样品经接口②→③→第一十通阀2的接口①进入到定量 环24中,实现被测样品的采集;

4、开通第一十通阀2,压力平衡调节阀13出口载气通过接口④→③→定量 环24→⑩→⑨,将采集的样品吹入预分离色谱柱6;

5、经预分离色谱柱6预分离后,如果主组分出峰顺序夹在杂质组分之间, 则全部组分经过第一十通阀2的接口⑤→⑥→八通阀3的接口①;如果主组分 出峰顺序在所有杂质组分之后,则杂质组分经过第一十通阀2的接口⑤→⑥→ 八通阀3的接口①,然后关闭第一十通阀2,主组分经过第一十通阀2的接口 ⑨→⑧后被反吹放空;

6、开通八通阀3,预分离杂质组分中H2、O2、N2、CH4、CO经八通阀3 的接口⑧进入第一分析色谱柱7,实现该几种杂质的分离;关闭八通阀3,其余 组分经过八通阀3的接口②和第二十通阀4的接口①进入第二十通阀4;

7、经第一分析色谱柱7分离的H2、O2、N2、CH4、CO组分,经过第二四 通阀5的接口④→③→压力平衡调节阀22进入检测器25,实现被测组分的检测;

8、进入第二十通阀4的组分走向为以下方式之一或其组合:

(1)、关闭第二十通阀4,组分经过第二十通阀4的接口②→压力平衡调节 阀17→接口⑤→⑥进入第三分析色谱柱9;

(2)、开通第二十通阀4,组分经接口⑩→第二分析色谱柱8→接口⑦→⑥→ 第三分析色谱柱9;

(3)、开通第二十通阀4,组分经接口⑩→第二分析色谱柱8,关闭第二十 通阀4,第二分析色谱柱8中分离的主组分经第二十通阀4的接口 ⑦→⑧→③→④→压力平衡调节阀18后放空,再次开通第二十通阀4,第二分 析色谱柱8中分离的杂质组分经第二十通阀4的接口⑦→⑥→第三分析色谱柱 9;

9、根据第三分析色谱柱9分离的组分,按以下步骤(1)或(2)操作:

(1)分离出的若是主组分,则组分经过第二四通阀5的接口②→①→八通 阀3的接口⑤→④或⑥实现放空;

(2)分离出的若是杂质组分,则开通第二四通阀5,组分经过接口②→③→ 压力平衡调节阀22→放电离子化检测器25,实现组分的检测。

本发明装置与现有技术相比具有如下优点:

1、只需一次进样便可完成一种气体中多种气体杂质的全分析。

2.一台装置可以完成对多种高纯度含氟电子特气的分析,如六氟化硫、三氟 化氮、四氟化碳、六氟化钨、六氟乙烷、八氟丙烷、四氟化硅、八氟环丁烷等。

3、通过预分离色谱柱和阀路开关,可以将主组分切割去除,降低了主组分 对微量杂质的分析影响,又可避免了主组分对检测器的污染和损害。

4、被测样品中各组分分离度和重复性好,降低了系统误差。

附图说明

图1是本发明阀路系统示意图。

具体实施方式

下面结合实施例对本发明作进一步说明。载气为99.9999%以上高纯氦气。

实施例1:高纯六氟化硫中气相杂质的分离检测

99.999%以上纯度的六氟化硫中气相杂质主要包括:氮(N2)、氧(O2)、一 氧化碳(CO)、二氧化碳(CO2)、甲烷(CH4)、四氟化碳(CF4)。

预分离色谱柱6选用长2米的硅胶色谱柱。

第一分析色谱柱7选用长2米的5A分子筛色谱柱。

第二分析色谱柱8选用长3米的Hayesep Q色谱柱。

第三分析色谱柱9选用长6米的Hayesep Q色谱柱。

1、在附图1状态下,用载气吹扫定量环24,六氟化硫样品经第一四通阀1 后放空或收集处理。

2、开通第一四通阀1,样品被引入定量环24中。

3、开通第一十通阀2,通过压力平衡调节阀13的载气经第一十通阀2的 ④→③→定量环24→⑩→⑨→预分离色谱柱6→⑤→⑥,将样品引入到预分离 色谱柱6中,实现杂质组分N2、O2、CH4、CO、CF4、CO2和主组分SF6的预分 离。

4、开通八通阀3,经预分离分离色谱柱6预分离出的杂质组分N2、O2、CH4、 CO经八通阀3的①→⑧→第一分析色谱柱7,实现四种组分的分离,再经第二 四通阀5的④→③→压力平衡调节阀22→放电离子化检测器25,实现四种组分 的检测,出峰顺序依次为O2、N2、CH4、CO。

5、关闭八通阀3,经预分离色谱柱6预分离出的杂质组分CF4、CO2经八 通阀3的①→②进入第二十通阀4,关闭第二十通阀4,两种组分经①→②→压 力平衡调节阀17→⑤→⑥→第三分析色谱柱9,进入第二四通阀5;或开通第二 十通阀4,两种组分经①→⑩→色谱柱8→⑦→⑥→第三分析色谱柱9。

6、开通第二四通阀5,两种组分经②→③→压力平衡调节阀22→放电离子 化检测器25,实现两种组分的检测,出峰顺序依次为CF4、CO2

7、待其它杂质组分从预分离色谱柱6分离出,关闭第一十通阀2,主组分 SF6被反吹放空,关闭第一四通阀1,用载气吹扫定量环24。

一次进样后六氟化硫中最终杂质出峰顺序为:O2、N2、CH4、CO、CF4、CO2, 出峰时间分别为1.66min、2.07min、2.90min、3.89min、6.14min、9.62min。

实施例2:高纯三氟化氮中气相杂质的分离检测

99.99%以上纯度的三氟化氮中气相杂质主要包括:氮(N2)、氧(O2)、一 氧化碳(CO)、二氧化碳(CO2)、四氟化碳(CF4)、氧化亚氮(N2O)、六氟化 硫(SF6)。

预分离色谱柱6选用长2米的Hayesep Q色谱柱。

第一分析色谱柱7选用长2米的5A分子筛色谱柱。

第二分析色谱柱8选用长3米的Hayesep Q色谱柱。

第三分析色谱柱9选用长6米的Hayesep Q色谱柱。

1、在附图1状态下,用载气吹扫定量环24,三氟化氮样品经第一四通阀1 后放空或收集处理。

2、开通第一四通阀1,样品被引入定量环24中。

3、开通第一十通阀2,通过压力平衡调节阀13的载气经第一十通阀2的 ④→③→定量环24→⑩→⑨→预分离色谱柱6→⑤→⑥,将样品引入到预分离 色谱柱6中,可实现杂质N2、O2、CO、CF4、CO2、N2O、SF6和主组分NF3的 预分离。

4、开通八通阀3,经预分离色谱柱6预分离出的N2、O2、CO经八通阀3 的①→⑧→第一分析色谱柱7,实现三种组分的分离,再经第二四通阀5的 ④→③→压力平衡调节阀22→检测器25,实现三种组分的检测,出峰顺序依次 为O2、N2、CO。

5、关闭八通阀3,经预分离色谱柱6预分离出的CF4、CO2、N2O、SF6和 主组分NF3,经八通阀3的①→②进入第二十通阀4,开通第二十通阀4,CF4、 主组分NF3经①→⑩→第二分析色谱柱8,从第二分析离色谱柱8分离出的CF4和少量NF3经⑦→⑥→第三分析色谱柱9,关闭第二十通阀4,大量的NF3经 ⑦→⑧→③→④→压力平衡调节阀18后放空,CO2、N2O、SF6经①→②→压力 平衡调节阀17→⑤→⑥→第三分析色谱柱9。

6、经过第三分析色谱柱9分离后的组分出峰顺序依次为CF4、少量NF3、 CO2、N2O、SF6,通过开、关第二四通阀5,CF4、CO2、N2O、SF6,经②→③→ 压力平衡调节阀22→放电离子化检测器25,实现四种组分的检测,而少量NF3经第二四通阀5的②→①进入八通阀3,再经八通阀3的⑤→⑥放空。

7、样品中所有组分经预分离色谱柱6预分离出后,关闭第一四通阀1和第 一十通阀2,用载气吹扫定量环24。

一次进样后三氟化氮中最终杂质出峰顺序为:O2、N2、CF4、CO、CO2、 N2O、SF6,出峰时间分别为2.91min、4.03min、5.92min、10.15min、12.65min、 16.11min、22.18min。

实施例3:高纯六氟化钨中气相杂质的分离检测

99.999%以上纯度的六氟化钨中气相杂质主要包括:氮(N2)、氧(O2)、一 氧化碳(CO)、二氧化碳(CO2)、四氟化碳(CF4)、六氟化硫(SF6)。

预分离色谱柱6选用长4米的氟油色谱柱。

第一分析色谱柱7选用长2米的5A分子筛色谱柱。

第二分析色谱柱8选用长3米的Hayesep Q色谱柱。

第三分析色谱柱9选用长6米的Hayesep Q色谱柱。

1、在附图1状态下,用载气吹扫定量环24,六氟化钨样品经第一四通阀1 后收集处理。

2、开通第一四通阀1,样品被引入定量环24中。

3、开通第一十通阀2,通过压力平衡调节阀13的载气经第一十通阀2的接 口④→③→定量环24→⑩→⑨→预分离色谱柱6→⑤→⑥,将样品引入到预分 离色谱柱6中,可实现杂质组分N2、O2、CO、CF4、CO2、SF6和主组分WF6的预分离。

4、开通八通阀3,经预分离色谱柱6预分离出的组分N2、O2、CO经八通 阀3的接口①→⑧→第一分析色谱柱7,实现三种组分的分离,再经第二四通阀 5的④→③→压力平衡调节阀22→放电离子化检测器25,实现三种组分的检测, 出峰顺序依次为O2、N2、CO。

5、关闭八通阀3,经预分离色谱柱6预分离出的组分CF4、CO2、SF6经八 通阀3的接口①→②进入第二十通阀4。关闭第二十通阀4,三种组分经①→②→ 压力平衡调节阀17→⑤→⑥→第三分析色谱柱9,进入第二四通阀5;或开通第 二十通阀4,三种组分经接口①→⑩→第二分析色谱柱8→⑦→⑥→第三分析色 谱柱9。

6、开通第二四通阀5,三种组分经接口②→③→压力平衡调节阀22→放电 离子化检测器25,实现三种组分的检测,出峰顺序依次为CF4、CO2、SF6

7、待其它杂质组分从预分离色谱柱6分离出,立即关闭第一十通阀2,主 组分WF6被反吹放空收集,关闭第一四通阀1,用载气分吹扫定量环24。

一次进样后六氟化钨中最终杂质出峰顺序为:O2、N2、CO、CF4、CO2、SF6, 出峰时间分别为2.77min、3.98min、9.88min、11.63min、13.02min、20.17min。

实施例4:高纯八氟丙烷中气相杂质的分离检测

99.999%以上纯度的八氟丙烷中气相杂质主要包括:氮(N2)、氧(O2)、一 氧化碳(CO)、二氧化碳(CO2)、四氟化碳(CF4)、六氟乙烷(C2F6)。

色谱柱配置为:

其它同实施例1,一次进样后八氟丙烷中最终杂质出峰顺序为:O2、N2、 CO、CF4、CO2、C2F6

实施例5:高纯度四氟化碳中气相杂质的分离检测

99.999%以上纯度的四氟化碳中气相杂质主要包括:氮(N2)、氧(O2)、一 氧化碳(CO)、二氧化碳(CO2)、六氟乙烷(C2F6)、六氟化硫(SF6)、八氟丙 烷(C3F8)。

其它同实施例2,一次进样后四氟化碳中最终杂质出峰顺序为:O2、N2、CO、 CO2、C2F6、SF6、C3F8

实施例6:六氟乙烷中气相杂质的分离检测

六氟乙烷中中气相杂质主要包括:氮(N2)、氧(O2)、一氧化碳(CO)、 二氧化碳(CO2)、四氟化碳(CF4)、八氟丙烷(C3F8)。

其它同实施例2,一次进样后六氟乙烷中最终杂质出峰顺序为:O2、N2、 CO、CO2、CF4、C3F8

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号