首页> 中国专利> 将原子层沉积涂层涂覆到多孔非陶瓷基底上的方法

将原子层沉积涂层涂覆到多孔非陶瓷基底上的方法

摘要

本发明公开了一种将保角涂层沉积在多孔非陶瓷基底上的方法,所述方法需要反应性气体流动经过所述基底从而在其后留下保角涂层。所述方法可用于在所述基底的内孔上留下亲水表面,即使当所述基底是天然疏水性的,例如烯属的材料。所述方法可用于卷对卷法方法中,或用于批量方法中。在后一种情况的一些方便的实施例中,批量反应器和适形涂覆的基底或多个基底可一起成为最终产品的组件,所述组件例如分别为过滤器主体和过滤器元件。

著录项

  • 公开/公告号CN102575346A

    专利类型发明专利

  • 公开/公告日2012-07-11

    原文格式PDF

  • 申请/专利权人 3M创新有限公司;

    申请/专利号CN201080042180.X

  • 发明设计人 比尔·H·道奇;

    申请日2010-09-15

  • 分类号C23C16/455(20060101);C23C16/00(20060101);H01L21/205(20060101);C23C16/54(20060101);C23C16/30(20060101);C23C16/06(20060101);

  • 代理机构11219 中原信达知识产权代理有限责任公司;

  • 代理人张爽;樊卫民

  • 地址 美国明尼苏达州

  • 入库时间 2023-12-18 06:00:04

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-01-28

    授权

    授权

  • 2012-09-12

    实质审查的生效 IPC(主分类):C23C16/455 申请日:20100915

    实质审查的生效

  • 2012-07-11

    公开

    公开

说明书

相关专利申请的交叉引用

本申请要求美国临时专利申请No.61/244,713和No.61/244,696(二者均提交于2009年9月22日)的权益,这些临时专利申请的公开内容全部以引用方式并入本文。

技术领域

本发明涉及制备经处理的多孔非陶瓷基底,更具体地说,涉及用于实现此目的的流动穿过原子层沉积方法。

背景技术

原子层沉积(ALD)方法一开始是针对薄膜电致发光(TFEL)平板显示器开发的。对ALD的关注近几年显著增加,集中关注的是硅基微电子(晶圆),这是由于其能够制备非常薄的、适形的薄膜,并且以原子级控制这些薄膜的组成和厚度。ALD(由于其自身限制、顺序表面反应过程)还因为其涂覆高高宽比表面的能力而被熟知。然而,涂覆这些高的高宽比表面的加工能力受到反应性气体扩散到这些区域中并且在加入下一前体之前被完全释放出所需的时间的挑战。这个扩散问题极大防止了该技术延伸到多孔材料中。

发明内容

本发明通过要求所有气体穿过将被涂覆的多孔非陶瓷基底解决了上面提到的扩散问题。这消除了对气体扩散到目标材料的表面内和外的需要,减少了所需时间,并且最小化了在内表面上的不完全涂覆的覆盖百分比的可能性。

在一个方面,本发明提供一种用于在多孔非陶瓷基底上沉积保角涂层的方法,其包括以下步骤:

提供具有入口和出口的反应器;

将至少一个多孔非陶瓷基底的至少一部分定位为使得多孔非陶瓷基底将所述入口与所述出口分离;

执行至少一次如下反复,顺序地将第一和第二反应性气体在所述入口引入使得所述第一和第二反应性气体流动穿过所述多孔非陶瓷基底到达所述出口,从而在所述多孔非陶瓷基底的内表面上执行两个或更多个自限制反应的序列,以在所述内表面的至少一部分上形成所述保角涂层。

定义

结合本发明,词语“多孔的”意味着基底包含充足的开口(即,“孔”)使得至少气体可穿过其。

词语“微孔的”指基底包含这样的孔,所述孔具有不大于1,000微米的中值内横截面尺寸(“中值孔径”,例如,圆柱形孔的情况下的直径),使得气体可在所述孔中穿过所述基底。优选的微孔基底包括这样的孔,所述孔具有从0.01至1,000微米(包含端点)的中值孔径,更优选地,从0.1至100微米(包含端点)的中值孔径,并且甚至更优选地,从0.2至20微米(包含端点)的中值孔径,并且最优选地,从0.3至3微米或甚至1微米(包含端点)的中值孔径。如本说明书中通篇使用的,中值孔径利用在ASTM标准F316-03中描述的泡点压力测量方法确定。

词语“无孔的”意指基底基本没有孔。

参照在沉积保角涂层之前的基底的词语“非陶瓷”意指基底基本不包含无机金属氧化物、金属氮化物、金属碳化物或其它陶瓷材料。优选的“非陶瓷”基底完全没有陶瓷材料,更优选地,基本由纤维有机材料(例如,聚合物纤维、天然纤维、碳纤维等)构成,甚至更优选地,仅由有机材料构成。

词语“保角涂层”意指很好地附着并紧密贴合下层基底形状的相对薄的材料涂层。

附图说明

图1示出了穿过适用于本发明中的方法中的反应器的横截面。

图2示出了在实例1的实验过程中与多个过程反复比较的整个基底上的压降的增加的曲线图。

具体实施方式

本发明的方法在非陶瓷基底的内表面的至少一部分上提供保角涂层。在本发明的许多方便实施例中,所述保角涂层包括金属氧化物、金属氮化物、金属硫化物或它们的组合。这些情况下的金属可为各种类型的,但是认为硅、钛、铝、锌和钇是特别合适的。优选地,所述金属是硅、钛或铝;更优选地,所述金属是铝。在一些优选实施例中,所述保角涂层包括氧化铝。

可通过原子层控制生长技术涂覆的涂层是优选的。容易按这种方式涂覆的涂层有二元材料,即,形式为Qx Ry的材料,其中Q和R表示不同的原子,并且x和y是反映静电中性材料的数字。合适的二元材料有各种无机氧化物(诸如二氧化硅和诸如氧化锆、氧化铝、二氧化硅、氧化硼、氧化钇、氧化锌、氧化镁、TiO2等的金属氧化物),无机氮化物(诸如氮化硅、AIN和BN)、无机硫化物(诸如硫化镓、硫化钨和硫化钼)以及无机磷化物。此外,各种金属涂层都是可用的,包括钴、钯、铂、锌、铼、钼、锑、硒、铊、铬、铂、钌、铱、锗和钨。

对自限制顺序涂层的涂覆的有用讨论可在例如美国专利No.6,713,177、No.6,913,827和No.6,613,383中找到。

对ALD反映领域熟悉的那些人可根据当前方法容易确定第一和第二反映气体中哪一个是自限制反应的合适选择,从而产生上述保角涂层。例如,如果需要含铝化合物,则三甲基铝或三异丁基铝气体可用作所述两种反应性气体之一。当所需的含铝化合物是氧化铝时,所述反复中的另一反应性气体可为水蒸气或臭氧。当所需的含铝化合物是氮化铝时,所述反复中的另一反应性气体可为氨、氮/氢等离子体。当所需的含铝化合物是硫化铝时,所述反复中的另一反应性气体可为硫化氢。

同样地,如果作为铝的化合物的替代,则在保角涂层中,硅的化合物是理想的,两种反应性气体之一可为四甲基硅烷或四氯化硅。根据所需的最终结果,上面包含的参考给出了关于合适反应性气体的进一步指导。

虽然所述方法的单个反复可建造可适于一些目的的分子单层,但是所述方法的许多可用的实施例将重复所述执行步骤至少8、10、20或更多次反复。每次反复增加所述保角涂层的厚度。因此,在一些实施例中,所述反复的次数被选择为在多孔非陶瓷基底中实现预定孔隙率或平均内孔径。在一些实施例中,通过控制执行的反复的次数,所述保角涂层可用于以可控方式减小所述多孔非陶瓷基底的孔隙率(例如,控制所述基底的显孔径(apparent pore size))从而实现期望的孔隙率(例如理想的平均内孔径)。例如,所述保角涂层可将所述多孔非陶瓷基底的孔隙率减小5%或更多,减小25%或更多,或甚至50%或更多。相似地,如果所述基底包括孔,则所述保角涂层可将所述平均内孔径减小5nm或更多。

在一些应用中,应用所述方法的目的是在基底的内表面上实现亲水性。在这些应用中,所述步骤反复执行,直至达到诸如例如72达因/厘米(通常用于限定亲水性质)的目标表面能量。此外,还可能有利的是最靠近出口的多孔非陶瓷基底的外表面具有大于72达因/厘米的表面能量,并且在这些情况下,所述执行步骤应当反复执行直至实现该目标。相反,在一些特别的实施例中,可能有利的是使内表面亲水,但是最靠近所述出口的所述多孔非陶瓷基底的外表面是疏水的(例如,小于72达因/厘米)。

本发明的方法可在不损坏基底的任何可用的温度下执行。在一些实施例中,例如在约300℃或更低、在约200℃或更低、在约70℃或更低或甚至在约60℃或更低的温度下执行所述方法。

在所述方法的许多可用的实施例中,多孔非陶瓷基底是多孔聚合物基底。在这种实施例中,通常方便的是在低于所述多孔聚合物基底的熔融温度的温度下完成将第一和第二反应性气体引入的过程,从而不引起所述基底或孔的热畸变。例如,如果针对基底的结构完整性可能有利,则可例如在低于300℃下操作本发明的所述方法。

当所述方法采用多孔聚合物基底时,可能方便的是使用已经呈现多孔的基底,利用诱导相分离技术,诸如热致相分离(TIPS)、蒸汽诱导相分离(VIPS)或在美国专利申请公开No.US 2008/0241503中讨论的诱导相分离的共铸(co-casting)方法。

本领域普通技术人员将理解用于本发明的由聚合物材料形成多孔基底的其它方法。例如,可使用诸如针脚式接合织物或水刺织物的针织非织物,以及诸如熔喷法非织造织物或纺粘法非织造织物的纺粘非织物。针对其它应用,诸如天然织物、碳纤维、烧结金属或玻璃的非聚合的非陶瓷材料可以是合适的。

虽然本发明需要将至少一种非多孔非陶瓷基底的至少一部分布置为使得所述多孔聚合物基底将所述反应器的入口与出口分离,但是其不限制多孔非陶瓷基底的物理拓扑结构。根据最终用途,所述多孔非陶瓷基底可以是平坦的、褶皱的、管状的、薄中空纤维形式的、单根的或作为灌注纤维料筒,或任何其它可用的构造。

当采用所述方法时,将至少第二多孔非陶瓷基底的至少一部分布置为使得第二多孔非陶瓷基底也将入口与出口分离是可以的并且有时是方便的。已经证明可利用所述方法成功处理三个或更多个多孔非陶瓷基底。

所述多孔非陶瓷基底可按批量方法处理,或者所述多孔非陶瓷基底可采取无限长幅材的形式,并且所述定位装置可为允许卷对卷法的类型。这种卷对卷法可为分步重复类型的,或者其可为连续运动处理。

所述方法的一个方便的变型是在间歇式反应器中执行所述方法,使得反应器本身结合到预期用于终端消费者的产品中。例如,所述反应器可采取过滤器主体的形式,并且所述过滤器主体和具有就地涂覆的保角涂层的所述多孔非陶瓷基底二者可为将要出售给终端用户的所述过滤器的一部分。在一些实施例中,多个过滤器可同时在串行或并行连接的流体通道中处理。

在许多方便的实施例中,一旦保角涂层涂覆到所述内表面上时,所述多孔非陶瓷基底就适合于其终端用户。然而,有时有用的是在保角涂层上执行第二操作。这可在反应器中或在另一方便的设备中实现。例如,即使在多孔非陶瓷基底的内表面已经具有亲水性的情况下,所述多孔非陶瓷基底的外表面的一个或二者可用最终粒度涂层(final sizecoating)进行处理,以赋予它们疏水性。这种技术可用于制备例如用于气管导管的通风过滤器,所述通风过滤器应当仅允许气体和水蒸气通过而不允许液体水通过。

可执行的另一第二操作是针对保角涂层的接枝化学部分。例如,可在美国专利申请公开No.US 2010/0075131和No.US 2010/0075560中找到对这样一种技术的讨论,所述技术可以外推以提供多孔非陶瓷基底,其保角涂层根据本发明具有接枝配体基团,例如,选自聚乙烯亚胺配体基团和双胍配体基团。通过辐射能量或质点能量进行的接枝方法也可用于附连其它可用的配体,诸如硅烷、诸如抗体的生物活性部分、螯合剂和催化剂涂层。

根据本发明的方法设有保角涂层的多孔非陶瓷基底适合于许多用途。例如,液体和气体的过滤可通过使用处理后的基底得到改进。例如参照水过滤,为多孔过滤器元件提供亲水性的保角涂层可用于减小阻力并且提高通过过滤器的流量。当过滤器将在重力流条件和低压力应用下使用时,这是尤其有用的。可根据所述保角涂层妥善地选择所述孔的物理尺寸和间隔,以实现特定效果。例如,多孔非陶瓷基底可为细旦纤维熔融喷丝或纳米纤维网,它们的纤维之间的间隔可防止液体在特定压力下穿过所述开口,即“将液体保持在外”。

上述特定保角涂层可用于减小形成在根据本发明制成的过滤器元件中的积垢。这可通过在第二操作中涂覆被设计为减少与积垢材料的相容性的涂层来实现。也可将银或其它抗微生物物质结合到一些所述涂层上,从而帮助防止在多孔非陶瓷基底的表面上的生物膜的形成和生长,或处理被过滤的液体。此外,据信,例如金属氧化物涂层本身不经第二处理可允许这种过滤器在更高的工作温度下操作,潜在允许包括热水或水/蒸汽的应用。

除水及其溶液之外的其它液体的过滤也可根据本发明从处理后的基底获益。例如,允许更高的工作温度的保角涂层可允许热油的过滤。一些保角涂层可提供在酸性或高pH环境下的化学抵抗力。可提供具有多个过滤器元件的过滤器,每个过滤器元件设有本发明的变型,使得它们适于限制或吸附不同化学污染物,提供“滤床过滤”。

上面讨论的处理也可适于应用到空气过滤中。根据上面的讨论,保角涂层可允许空气过滤应用中的更高的工作温度。可以预期的是,在经过足够多次的反复之后,可根据本发明提供具有足够热抵抗力的空气过滤器,例如,过滤柴油机排出气。第二抗菌、吸收性或催化剂涂层可适于例如熔喷基底,以用作生物医学用途的掩模或用作个人防护装备。例如,纳米金催化剂可绑定到保角涂层上,以允许其用作防护掩模中的一氧化碳去除剂。

在过滤之外,本发明的方法适于处理多孔绝缘材料。应用于第二操作中的抗微生物材料可减小在例如潮湿环境中的生物污染的可能性。可以预期的是,当具有足够多次的反复时,可提供具有阻燃剂性质的绝缘材料。

此外,可以预期的是,根据本发明的多孔非陶瓷基底,尤其是具有在第二操作中添加的生物适应性层的多孔非陶瓷基底,可用作组织支架,以使医疗应用多样化。

根据本发明制备的特定多孔非陶瓷基底可尤其适于一些应用。例如,被制备为亲水的聚偏二氟乙烯(PVDF)可尤其适于应用于过滤、用于阴离子交换膜的基底、用于气管导管的通风过滤器和用于食品安全性的样品制备装置;被制备为亲水的尼龙可尤其适于应用于蛋白质纯化和水纯化(例如,通过附着quat硅烷(quat silane));并且被制备为亲水的非织造织物可尤其适于如下应用,诸如用于防止感染的清洁擦拭物、滤床过滤和用于食品安全性的样品制备装置。

现在参照图1,示出了穿过适用于本发明的反应器20的横截面。图示的反应器20适于结合本发明的批量方法,并且具有反应器主体22,其包括入口24和出口26。入口24和出口26位于多孔非陶瓷基底30a、30b和30c的三个分离部分的相对两侧上,使得沿着方向D1在入口24引入的反应性气体必须穿过多孔非陶瓷基底30a、30b和30c的所有部分,以形成它们沿着方向D2通向出口26的通路。在图示实施例中,基底30a、30b和30c的多个部分的边缘被双面凸缘32a、32b、32c和32d方便地抓握,但是熟练的技工将认识到可使用其它临时措施实现该目的。

实例

下面的实例将进一步说明本发明的目的和优点,但这些实例中列举的具体材料及其量以及其他条件和细节不应被解释为是对本发明的不当限制。

测试样品表面能量的方法

ALD涂覆的多孔非陶瓷基底的多个样品在以下结合实例进行描述。在样品的表面能量被讨论时,其读数以以下方式获得:获得各种水平的达因测试溶液。从Jemmco,LLC(Mequon,WI)购买到在30至70达因/厘米水平范围内的根据ASTM标准D-2578的溶液。通过在表1中显示的MgCl2·6H2O的量与充分的去离子水混合制备72至86达因/厘米水平范围内的溶液,以制备总量为25克的溶液。

利用这些达因测试溶液,下述需要测试的基底受到在ASTM标准ASTM D7541-09的12节中讨论的下落试验。

基底A的制备

利用热致相分离(TIPS)方法制备微孔聚丙烯基底,所述方法总体在美国专利No.5,120,594(Mrozinski)和No.4,726,989(Mrozinski)中描述。更具体地讲,制备微晶聚丙烯/矿物油共混物并将其挤出为平滑、冷硬的浇注轮,其中所述材料经历固相-液相分离。收集该材料的连续基底并使其经过1,1,1-三氯乙烷浴以去除矿物油。微孔聚丙烯基底因此形成为具有244μm的厚度(9.6密耳)。随后根据ASTM标准F316-03测试微孔聚丙烯基底,并且所述基底被发现具有对应于0.90μm的泡点孔径的69.7kPa(10.11psi)的异丙醇泡点压力。此外,其孔隙率为83.3%,纯水渗透性为477L/(m2-h-kPa)。基底为强疏水性的,其具有29达因/厘米的表面能量。

基底B的制备

由乙烯-三氟氯乙烯共聚物(ECTFE)制备另一微孔基底,其以商品名和等级名称HALAR 902商购自Solvay Advanced Polymers,L.L.C.(Alpharetta,GA)。这可通过TIPS方法完成,其总体在美国专利申请公开No.US 2009/0067807中描述。更具体地讲,使用配备有熔体泵、颈管和薄片模具(设置在图案化浇铸轮之上并设置在充水淬火浴之上)的双螺杆挤出机制备微孔ECTFE基底。利用这种装置,通过熔融挤出包括ECTFE、稀释剂和溶液的浇铸涂料制成微孔ECTFE基底;浇铸并随后淬火所述涂料;溶剂洗涤以去除所述稀释剂;干燥以去除所述溶剂;并且伸展所得的基底为48μm(1.9密耳)的成品厚度。随后根据ASTM标准F316-03测试微孔ECTFE基底。据发现,异丙醇泡点压力为186.1kPa(26.99psi),其对应于0.34μm的泡点孔径,65.3%的孔隙率和48L/(m2-h-kPa)的纯水渗透性。所述膜为疏水性的,其具有37达因/厘米的表面能量。

基底C的制备

根据以下制备另一微孔基底、非织造(熔融喷丝)聚丙烯纤维网。以Total 3960从Total Petrochemical(Houston,TX)商购获得的聚丙烯粒料用于利用传统技术形成熔喷纤维网,以7.61b/hr的速率和285℃(标称)的熔融温度通过海军实验室(NRL)类型的10英寸宽的熔喷模具朝设置为与所述模具相距12英寸(30.5cm)距离处的收集鼓具体挤出熔化的聚丙烯。以10ft/min(305cm/min)收集所得纤维网。观察到的基本重量为67g/m2。调节空气温度和速度以达到7.9微米的有效纤维直径(EFD)。根据戴维斯(Davies,C.N.)的“空气携带的灰尘和颗粒的分离”(“The Separation of Airborne Dust and Particles”),伦敦机械工程师学会(Institution of Mechanical Engineers)论文集1B,1952年中所述的方法计算EFD。

基底D的制备

获得具有0.25英寸(6.35mm)的标称厚度的石墨毡形式的另一微孔基底,所述石墨毡以“GRADE GH”从Fiber Materials,Inc.(Biddeford,ME)商购获得。

基底E的制备

获得E玻璃垫形式的另一微孔基底,所述E玻璃垫以“1210NC”从3M公司(St.Paul,MN)商购获得。

反应器

总体如图1所示的反应器利用三个6英寸(15.24cm)直径的双面凸缘构造,所述凸缘以ConFlat Double Side Flanges(600-400-D CF)从Kimball Physics Inc.(Wilton,NH)商购获得。对于这些凸缘的层叠件,其上的上游侧附着有一个6英寸(15.24cm)直径的ConFlat Double SideFlange(600DXSP12)(得自Kimball Physics Inc.)(其具有一个1/8″(0.32cm)NPT侧面孔)。侧面的孔用于附着Baratron(10托)压力计,其从MKS Instruments(Andover,MA)商购获得,从而可监控在所述处理过程中的压力。这个元件的层叠件在每个端部用6英寸直径(15.24cm)的ConFlat Zero-Length Reducer Flange(600x275-150-0-T1)(得自Kimball Physics Inc.)封端。在所述层叠件中的接头的每个处,使用合适尺寸的铜垫圈以获得良好的真空密封。

针对这种元件的层叠件,首先,将2.75英寸(7cm)直径的ConFlatDouble Side Flanges(275-150-D CF)附着到入口侧,然后附着具有两个1/8″(0.32cm)NPT侧面孔(针对2个侧面孔对标准的1个侧面孔的275DXSP12修改)的2.75英寸(7cm)直径的ConFlat Double Side Flanges,接着附着2.75英寸(7cm)直径的ConFlat Solid/Blank Flange。两侧的孔用于将反应性气体引入,如下面的讨论。

针对这种元件的层叠件,首先将25 ISO至275 CF缩减器(QF25X275)附着到所述出口侧。该元件连接到275 ConFlat4向交叉部分(275-150-X)的底部,其本身也装备有25 ISO至275 CF缩减器。对于样品装载和去除,这种临时措施允许更容易地建立从支撑系统更快去除主反应器主体。275 ConFlat 4向交叉部分随后经配备有用于真空源和控制器的闸门阀的柔性不锈钢真空管连接到XDS-5涡旋真空泵(配备有吹洗能力),具有旁路采样的SRS PPR300残余气体分析器和用于后膜压读出的MKS Baratron(10托)仪器。在闸门阀周围安装具有1/16英寸(0.16cm)的孔口的带阀门初加工/旁路管线,从而允许减小的泵吸,但是也发现带阀门初加工/旁路管线可用作第二泵吸线,从而允许在表面处理过程中的更大的反应器压力。

用于第一和第二反应性气体的入口在如上所述的2.75英寸(7cm)直径ConFlat双面凸缘中设置有1/8″NPT侧面孔。通过第一和第二反应性气体在其本身的孔进入,在所述入口中发生的任何可能的反应被最小化。此外,用于第一反应性气体的入口管线配备有“T”连接件,其允许将处理氮(N2)加入所述管线中,以保持流出所述孔的气体的连续正向流,从而确保第二反应性气体不存在任何逆向流进入到第一反应性气体的供应管线中。

作为防止针对第一和第二反应性气体的入口管线的不利交叉污染的进一步保护,用于第一反应性气体的管线被引导穿过正常关闭的阀门,并且用于第二反应性气体的管线被引导穿过正常打开的阀门。这些控制孔两个阀门被建立以通过同一开关一前一后地激活,从而确保两条管线二者不能同时将前体气体添加到反应器中。

通过配备有SS计量风箱密封阀类型的内嵌式针型阀的分离的阀系统将每个管线第二(secondarily)控制打开和关闭,从而精确控制每个前体气体的流率。这些计量阀的每个是流量控制阀,以316LVIM/VAR UHP隔膜密封阀市售,可从Swagelok公司(Solon,OH)商购获得。这些流量控制阀的每个的上游是300mL容量不锈钢起泡器形式(以目录no.Z527068可从Sigma-Aldrich(St.Louis,MO)商购获得)的反应性气体供应槽。上述的这种反应器/设备配备有多样化的带加热器、加热带和传统类型的卡座加热器,从而控制反应器及其气体供应器的温度。

其中具有保角涂层的多孔基底的示例性实施例已在上面得以描述,并将通过下面实例的方式在下面进一步说明,这些实例不能以任何方式解释为将限制强加于本发明的范围。相反,应当清楚地理解,可以采取多种其他实施例、修改形式及其等同物,在本领域的技术人员阅读本文的说明之后,在不脱离本发明的精神和/或所附权利要求书的范围的前提下,这些其他实施例、修改形式及其等同物将显而易见。

实例1

反应器的每个双面凸缘用于支撑从上述基底A的多孔聚丙烯膜上切割下的圆片(disc)。通过将所述圆片附着到带有双面胶带的铜垫圈上,并且将所述铜垫圈布置到6英寸(15.24cm)直径的ConFlat Double侧凸缘之间的正常密封位置,将所述圆片的三个样品的每个置于反应器的内部。随着反应器被密封到一起并且紧固以形成反应器主体,所述ConFlat双面凸缘密封件穿过所述膜并且通过常规铜垫圈密封机制形成气密密封。所述密封的反应器将也有助于将膜保持在一定位置上,并且密封所述膜的边缘,以防止任何反应性气体绕过所述膜。

膜在合适位置的反应器随后附着到如上所述的真空和气体处理系统。第一反应性气体供应槽填充有97%的三甲基铝(TMA),其以目录号257222可商购自Sigma-Aldrich(St.Louis,MO)。第二反应性气体供应槽填充有ACS试剂,其以目录号320072可商购自Sigma-Aldrich。该系统经真空旁路阀缓慢布置到真空下,以经受1托至10托之间的压强。一旦所述真空被完全抽真空,并且真空系统仍然工作,则反应器被流率为10至25sccm的N2吹洗进行冲洗以去除残余的过量的水和大气气体和/或污染物。在这个过程发生的同时,反应器、第一和第二入口管线以及吹洗气体管线被加热器加热到50℃。第一气体供应槽被类似地加热到30℃。

在系统被吹洗并且加热器在它们各自的设置点上被加热之后,第一反应性气体从第一反应性气体供应槽中释放出来。在第一反应性气体管线上的针型阀被调节为使得对应于当量流率为1至25sccm的N2的影响真空系统的气流流动经过所述圆片到达出口。在第一反应性气体完全浸透三个圆片的表面(在存在前体并且减少副产物气体排出最终膜的情况下通过RGA测量)之后,第一反应性气体的流动终止并且系统再次被流率为10至25sccm的N2吹洗进行冲洗。一旦吹洗完成,则第二反应性气体从第二供应槽以相似方式(但是孔不同)释放,直至三个圆片完全被浸透。执行用流率为10至25sccm的N2吹洗的另一冲洗。这种添加循环(即,第一反应性气体-吹洗-第二反应性气体-吹洗)持续,直至圆片经历35次反复。

在完成每个反复时,在利用干氮的最后一次吹洗结束时观察到反应器中圆片的入口和出口侧之间的压力差。记录数据以确定通过以不变气流流率在整个膜上添加氧化铝导致的δ压力。已经发现随着所述循环继续,对于处理气体在整个膜上的压力存在可检测到的增大。在图2中示出的曲线图中示出了δ压力的增大。

在已经执行了35次反复之后,反应器打开并且评价样品A的三个圆片的每个的表面能量。每个圆片具有超过86达因/厘米的表面能量,表示高度的亲水性。

实例2

总体上根据实例1的工序来执行实验,不同之处在于使用的基底是基底B而非基底A;反应器、第一和第二入口管线以及吹洗管线被加热器加热到60℃,并且反复的次数为20而非35。在已经执行了20次反复之后,反应器打开并且评价样品B的三个圆片的每个的表面能量。每个圆片具有超过86达因/厘米的表面能量,表示高度的亲水性。

实例3

总体上根据实例1的工序来执行实验,不同之处在于使用的基底是基底C而非基底A;反应器、第一和第二入口管线以及吹洗管线被加热器加热到60℃,并且反复的次数为17而非35。在已经执行了17次反复之后,反应器打开并且评价样品C的三个圆片的每个的表面能量。每个圆片具有超过86达因/厘米的表面能量,表示高度的亲水性。

实例4

总体上根据实例1的工序来执行实验,不同之处在于使用的基底是基底D而非基底A;反应器被加热器加热到60℃;第一和第二入口管线以及吹洗管线被加热器加热到70℃,并且反复的次数为20而非35。在已经执行了20次反复之后,反应器打开。执行X射线分析以证明基底已被涂覆。

实例5

总体上根据实例1的工序来执行实验,不同之处在于使用的基底是基底E而非基底A;反应器被加热器加热到60℃;第一和第二入口管线以及吹洗管线被加热器加热到70℃,并且反复的次数为20而非35。在已经执行了20次反复之后,反应器打开。执行X射线分析以证明基底已被涂覆。

本文所引述的出版物的全部公开内容以引用方式全文并入本文,如同每种出版物单独并入本文。在不脱离本发明的范围和精神的前提下,本发明的各种修改和更改对本领域的技术人员而言将是显而易见的。应当理解,本发明并非意图受本文提出的示例性实施例和实例的不当限制,并且此类实例和实施例仅以举例的方式提出,本发明的范围旨在仅受下文提出的权利要求书的限制。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号