首页> 中国专利> 改进的倾斜入射角沉积装置、使用它制造非反射性光学薄膜的方法以及非反射性光学薄膜

改进的倾斜入射角沉积装置、使用它制造非反射性光学薄膜的方法以及非反射性光学薄膜

摘要

本发明公开一种制造非反射性光学薄膜的方法。根据本发明,该方法包括:第一步,将玻璃基底安装在与腔室内形成的支撑杆连接的支撑板上;第二步,垂直移动支撑杆,使得玻璃基底可以与地面平行;第三步,使用沉积材料在玻璃基底上沉积第一折射层;第四步,移动支撑杆,使得沉积有第一折射层的玻璃基底可以具有一定的入射角度;第五步,利用用于增大孔隙度的过滤层,在玻璃基底上沉积折射率比第一折射层小的第二折射层,过滤层位于玻璃基底的下方区域并且增大朝向玻璃基底移动的沉积材料的孔隙度;第六步,从玻璃基底的下方区域移除用于增大孔隙度的过滤层,并且垂直移动支撑杆,使得沉积有第一折射层和第二折射层的玻璃基底可以与地面平行;和第七步,重复第三步至第五步一次,其中第一折射层和第二折射层可以由相同的沉积材料沉积形成。

著录项

  • 公开/公告号CN102439488A

    专利类型发明专利

  • 公开/公告日2012-05-02

    原文格式PDF

  • 申请/专利权人 仁荷大学校产学协力团;

    申请/专利号CN200980159449.X

  • 发明设计人 皇甫昌权;朴龙俊;

    申请日2009-12-07

  • 分类号G02B1/11(20060101);C23C14/22(20060101);G02B1/10(20060101);

  • 代理机构11290 北京信慧永光知识产权代理有限责任公司;

  • 代理人梁兴龙;武玉琴

  • 地址 韩国仁川广域市

  • 入库时间 2023-12-18 05:08:35

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-01-29

    授权

    授权

  • 2012-06-27

    实质审查的生效 IPC(主分类):G02B1/11 申请日:20091207

    实质审查的生效

  • 2012-05-02

    公开

    公开

说明书

技术领域

本发明涉及一种倾斜角沉积装置、使用该倾斜角沉积装置制造防反射光学膜的方法以及通过该方法制造的防反射光学膜。

背景技术

诸如防反射膜等光学膜用在构成光学系统的诸如透镜、棱镜、反射镜等光学器件中。用于防止入射光从基底界面反射的防反射膜形成在基底的一侧上,并且起到增大施加到基底上的入射光量的功能。

这种防反射膜可以通过将预定的沉积材料沉积在基底上的方法形成。在这种情况下,沉积方法的例子可以包括真空沉积、溅射、化学气相沉积(CVD)等。

另一方面,光学膜需要在宽范围的入射角度内具有低反射率。为满足该要求,可以使用将具有不同折射率的折射层沉积在基底上的方法。在这种情况下,为了更有效地实现光学膜的防反射功能,可以使用利用折射率大不相同的材料在基底上以交替方式沉积折射层并增加折射层的交替数量的方法。

然而,由于使用光学膜的光学器件逐渐变小,因此通过增加折射层的交替数量来改善光学膜的防反射功能受到限制。另外,当具有不同折射率的折射层数量增加时,存在沉积室中的污染变严重的问题。此外,由于难以降低通过物理气相沉积形成的常规光学膜的折射率,所以很难将这种常规光学膜应用到在宽频带内要求低反射率的技术中。

发明内容

技术问题

因此,本发明致力于解决上述问题,本发明的目的在于提供一种制造防反射光学膜的方法,该方法利用通过在基底上两次交替地层叠具有不同折射率的第一折射层和第二折射层而形成的四层式层叠体可以实现高的防反射效果;还提供通过该方法制造的防反射光学膜。

本发明的另一个目的在于提供一种倾斜角沉积装置,该装置可以在制造防反射光学膜时使用用于增大沉积材料的孔隙度的过滤层来减小沉积在基底上的沉积材料的折射率。

技术方案

为了实现上述目的,根据本发明的一个方面,提供一种制造防反射光学膜的方法,包括以下步骤:1)将基底安装在与沉积室内的支撑杆连接的支撑板上;2)垂直移动所述支撑杆,使得所述基底与地面平行;3)使用沉积材料在所述基底上形成第一折射层;4)移动所述支撑杆,使得形成有第一折射层的所述基底倾斜预定角度;5)利用用于增大朝向所述基底涂布的沉积材料的孔隙度的过滤层,在形成于所述基底上的第一折射层上形成第二折射层,其中第二折射层的折射率低于第一折射层的折射率,并且所述过滤层位于所述基底下方;6)移除所述过滤层,然后垂直移动所述支撑杆,使得形成有第一折射层和第二折射层的所述基底与地面平行;和7)重复步骤3)~5)一次。

这里,第一折射层和第二折射层可以由相同的沉积材料形成。

另外,第一折射层和第二折射层均可以由SiO2、MgF2、TiO2、ITO、ZnO、Ta2O5和CeO2中的任一种形成。

在步骤4)中,所述基底可以倾斜75°~85°的角度。

另外,第一折射层可以具有包括垂直的纳米棒图案的多孔结构,第二折射层可以包括倾斜的纳米棒图案,并且第二折射层的孔隙度可以大于第一折射层的孔隙度。

根据本发明的另一个方面,提供一种倾斜角沉积装置,它包括:支撑板,通过移动沉积室内的支撑杆调节所述支撑板的角度,并且基底安装在所述支撑板上;容器,装有用于在安装于所述支撑板上的基底上形成至少一个防反射膜层的沉积材料;和过滤层,设置在所述支撑板和所述容器之间,当沉积材料颗粒从所述容器蒸发并移向所述基底时,所述过滤层通过改变所述沉积材料颗粒的入射角度来增大沉积材料的孔隙度。

这里,所述过滤层可以固定在与所述沉积室的顶部连接的旋转轴上,并且所述过滤层随着所述旋转轴的转动而水平移动。

根据本发明的另一个方面,提供一种防反射光学膜,它包括:基底;至少两次交替地层叠在所述基底上的第一折射层和第二折射层,第二折射层的折射率低于第一折射层的折射率,其中每个第一折射层具有包括垂直的纳米棒图案的多孔结构,每个第二折射层包括倾斜预定角度的倾斜的纳米棒图案,并且每个第二折射层的孔隙度大于每个第一折射层的孔隙度。

这里,第一折射层和第二折射层均可以由SiO2、MgF2、TiO2、ITO、ZnO、Ta2O5和CeO2中的任一种形成。

有益效果

根据本发明的倾斜角沉积装置由于设置有用于增大沉积材料的孔隙度的过滤层,所以可以减小沉积在基底上的沉积材料的折射率,因此,即使在使用相同的材料时,也可以制造具有不同折射率的防反射光学膜。

另外,根据本发明的制造防反射光学膜的方法利用通过在基底上两次交替地层叠具有不同折射率的第一折射层和第二折射层而形成的四层式层叠体可以实现高的防反射效果,从而防止沉积室被污染。

附图说明

图1是示出根据本发明实施例的倾斜角沉积装置的示意图;

图2和图3是示出图1所示的倾斜角沉积装置的操作模式的示意图;

图4~7是示出使用图1所示的倾斜角沉积装置来制造光学膜的方法的剖面图;

图8是图7所示的光学膜的一部分的放大图;

图9是示出根据本发明实施例的光学膜的折射率与波长之间的关系的示图;

图10是示出根据本发明实施例的光学膜的反射率与波长之间基于入射角度的关系的示图;和

图11是示出根据本发明实施例的光学膜的透射率与波长之间的关系的示图。

附图标记说明

具体实施方式

下面,参照附图详细说明本发明的优选实施例。

图1是示出根据本发明实施例的倾斜角沉积装置的示意图。参照图1,倾斜角沉积装置100包括沉积室101、支撑杆110、支撑板120、旋转轴130、用于增大孔隙度的过滤层140和容器150。

图1所示的倾斜角沉积装置100是一种用于在基底200上沉积材料的装置。

倾斜角沉积装置100利用气相沉积,特别是物理气相沉积(PVD)。在这种情况下,物理气相沉积的例子可以包括溅射、电子束蒸发、热蒸发、激光分子束外延(L-MBE)、脉冲激光沉积(PLD)等。通过利用这些方法中的任一种方法,倾斜角沉积装置100可以通过在基底200上沉积防反射膜层来制造光学膜。

支撑杆110位于沉积室101的顶部并与支撑板120连接,基底200安装在支撑板120上。因此,当支撑杆110移动预定角度后,支撑板120处于倾斜角度。进一步地,当支撑板120处于倾斜角度时,安装在支撑板120上的基底200也处于与支撑板120相同的倾斜角度。

当装在容器150中的沉积材料喷射到具有该倾斜角度的基底200上时,在基底200上形成由沉积材料制成的膜层。在这种情况下,膜层的特性(例如,结构、折射率等)可以随着沉积方法和沉积角度改变。

容器150装有沉积材料。当操作倾斜角沉积装置100时,装在容器150中的沉积材料熔化,熔化的沉积材料蒸发并随后涂布到基底200。

另一方面,旋转轴130与沉积室101的顶部连接。在这种情况下,旋转轴130在其一侧可以设置有用于增大孔隙度的过滤层140。过滤层140设置在基底200和容器150之间,并且用于通过改变沉积材料从容器150到基底200的入射角度来增大沉积材料的孔隙度。具体而言,过滤层140被配置成在其中央设置有网状物。在这种情况下,沉积材料颗粒经过该网状物,从而改变入射角度。因此,沉积材料能够在其孔隙度被增大的状态下沉积在基底200上。

如图1所示,由于过滤层140与旋转轴130连接,所以过滤层140可以随着旋转轴130的转动而水平移动。因此,在进行沉积过程时,通过转动旋转轴130,过滤层140被设置在面对基底200的区域内。

另外,在沉积过程中,如果不需要过滤层140,那么通过反向转动旋转轴130,过滤层140便被设置在不面对基底200的区域内。在这种情况下,使用者可以确定是否需要过滤层140。因此,倾斜角沉积装置100还可以包括输入键和显示屏,尽管这些在附图中未示出。利用使用者设定的各值,倾斜角沉积装置100可以控制支撑杆110的移动角度、旋转轴130的转动角度、沉积材料的沉积速率等。

另一方面,在图1中示出并说明的是,过滤层140固定在旋转轴130的一侧上,但是也可以在旋转轴130被固定的状态下转动过滤层140。

图2和图3是示出图1所示的倾斜角沉积装置100的操作模式的示意图。具体而言,图2示出通过在基底200处于倾斜角度的状态下调节沉积材料颗粒的入射角度而将沉积材料沉积在基底200上的操作模式。

参照图2,在倾斜角沉积装置100中,在将基底200安装在支撑板120上后,支撑杆110移动约85°的角度,然后转动旋转轴130,从而过滤层140面对基底200。

随后,装在容器150中的沉积材料被加热蒸发并朝向基底200移动。在这种情况下,沉积材料颗粒(P1)经过设置在基底和容器150之间的过滤层140。

在该过程中,在沉积材料颗粒(P1)经过过滤层140的同时,它们的入射角度可以改变。也就是说,当沉积材料颗粒(P1)从容器150蒸发时,虽然它们在范围(R1)内以预定的入射角度前进并且散布,但是在沉积材料颗粒(P1)经过过滤层140的同时,它们的入射角度可以变为约0°。也就是说,沉积材料颗粒(P1)沿着垂直于地面的方向朝向基底200前进。

当通过图2所示的方法将沉积材料沉积在基底200上时,获得的膜层具有包括倾斜的纳米棒图案的多孔结构。特别地,过滤层140增大了纳米棒图案之间的间隔,从而增大了膜层的孔隙度。为此,可以减小膜层的折射率,并且可以增大膜层的各向异性。

图3示出在未调节沉积材料颗粒的入射角度的基底200与地面平行的状态下将沉积材料沉积在基底200上的操作模式。

参照图3,在倾斜角沉积装置100中,在将基底200安装在支撑板120后,沿着垂直于地面的方向设置支撑杆110,然后转动旋转轴130,从而过滤层140不面对基底200。也就是说,过滤层140被移动使其不面对基底200。

随后,装在容器150中的沉积材料被加热蒸发并朝向基底200移动。在这种情况下,蒸发的沉积材料颗粒(P2,P3)以预定的入射角度朝向基底200前进。因此,获得的膜层具有包括纳米棒图案的多孔结构。在这种情况下,由于基底200没有象如图2所示那样倾斜,所以通过图3所示的方法获得的膜层包括在垂直于基底200表面的方向上排列的纳米棒图案。

另外,在倾斜角沉积装置100中,由于未使用过滤层140,所以纳米棒图案之间的间隔变小。由于通过图3所示的方法获得的膜层的孔隙度小于通过图2所示的方法获得的膜层的孔隙度,所以通过图3所示的方法获得的膜层的折射率大于通过图2所示的方法获得的膜层的折射率。

如图2和图3所示,通过调节基底200的倾斜角度和沉积材料颗粒的入射角度,可以控制膜层的折射率。也就是说,虽然使用相同的材料形成膜层,但是通过图2所示的方法可以减小膜层的折射率。

详细说明

下面,参照附图详细说明本发明的优选实施例。

图1是示出根据本发明实施例的倾斜角沉积装置的示意图。参照图1,倾斜角沉积装置100包括沉积室101、支撑杆110、支撑板120、旋转轴130、用于增大孔隙度的过滤层140和容器150。

图1所示的倾斜角沉积装置100是一种用于在基底200上沉积材料的装置。

倾斜角沉积装置100利用气相沉积,特别是物理气相沉积(PVD)。在这种情况下,物理气相沉积的例子可以包括溅射、电子束蒸发、热蒸发、激光分子束外延(L-MBE)、脉冲激光沉积(PLD)等。通过利用这些方法中的任一种方法,倾斜角沉积装置100可以通过在基底200上沉积防反射膜层来制造光学膜。

支撑杆110位于沉积室101的顶部并与支撑板120连接,基底200安装在支撑板120上。因此,当支撑杆110移动预定角度后,支撑板120处于倾斜角度。进一步地,当支撑板120处于倾斜角度时,安装在支撑板120上的基底200也处于与支撑板120相同的倾斜角度。

当装在容器150中的沉积材料喷射到具有该倾斜角度的基底200上时,在基底200上形成由沉积材料制成的膜层。在这种情况下,膜层的特性(例如,结构、折射率等)可以随着沉积方法和沉积角度改变。

容器150装有沉积材料。当操作倾斜角沉积装置100时,装在容器150中的沉积材料熔化,熔化的沉积材料蒸发并随后涂布到基底200上。

另一方面,旋转轴130与沉积室101的顶部连接。在这种情况下,旋转轴130在其一侧可以设置有用于增大孔隙度的过滤层140。过滤层140设置在基底200和容器150之间,并且用于通过改变沉积材料从容器150到基底200的入射角度来增大沉积材料的孔隙度。具体而言,过滤层140被配置成在其中央设置有网状物。在这种情况下,沉积材料颗粒经过该网状物,从而改变入射角度。因此,沉积材料能够在其孔隙度被增大的状态下沉积在基底200上。

如图1所示,由于过滤层140与旋转轴130连接,所以过滤层140可以随着旋转轴130的转动而水平移动。因此,在进行沉积过程时,通过转动旋转轴130,过滤层140被设置在面对基底200的区域内。

另外,在沉积过程中,如果不需要过滤层140,那么通过反向转动旋转轴130,过滤层140便被设置在不面对基底200的区域内。在这种情况下,使用者可以确定是否需要过滤层140。因此,倾斜角沉积装置100还可以包括输入键和显示屏,尽管这些在附图中未示出。利用使用者设定的各值,倾斜角沉积装置100可以控制支撑杆110的移动角度、旋转轴130的转动角度、沉积材料的沉积速率等。

另一方面,在图1中示出并说明的是,过滤层140固定在旋转轴130的一侧上,但是也可以在旋转轴130被固定的状态下转动过滤层140。

图2和图3是示出图1所示的倾斜角沉积装置100的操作模式的示意图。具体而言,图2示出通过在基底200处于倾斜角度的状态下调节沉积材料颗粒的入射角度而将沉积材料沉积在基底200上的操作模式。

参照图2,在倾斜角沉积装置100中,在将基底200安装在支撑板120上后,支撑杆110移动约85°的角度,然后转动旋转轴130,从而过滤层140面对基底200。

随后,装在容器150中的沉积材料被加热蒸发并朝向基底200移动。在这种情况下,沉积材料颗粒(P1)经过设置在基底和容器150之间的过滤层140。

在该过程中,在沉积材料颗粒(P1)经过过滤层140的同时,它们的入射角度可以改变。也就是说,当沉积材料颗粒(P1)从容器150蒸发时,虽然它们在范围(R1)内以预定的入射角度前进并且散布,但是在沉积材料颗粒(P1)经过过滤层140的同时,它们的入射角度可以变为约0°。也就是说,沉积材料颗粒(P1)沿着垂直于地面的方向朝向基底200前进。

当通过图2所示的方法将沉积材料沉积在基底200上时,获得的膜层具有包括倾斜的纳米棒图案的多孔结构。特别地,过滤层140增大了纳米棒图案之间的间隔,从而增大了膜层的孔隙度。为此,可以减小膜层的折射率,并且可以增大膜层的各向异性。

图3示出在未调节沉积材料颗粒的入射角度的基底200与地面平行的状态下将沉积材料沉积在基底200上的操作模式。

参照图3,在倾斜角沉积装置100中,在将基底200安装在支撑板120后,沿着垂直于地面的方向设置支撑杆110,然后转动旋转轴130,从而过滤层140不面对基底200。也就是说,过滤层140被移动使其不面对基底200。

随后,装在容器150中的沉积材料被加热蒸发并朝向基底200移动。在这种情况下,蒸发的沉积材料颗粒(P2,P3)以预定的入射角度朝向基底200前进。因此,获得的膜层具有包括纳米棒图案的多孔结构。在这种情况下,由于基底200没有象如图2所示那样倾斜,所以通过图3所示的方法获得的膜层包括在垂直于基底200表面的方向上排列的纳米棒图案。

另外,在倾斜角沉积装置100中,由于未使用过滤层140,所以纳米棒图案之间的间隔变小。由于通过图3所示的方法获得的膜层的孔隙度小于通过图2所示的方法获得的膜层的孔隙度,所以通过图3所示的方法获得的膜层的折射率大于通过图2所示的方法获得的膜层的折射率。

如图2和图3所示,通过调节基底200的倾斜角度和沉积材料颗粒的入射角度,可以控制膜层的折射率。也就是说,虽然使用相同的材料形成膜层,但是通过图2所示的方法可以减小膜层的折射率。

图4~7是示出使用图1所示的倾斜角沉积装置来制造光学膜的方法的剖面图。参照图4,在透明玻璃基底300上形成第一折射层321。在这种情况下,可以通过图3所示的方法形成第一折射层321。也就是说,基底300被调节使其与地面平行,并且过滤层140被调节使其未设置在基底300和容器150之间,然后在基底300上沉积沉积材料(SiO2)。

沉积的结果是,在基底300上形成的第一折射层321具有包括纳米棒图案的多孔结构并且其折射率约为1.4。在这种情况下,由于第一折射层321形成在与地面平行的基底330上,所以第一折射层321具有垂直的纳米棒图案。

随后,如图5所示,在第一折射层321上形成第二折射层322。在这种情况下,可以通过图2所示的方法形成第二折射层322。也就是说,沉积有第一折射层321的基底300被调节使其倾斜75°~85°的角度,并且过滤层140被调节使其设置在基底300和容器150之间,然后在第一折射层321上沉积沉积材料(SiO2)。

沉积的结果是,在第一折射层321上形成的第二折射层322具有包括纳米棒图案的多孔结构并且其折射率约为1.08。在这种情况下,由于第二折射层322形成在相对于地面倾斜一定角度的基底330上,所以第二折射层322具有倾斜的螺旋形纳米棒图案。另外,由于沉积材料颗粒的入射角度被过滤层140改变,所以第二折射层322的纳米棒图案之间的间隔变得大于第一折射层321的纳米棒图案之间的间隔,从而增大了第二折射层322的孔隙度。

也就是说,虽然第一折射层321和第二折射层322由相同的材料(SiO2)形成,但是随着所用的如图2和图3所示的沉积方法不同,第一折射层321和第二折射层322具有不同的折射率。

随后,如图6和图7所示,另一个第一折射层323和另一个第二折射层324再次相继形成在第二折射层322上,从而得到第一折射层321和323以及第二折射层322和324交替地形成在基底300上的结构。在这种情况下,可以使用图3所示的方法形成第一折射层323,可以使用图2所示的方法形成第二折射层324。

如上所述,通过使用图2和图3所示的方法,在基底300上两次交替地形成具有不同折射率的第一折射层321和323以及第二折射层322和324,从而形成具有这种结构的光学膜。

如上所述,在图7所示的光学膜中,第一折射层321由SiO2形成并且具有包括垂直的纳米棒图案的多孔结构。在这种情况下,在制造光学膜的过程中通过将沉积材料颗粒从容器直接涂布到基底300上而未使用过滤层140来形成第一折射层321。

另外,在图7所示的光学膜中,第二折射层322由SiO2形成并且具有包括倾斜的纳米棒图案的多孔结构。在这种情况下,在制造光学膜的过程中,第二折射层322经过过滤层140,使得纳米棒图案之间的间隔增大,从而增大了第二折射层322的孔隙度。

按此方式,第一折射层和第二折射层交替地层叠在基底300上,从而形成防反射膜层320。

另一方面,在图4~7中,作为例子说明的是,第一折射层321和第二折射层322由SiO2形成。然而,第一折射层321和第二折射层322可以由MgF2、TiO2、ITO、ZnO、Ta2O5和CeO2中的任一种形成。

图8是图7所示的光学膜的第二折射层322的部分A的放大图。如图8所示,光学膜的第二折射层322包括纳米棒图案322a。

由于第二折射层322形成在倾斜的基底200上,所以它的纳米棒图案322a是倾斜的纳米棒图案。另外,由于过滤层140的原因使沉积材料颗粒的入射角度约为0°,所以各纳米棒图案322a彼此以预定的距离d隔开。为此,由SiO2形成的第二折射层322的折射率可以低于第一折射层321的折射率。

图9是示出根据本发明实施例的光学膜的折射率与波长之间的关系的示图。在使用一般的沉积方法1而未使用倾斜角沉积方法的情况下,形成在波长为600nm时折射率为1.47的SiO2薄膜。此外,在使用以前的倾斜入射角沉积方法2的情况下,可以形成折射率为1.3的薄膜。然而,在使用本发明的改进的倾斜入射角沉积方法3的情况下,可以形成具有相当低的折射率1.08的薄膜。可以形成的薄膜的折射率与空气的折射率几乎相同。因此,本发明的薄膜可以是防反射沉积用的适用材料。

图10是示出根据本发明实施例的光学膜的反射率与波长之间基于入射角度的关系的示图。参照图10,可以形成在400~800nm的波长范围内平均反射率为0.04%的薄膜。一般而言,考虑到玻璃的反射率为8%,因此这种薄膜是降低反射率的防反射膜。此外,与入射角度的增加相比,可以形成反射率变化非常小的薄膜。因此,可以形成对入射角度的变化更不敏感的薄膜。

图11是示出根据本发明实施例的光学膜的透射率与波长之间的关系的示图。一般而言,当未进行防反射沉积的玻璃的透射率是92%时,可以形成平均透射率为99.5%的光学膜,并且通过利用根据本发明的改进的入射角沉积方法,可以沉积并形成玻璃基底的两侧。

如上所述,通过使用不同的沉积方法在基底上沉积相同的材料,可以调节第一折射层和第二折射层的折射率而使它们彼此不同。另外,仅仅通过两次交替地层叠第一折射层和第二折射层,就可以获得具有高反射率的光学膜。

虽然为了说明性目的已经公开了本发明的优选实施例,但是本领域技术人员应当理解的是,在不背离所附权利要求书限定的本发明精神和范围内,可以做出各种修改、增加和替换。

工业实用性

本发明由于设置有用于增大沉积材料的孔隙度的过滤层,所以可以减小沉积在基底上的沉积材料的折射率,因此,即使在使用相同的材料时,也可以制造具有不同折射率的防反射光学膜。这样,本发明可以有效地用在制造行业中。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号