首页> 中国专利> 对磁共振设备中的检查对象的部分区域进行成像的方法

对磁共振设备中的检查对象的部分区域进行成像的方法

摘要

本发明涉及一种用于对磁共振设备(5)中的检查对象(U)的部分区域(51)进行成像的方法。所述部分区域(51)布置在磁共振设备(5)的视场的边缘。在所述方法中这样产生梯度场,使得在视场的边缘处的预定的位置,梯度场的非线性和B

著录项

  • 公开/公告号CN102419426A

    专利类型发明专利

  • 公开/公告日2012-04-18

    原文格式PDF

  • 申请/专利权人 西门子公司;

    申请/专利号CN201110261945.5

  • 申请日2011-09-06

  • 分类号G01R33/56;G01R33/38;G01R33/385;A61B5/055;

  • 代理机构北京市柳沈律师事务所;

  • 代理人谢强

  • 地址 德国慕尼黑

  • 入库时间 2023-12-18 04:55:43

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-09-16

    授权

    授权

  • 2013-07-31

    实质审查的生效 IPC(主分类):G01R33/56 申请日:20110906

    实质审查的生效

  • 2012-04-18

    公开

    公开

说明书

技术领域

本发明涉及一种用于对磁共振设备中的检查对象的部分区域进行成像的方 法和一种为此的磁共振设备。

背景技术

在磁共振设备中磁共振断层造影拍摄的测量体积由于物理的和技术上的条 件、诸如有限的磁场均匀性和梯度场的非线性而在所有三个空间方向上受到限 制。由此,拍摄体积、即所谓的视场或视野(FoV)被限制到如下的体积,在该 体积中上面提到的物理特征位于预定的容差范围内并且由此可以利用通常的测 量序列对待检查的对象进行忠于原始的(originalgetreue)成像。然而这样限制 的视场或视野特别是在x和y方向上、即垂直于磁共振设备的通道的纵轴,远远 小于通过磁共振设备的环形通道限制的体积。在通常的磁共振设备中,环形通 道的直径例如大约为60cm,而通常使用的视场(在该视场中上面提到的物理特 征位于容差范围之内)的直径近似为50cm。

在磁共振设备的许多应用中,“磁共振设备的通道的边缘区域中不可能进行 测量对象的忠于原始的成像”这一缺陷并不是大的问题,因为在纯的磁共振拍 摄中,通常可以将待检查的对象的区域这样布置在磁共振设备中,使得该区域 不是位于通道的边缘处,而是尽可能位于通道的中央,即所谓的磁共振设备的 对称中心。然而在混合系统中,诸如在由磁共振断层造影设备和正电子发射断 层造影设备组成的混合系统,即所谓的MR-PET混合系统中,通常很重要的是, 在边缘区域也尽可能精确地确定检查对象的结构。在MR-PET混合系统中例如人 的衰减校正是具有决定性意义的。利用人的衰减校正确定在正电子和电子的相 互作用之后发出的光子在其通过吸收的组织到探测器的路程上的强度衰减并且 对PET的接收的信号恰好校正该衰减。此外采集磁共振记录,该磁共振记录在通 过正电子发射断层造影所发送的高能光子的方向上对待检查的对象的完整的解 剖结构进行成像。由此在混合系统的通道的边缘区域中也能够尽可能精确地采 集待检查的对象的解剖结构。位于该区域中的结构在待检查的患者的情况下例 如主要是可能布置在混合系统的通道内壁附近的边缘区域中的手臂。

在相同的发明人的申请号为DE 102010006431.9的专利申请中,提供了一种 用于确定磁共振设备中检查对象的部分区域的位置的方法。检查对象的部分区 域布置在磁共振设备的视场的边缘。在该方法中,自动确定对于磁共振图像的 至少一个层位置,在该层位置中在磁共振图像的边缘处的B0场满足预定的均匀 性标准。此外在确定的层位置拍摄磁共振图像,该磁共振图像包含视场的边缘 处的部分区域。检查对象的部分区域的位置通过拍摄的磁共振图像中部分区域 的位置来自动确定。

此外在现有技术中由Delso等人的提出了一种方法,以便在使用未校正的 PET数据的条件下通过分割身体轮廓来补偿在磁共振图像中由于视场限制而缺 失的信息(G.Delso et al,Impact of limited MR field-of-view in simultaneous  PET/MR acquisition,J.Nucl.Med.Meeting Abstracts,2008;49,162P)。

因为磁共振设备的视场被限制到一个体积,在该体积中磁场非均匀性和梯 度场的非线性位于特殊的范围之内,所以在现有技术中介绍了不同的校正算法, 以便扩展视场。例如在Langlois S.等人的MRI Geometric Distortion:a simple  approach to correcting the effects of non-linear gradient fields,J.Magn.Reson. Imaging 1999,9(6),821-31和Doran SJ等人的A complete distortion correction for  MR images:I.Gradient warp correction,Phys.Med.Biol.2005 Apr 7,50(7), 1343-61中提出了一种梯度失真校正(Gradientenverzeichniskorrektur)。此外在 Reinsberg SA等人的A complete distortion correction for MR images:II. Rectification of static-field inhomogenities by similarity-based profile mapping,Phys. Med.Biol,2005Jun 7,50(11),2651-61中提出了一种相应的B0场校正。

发明内容

然而在现有技术中没有公知用于在全身MR-PET中的应用的视场扩展。因 此,本发明要解决的技术问题是,提供一种对于在通常的视场外部的区域中(即 例如在磁共振设备的环形通道的边缘区域中)的待检查的对象的结构的合适的 忠于原始的成像。

在其中B0场具有非均匀性并且梯度场具有非线性的该边缘区域中发生强烈 失真(Verzeichnungen)的情况下,对磁共振记录中的失真的事后补偿通常是不 可能的,因为失真的区域在磁共振记录中是重叠的。因此本发明要解决的另一 个技术问题是,在采集磁共振数据的时刻就已经避免了强烈失真。

按照本发明通过一种对磁共振设备中的检查对象的部分区域进行成像的方 法和一种磁共振设备、一种计算机程序产品和一种电子可读的数据载体来解决 上述技术问题。

按照本发明,提供一种对磁共振设备中的检查对象的部分区域进行成像的 方法。部分区域布置在磁共振设备的视场的边缘。在该方法中,这样产生梯度 场,使得在视场的边缘处的预定的位置处通过梯度场的非线性产生的失真和通 过B0场非均匀性产生的失真抵消(aufheben)。然后借助这样产生的梯度场采集 包含了在视场边缘处的预定位置的磁共振数据并且从磁共振数据中确定在预定 位置处检查对象的部分区域的图像。

梯度场例如可以是读出梯度场或层选择梯度场。

因为梯度场的非线性取决于梯度场强而B0场非均匀性独立于梯度场强,所 以至少对于视场的预定位置或视场的预定区域这样调整和产生梯度场,使得梯 度场的非线性和B0场非均匀性在该位置处或在该区域中抵消。由此可以避免对 于该预定位置或对于预定区域的失真。

在此,失真是指检查对象的预定位置(x,y,z)(例如在视场边缘的预定位置 处)的信号值在从采集的磁共振数据所确定的检查对象的图像中在另一个位置 (x1,y1,z1)出现。坐标(x,y,z)也称为实际的位置并且坐标(x1,y1,z1)也称为失 真的位置。特别在视场的边缘区域中会发生失真,该失真不能通过对检查对象 的图像的事后的校正来补偿,因为例如多个相邻的实际的位置会成像到密集并 排布置的失真位置中的一个或多个。通过由于产生合适的梯度场而在预定位置 或区域中相互抵消梯度场的非线性和B0场非均匀性,对于该区域不会出现或仅 出现很少失真,从而在该区域中可以确定检查对象的有价值的(verwertbare)成 像。

按照一种实施方式,为了产生梯度场在视场边缘处的预定位置处确定相对 的梯度误差(relativer Gradientenfehler)。此外在预定位置处确定B0场非均匀性。 相对的梯度误差和B0场非均匀性例如可以通过对磁共振设备的测量 (Ausmessen)来事先确定。然后根据相对的梯度误差和B0场非均匀性,确定梯 度场的梯度并且在采集磁共振数据的情况下相应产生。

梯度场的梯度G可以按照以下等式来确定

G=-dB0(x,y,z)/c(x,y,z)       (1)

其中dB0是在视场边缘处的预定位置(x,y,z)处的B0场非均匀性并且c是在 预定位置(x,y,z)处的相对的梯度误差。当测量了一次磁共振设备,即,确定 了对于确定的位置或区域(例如患者的手臂预计位于其中的区域)的相对的梯 度误差和B0场非均匀性,则由此可以以简单的方式确定并产生梯度场的梯度, 以便能够可靠地、即没有失真地确定在预定位置处检查对象的图像。

按照另一种实施方式,为了产生梯度场,确定在视场边缘处的预定位置处 的B0场非均匀性并且这样构造用于产生梯度场的梯度线圈,使得在预定位置处 梯度场的非线性和B0场非均匀性抵消。因为例如对于PET衰减校正通常仅须无失 真地采集磁共振设备的视场边缘处的几个区域,例如,患者的手臂预计位于其 中的区域,所以可以如下优化梯度线圈,使得梯度线圈的非均匀性在预定的梯 度场的情况下基本上抵消在该区域中的B0场非均匀性。由此可以实现在该预定 区域中检查对象的无失真的成像。

按照另一种实施方式,为了产生梯度场,确定在视场边缘处的预定位置处 梯度场的非线性并且这样改变B0场,使得在预定位置处梯度场的非线性和B0场 非均匀性抵消。B0场的改变例如可以通过合适地布置所谓的匀场片 (Shimblechen)来调整。由此可以至少对于几个预定的区域,例如患者的手臂 预计位于其中的区域,实现小失真甚至无失真。

该方法特别可以应用于在具有用于容纳检查对象的通道形开口的磁共振设 备中。该磁共振设备的视场的边缘在这种情况下包括沿着通道形开口的内表面 的外罩形区域。外罩区域例如可以具有近似5cm的外罩厚度。如前面提到的那样, 待成像的检查对象的部分区域可以包括患者的解剖结构,特别是例如患者的布 置在磁共振设备的视场的边缘处的手臂。优选采集关于检查对象的横向平面中 的磁共振数据。由于小的失真,在检查对象的确定的图像中可以可靠地确定部 分区域的位置。

按照另一种实施方式,根据检查对象的部分区域的位置确定对于正电子发 射断层造影的衰减校正。由于小的失真,可以可靠地从检查对象的图像中确定 部分区域、例如手臂的位置。在正电子发射断层造影中,对于所接收的射线(光 子)通过在射线方向上的检查对象的结构或解剖结构而衰减的考虑是具有决定 性意义的。通过即使在磁共振设备的视场边缘处也可以确定检查对象的部分区 域的位置,可以对在磁共振设备中的检查对象的或患者的位置和结构进行全面 的确定并且由此可以实现对于正电子发射断层造影的精确的衰减校正。因为衰 减校正在该情况下仅基于来自于磁共振图像的信息,所以也可以利用不太强烈 积聚的PET示踪物,例如铷,来进行正电子发射断层造影。

对于磁共振设备的视场边缘处的检查对象的部分区域的位置确定同样可以 支持辐射治疗规划。

按照本发明,此外还提供一种磁共振设备,该磁共振设备包括用于控制具 有用于产生B0场的磁铁的断层造影仪的控制装置、用于接收由断层造影仪拍摄 的信号的接收装置、和用于分析信号和建立磁共振图像的分析装置。磁共振设 备能够这样产生梯度场,使得在视场边缘处的预定位置,梯度场的非线性和B0场非均匀性抵消。例如要借助磁共振设备来成像的检查对象的部分区域可以位 于视场边缘处。此外还这样构造磁共振设备,使得其借助梯度场采集磁共振数 据,该磁共振数据包含视场边缘处的预定位置。然后磁共振设备从采集的磁共 振数据中确定视场边缘处的预定位置处的检查对象的部分区域的图像。

磁共振设备还可以包括正电子发射断层造影仪并且根据磁共振设备中的检 查对象的确定的图像自动确定对于正电子发射断层造影的衰减校正。

此外磁共振设备还可以构造为用于执行前面描述的方法和其实施方式并且 由此还包括事先描述的优点。

按照本发明,还提供一种计算机程序产品,该计算机程序产品可以被加载 到磁共振设备的可编程的控制装置的存储器中。计算机程序产品特别可以包括 软件。当计算机程序产品在磁共振设备中运行时,借助计算机程序产品的程序 装置可以执行按照本发明的方法的所有前面描述的实施方式。

本发明还提供一种电子可读的数据载体,例如CD或DVD,在该数据载体上 存储了电子可读的控制信息,特别是软件。当该控制信息由数据载体读取并且 存储在磁共振设备的控制单元中时,可以利用磁共振设备执行前面描述的方法 的所有按照本发明的实施方式。

附图说明

以下借助附图结合优选实施方式详细解释本发明。附图中,

图1示意性示出了按照本发明的一种实施方式的磁共振设备。

图2示出了按照本发明的方法的流程图。

图3示出了利用不是按照本发明产生的读出梯度具有在x方向上的读出方向 的示例性仿真的失真。

图4示出了利用按照本发明产生的读出梯度具有在x方向上的读出方向的示 例性仿真的失真。

图5示出了圆柱形的结构模体的横截面磁共振记录,该横截面磁共振记录是 利用不是按照本发明产生的梯度所产生的。

图6示出了图5的圆柱形的结构模体的横截面磁共振记录,该横截面磁共振 记录是利用按照本发明产生的梯度所拍摄的。

具体实施方式

图1示出了(磁共振成像或核自旋断层造影设备的)磁共振设备5的示意图。 在此基本场磁铁1产生时间上恒定的强磁场,用于极化或对齐对象U的检查区域 中的核自旋,例如位于检查台23上并被移动到磁共振设备5中的人体的待检查的 部位的检查区域中的核自旋。对于核自旋共振测量所需的、基本磁场的高的均 匀性在典型地为球形的测量体积M中定义,人体的待检查的部位被移动到该测 量体积中。为了满足均匀性要求并且特别为了消除时间上不变的影响,在合适 的位置上安装由铁磁材料构成的所谓的匀场片。时间上可变的影响通过匀场线 圈2和对于匀场线圈2的合适的控制27来消除。

在基本场磁铁1中采用圆柱形的梯度线圈系统3,该梯度线圈系统由三个子 线圈组成。每个子线圈由相应的放大器24-26利用用于产生在笛卡尔坐标系的各 自的方向上的线性梯度场的电流来供电。梯度场系统3的第一子线圈在此产生x 方向上的梯度Gx,第二子线圈产生y方向上的梯度Gy,并且第三子线圈产生z方 向上的梯度Gz。放大器24-26分别包括数字模拟转换器(DAC),该数字模拟转 换器由用于时间上正确产生梯度脉冲的序列控制器18控制。

在梯度场系统3内部有高频天线4,所述高频天线将由高频功率放大器输出 的高频脉冲转换为用于激励待检查的对象的或对象的待检查的区域的核和对齐 核自旋的磁交变场。高频天线4由以线圈的环形的、线性的或矩阵形的布置形式 的一个或多个HF发送线圈和多个HF接收线圈组成。由高频天线4的HF接收线圈 还将从进动的核自旋出发的交变场,即,通常由一个或多个高频脉冲和一个或 多个梯度脉冲组成的脉冲序列引起的核自旋回波信号,转换为电压(测量信号), 该电压通过放大器7传输到高频系统22的高频接收信道8、8′。高频系统22还包 括发送信道9,在该发送信道中产生用于激励核磁共振的高频脉冲。在此在序列 控制器18中将各个高频脉冲根据由设备计算机20规定的脉冲序列数字地作为复 数的序列表示。该数字序列作为实部和作为虚部分别通过输入端12传输到高频 系统22中的数字模拟转换器(DAC)并且从该数字模拟转换器传输到发送信道9。 在发送信道9中将脉冲序列加调制到高频载波信号,其基频相应于测量体积中核 自旋的共振频率。通过放大器28将调制的脉冲序列传输到高频天线4的HF发送线 圈。

从发送运行到接收运行的切换通过发送接收转换器6进行。高频天线4的HF 发送线圈将用于激励核自旋的高频脉冲入射到测量体积M中并且通过HF接收线 圈采集所产生的回波信号。将相应获得的核共振信号在高频系统22的接收信道 的第一解调器8′中相位敏感地解调到中间频率并且在模拟数字转换器(ADC) 中数字化。还将该信号解调到频率0。到频率0的解调和到实部和虚部的分离按 照数字域中的数字化在第二解调器8中进行,该第二解调器将解调的数据通过输 出端11输出到图像计算机17。通过图像计算机17从这样获得的测量数据中重建 MR图像。测量数据、图像数据和控制程序的管理通过设备计算机20进行。序列 控制器18根据规定利用控制程序控制各个期望的脉冲序列的产生和k空间的相 应采集。序列控制器18在此特别控制时间正确地接通梯度、以定义的相位振幅 发送高频脉冲以及接收核共振信号。用于高频系统22和序列控制器18的时间基 础由合成器19提供。例如存储在DVD 21上的、用于产生MR图像的相应的控制 程序的选择以及产生的MR图像的显示通过终端13来进行,该终端包括键盘15、 鼠标16和显示屏14。

也称为视野(FoV)的测量体积M在硬件侧受到B0场均匀性和梯度场的线性 的限制。在该测量体积之外(即在其中B0场具有非均匀性并且梯度场具有非线 性的区域中)的测量导致极大失真,即,检查对象的布置在测量体积M外部的 区域在磁共振成像中不是出现在其实际所位于的位置上,而是在与之偏移的位 置上。在具有例如60cm的管直径的磁共振断层造影设备的情况下,测量体积M 通常具有例如50cm的直径,即,在沿着断层造影仪的内周的边缘区域中在大约 5cm的区域中出现失真。然而例如患者的手臂可能位于该区域中。由于失真,患 者手臂的位置错误地反映在磁共振记录中。由此在该区域中的磁共振记录不可 应用于MR-PET混合系统中的人的衰减校正。在该边缘区域中出现的失真取决于 与额定值的场偏差dBg或dB0并且取决于梯度场强G。该关系在Bakker CJ等人的 Analysis of machine-dependent and object-induced geometric distortion in 2DFT MR imaging,Magn Reson Imaging,1992,10(4):597-608中是公知的。以下的等式示例 性描述了具有在z方向上的层选择、在y方向上的相位编码和在z方向上的频率编 码的二维磁共振数据采集。相位编码方向、频率编码方向和层选择方向是可以 自由选择的并且仅将轴位置(Achsenlage)与等式匹配。

z1=z+dBgz(x,y,z)/Gz+dB0(x,y,z)/Gz    (2)

x1=x+dBgx(x,y,z)/Gx+dB0(x,y,z)/Gx    (3)

y1=y+dBgy(x,y,y)/Gy                    (4)

坐标(x,y,z)表示实际的位置并且坐标(x1,y1,z1)表示失真的位置。

图3在接通在x方向上的Gx=10mT/m读出梯度的情况下以冠状截面图示 出了对由于梯度场(图3a)、B0场(图3b)和两个场的叠加(图3c)产生的、 以及以横向截面图示出了由于梯度场(图3d)、B0场(图3e)和两个场的叠加 (图3f)产生的在x方向上的失真的仿真。在图3中利用不同的填充图案 (Füllmustern)标出了失真。其中基本上不发生失真的区域不包含图案,具有 正的失真的区域用点示出并且具有负的失真的区域用阴影示出。在各个区域内 部,失真可以具有不同的值。在没有图案的区域中,即在基本上不具有失真的 区域中,失真例如小于+/-1mm。在用点示出的区域中失真例如为+1mm至 +20mm或者甚至更多。在阴影示出的区域中失真例如为-1mm至-20mm或者甚 至更多。失真通常连续地变化,即,失真在从对称中心向外部的区域中衰减, 其中图3中的对称中心例如位于x=30,y=30并且z=30处。

因为梯度场的非线性dBg随着梯度场强而成比例变化,所以可以有针对地 减小或补偿对于特定的区域或位置的失真,如以下示出的。成立:

dBgx=c(x,y,z)·Gx,         (5)

其中c(x,y,z)表示在位置x,y,z处的相对的梯度误差并且Gx表示梯度场强。 然而B0场非均匀性独立于梯度强度而保持恒定。dBgx/Gx项由此是恒定的并且独 立于梯度场强。但是dB0/Gx项是可以随着梯度场强改变的。按照本发明,由此 这样叠加磁场,使得在预定的位置或预定的区域中,梯度场的非线性和B0场非 均匀性破坏性地叠加。在以下示例性地对于在x方向上的读出梯度与在z方向 上的层选择来描述这点。如果存在最佳的梯度强度Gx_opt(对于该梯度强度,在 预定位置或在预定区域之内失真为零),则磁场的所要求的破坏性的叠加得以实 现。在x方向上失真为零的情况下成立:

x1=x

由此有:

Gx_opt=-dB0(x,y,z)/c(x,y,z)     (6)

如果如等式(6)中所描述地那样选择梯度场强Gx,则对于预定位置或预 定区域得到明显放大的视野,即,在该区域失真极大减少。图4示例性地示出 在x方向上具有按照等式(6)所确定的读出梯度Gx=4.3mT/m的读出梯度的情 况下,仿真的失真。与图3类似地,图4a以冠状视图示出了由于梯度场而产生 的失真,图4b以冠状图示出了由于B0场产生的失真并且图4c示出了在两个场 叠加的情况下在x方向上的失真。相应地,图4d以横截面图示出了由于梯度场 产生的失真,图4e以横截面图示出了由于B0场产生的失真并且图4f以横截面 图示出了由于两个场叠加所产生的失真。在图4c和4f中箭头分别标出的位置上, 梯度场的非线性与B0场的非均匀性恰好这样叠加,使得失真在那里近似为零。

图5和图6示出了借助结构模体51的实验结果,所述结果确定如下可能性: 梯度的非线性与B0场的非均匀性破坏性地叠加。图5和图6示出具有不同梯度 极化的横截面。在最佳选择梯度强度(图6)的情况下梯度的非线性和B0场非 均匀性得到补偿并且由此导致非常小的失真,而在反向的梯度极化的情况下失 真极大加强。布置在x=30cm处的断层造影仪管的边缘处的圆柱形的结构模体 51,在不利地选择Gx=-1.06mT/m的读出梯度的情况下如图5所示表现出极大 失真。在最佳选择读出梯度例如Gx=+1.06mT/m的情况下模体对象51和其结构 即使在断层造影仪的边缘区域中也表现出小的失真,如图6所示。

前面描述的方法例如可以有利地应用于MR-PET混合系统的人的衰减校 正。结合图2描述的方法导致放大的基于磁共振的视野并且由此即使利用在磁 共振设备的通常特定的视野之外的磁共振数据也支持MR-PET衰减校正。为此 如在步骤201中所示,首先确定磁共振设备的B0场和梯度场,以便确定磁共振 设备的B0场非均匀性和相对的梯度场。然后在步骤202中确定层选择梯度的和 读出梯度的梯度强度,由此在期望的位置上梯度场的非线性和B0场非均匀性被 破坏性地叠加。在步骤203中在使用计算的梯度场的情况下,拍摄横截面。在 步骤204从横向的磁共振图像中,确定检查对象的位置和横截面。步骤202-204 必要时可以对于不同期望的位置先后进行,以便尽可能精确地确定在磁共振设 备中检查对象的整个布置。在步骤205从检查对象的所确定的位置和所确定的 横截面中,确定对于PET拍摄的衰减校正。最后在步骤206中采集PET数据并 且在使用衰减校正的条件下从中计算PET记录。

尽管在前面的描述中描述了示例性的实施方式,但是可以按照其他的实施 方式来实现不同的修改。例如利用本发明的前面描述的方法的三维磁共振数据 采集也是可以的。因为在这种情况下层选择通过附加的相位编码来代替,所以 取消在等式(2)至(4)中的在层选择方向上的B0项。由此取消了在上面描述 的方法中的一个自由度,然而该自由度可以置换地补偿。

在前面描述的方法中,通过磁场线圈和梯度线圈产生的磁场的形状假定是 给定的并且为了计算最佳的梯度场,在期望的位置处,该场不完美性导致破坏 性的叠加。替换地,存在如下可能性:硬件方面修改梯度线圈的结构,使得梯 度场的非线性最佳地克服主磁场的非均匀性。相应地,还可以通过修改磁场线 圈或铁匀场(Eisenshims)使得B0场非均匀性与梯度场的非线性一致。

附图标记列表

1     基本场磁铁

2     匀场线圈

3     梯度场系统

4     高频天线,组件线圈

5     磁共振设备

6     发送接收转换器

7     放大器

8     解调器

8′   解调器

9     发送信道

10    控制装置

11    输出端

12    输入端

13    终端

14    显示屏

15    键盘

16    鼠标

17    图像计算机

18    序列控制器

19      合成器

20      设备计算机

21      数据载体

22      高频系统

23      检查台

24-26   放大器

27      控制

28      放大器

51      部分区域

201-206 步骤

U       检查对象

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号