首页> 中国专利> 一种高锆含量的塑性ZrAlFe块体非晶合金及其制备方法

一种高锆含量的塑性ZrAlFe块体非晶合金及其制备方法

摘要

本发明公开了一种高锆含量的塑性ZrAlFe块体非晶合金,该合金的化学成分为Zr

著录项

  • 公开/公告号CN102392200A

    专利类型发明专利

  • 公开/公告日2012-03-28

    原文格式PDF

  • 申请/专利权人 北京航空航天大学;

    申请/专利号CN201110359331.0

  • 发明设计人 张涛;花能斌;李然;

    申请日2011-11-14

  • 分类号C22C45/10;

  • 代理机构北京永创新实专利事务所;

  • 代理人李有浩

  • 地址 100191 北京市海淀区学院路37号

  • 入库时间 2023-12-18 04:55:43

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-01-05

    未缴年费专利权终止 IPC(主分类):C22C45/10 授权公告日:20130605 终止日期:20161114 申请日:20111114

    专利权的终止

  • 2013-06-05

    授权

    授权

  • 2012-12-26

    著录事项变更 IPC(主分类):C22C45/10 变更前: 变更后: 申请日:20111114

    著录事项变更

  • 2012-05-09

    实质审查的生效 IPC(主分类):C22C45/10 申请日:20111114

    实质审查的生效

  • 2012-03-28

    公开

    公开

说明书

技术领域

本发明涉及一种块体非晶合金材料,更具体地说,是一种具有高锆含量和良好塑性 的Zr-Al-Fe系块体非晶合金及其制备方法。

背景技术

非晶合金是组成原子排列不呈周期性和对称性的一类新型合金材料。非晶合金的特 殊的微观结构赋予了它们优越的力学、物理及化学性能,使得非晶合金在许多领域具有 应用潜力。锆基非晶合金具有高强度、高硬度、高断裂韧性和优异的耐腐蚀性能,因而 受到人们广泛的关注和研究,尤其是在结构材料和生物材料领域的应用。锆基非晶合金 在模拟人体溶液中具有与传统生物材料相当的极化阻力,具有很高的耐腐蚀性与良好的 生物相容性。另外,锆基非晶合金还具有高的弹性极限和较低的弹性模量,如弹性极限 为2%左右(医用不锈钢仅为0.3%),弹性模量为70~100GPa(钛及钛合金为110~ 125GPa,医用316L不锈钢为200GPa),比目前常用的医用金属材料更接近自然骨 (自然骨的弹性极限约为1%,弹性模量为20~40GPa),这使得锆基非晶合金在人 工关节,股骨头支撑体及牙科种植体等生物医用方面具有广阔的应用前景。

然而,许多锆基非晶合金都含有对人体毒性较大的镍和铜元素,在使用过程中由于 腐蚀溶出除了会对人体产生过敏反应外,还存在着致畸、致癌的危险性,严重威胁人体 健康。许多国家对日用和医用金属材料中镍含量的限制越来越严格,标准文件中所允许 的最高镍含量也越来越少。另外,非晶合金较低的塑性制约了其在结构材料领域的应用。

发明内容

为了降低锆基非晶合金的生物毒性,以及提高非晶合金塑性,本发明开发了一种 ZrAlFe块体非晶合金。通过在Zr-Al-Fe系非晶合金中增加锆的含量(锆的原子百分含 量在67.5%以上),来改善非晶合金的塑性,降低其弹性模量,使其具有更好的力学生 物相容性;采用Fe元素降低了合金的成本。

本发明是一种高锆含量的塑性ZrAlFe块体非晶合金,该合金由Zr、Al和Fe三种 元素组成,所述Zr的原子百分含量在67.5%以上;ZrAlFe块体非晶合金的化学成分 为ZraAlbFec,a的原子百分比为67.5~75,b的原子百分比为5~17.5,c的原子百 分比为12.5~22.5,且a+b+c=100。

本发明采用铜模铸造法制备高锆含量的塑性ZrAlFe块体非晶合金,其包括有下列 步骤:

步骤一:配料

按ZraAlbFec的名义成分称取各元素,其中锆(Zr)的质量百分比纯度为99.8%; 铁(Fe)的质量百分比纯度为99.8%;铝(Al)的质量百分比纯度为99.9%;

步骤二:熔炼制ZraAlbFec母合金

将步骤一称得的所需原料放入真空冶炼炉中;

调节真空冶炼炉的真空室的真空度2×10-3Pa~5×10-3Pa,然后充高纯氩气使 真空室的真空度至0.1×105Pa~0.8×105Pa;

经电弧熔炼120~300s后,断弧形成第一合金锭;

翻转第一合金锭,经电弧熔炼120~300s后,断弧形成第二合金锭;

翻转第二合金锭,经电弧熔炼120~300s后,断弧,随炉冷却,取出,制得ZraAlbFec母合金;

步骤三:铜模铸造法制备ZraAlbFec块体非晶合金试样

将步骤二制备得到的ZraAlbFec母合金放入快速凝固感应炉中;

调节感应炉的真空室的真空度2×10-3Pa~5×10-3Pa,然后充高纯氩气使真空 室的真空度至0.1×105Pa~0.8×105Pa;

在感应温度1300~1500K下熔炼时间1~3min后喷射入铜模中,并随铜模冷 却即制得ZraAlbFec块体非晶合金棒材。

本发明Zr-Al-Fe块体非晶合金的优点在于:

①本发明的Zr-Al-Fe块体非晶合金具有较高的非晶形成能力和热稳定性,具有宽的过 冷液相区,过冷液相区为27~57K。

②本发明的Zr-Al-Fe块体非晶合金中锆的原子百分含量在67.5%以上,增强了该块 体非晶合金对多种酸、碱和盐的耐腐蚀性,而且降低了合金的比重。

③本发明的Zr-Al-Fe块体非晶合金具有良好的塑性,其室温压缩塑性变形量高于 50%,具有较低的模量,力学生物相容性较好。制得的ZraAlbFec块体非晶合金的室 温压缩力学性能,屈服强度为1370~1750MPa,弹性极限为2.0%,杨氏模量为 70~86GPa,塑性变形量为55~75%。

④本发明的Zr-Al-Fe块体非晶合金组元简单,且不含有对人体毒性较大的镍、钴和铜 元素,潜在生物毒性大大降低。制得的ZraAlbFec块体非晶合金的电化学性能,在模 拟人体溶液中的开路电位为-350~-150mV,孔蚀电位为200~550mV,钝化 区电位为450~750mV,钝化电流密度为10-2A/m2数量级。

附图说明

图1是本发明制得的Zr70Al12.5Fe17.5块体非晶合金、Zr72.5Al10Fe17.5块体非晶合金、 Zr75Al7.5Fe17.5块体非晶合金的XRD图谱。

图2是本发明制得的Zr70Al12.5Fe17.5块体非晶合金、Zr72.5Al10Fe17.5块体非晶合金、 Zr75Al7.5Fe17.5块体非晶合金的DSC曲线。

图3是本发明制得的Zr70Al12.5Fe17.5块体非晶合金、Zr72.5Al10Fe17.5块体非晶合金、 Zr75Al7.5Fe17.5块体非晶合金的室温压缩应力应变曲线。

图4是本发明制得的Zr70Al12.5Fe17.5合金在模拟人体溶液中的阳极极化曲线。

具体实施方式

下面将结合附图和实施例对本发明做进一步的详细说明。

本发明是一种高锆含量的塑性ZrAlFe块体非晶合金,该合金由Zr、Al和Fe三种 元素组成,化学成分为ZraAlbFec,a的原子百分比为67.5~75,b的原子百分比为5~ 17.5,c的原子百分比为12.5~22.5,且a+b+c=100。

制备本发明的一种高锆含量的塑性Zr-Al-Fe块体非晶合金包括有下列步骤:

步骤一:配料

按ZraAlbFec的名义成分称取各元素,其中锆(Zr)的质量百分比纯度为99.8%; 铁(Fe)的质量百分比纯度为99.8%;铝(Al)的质量百分比纯度为99.9%;

步骤二:熔炼制ZraAlbFec母合金

将步骤一称得的所需原料放入真空冶炼炉中;

调节真空冶炼炉的真空室的真空度2×10-3Pa~5×10-3Pa,然后充高纯氩气使 真空室的真空度至0.1×105Pa~0.8×105Pa;

经电弧熔炼120~300s后,断弧形成第一合金锭;

翻转第一合金锭,经电弧熔炼120~300s后,断弧形成第二合金锭;

翻转第二合金锭,经电弧熔炼120~300s后,断弧,随炉冷却,取出,制得ZraAlbFec母合金;

在本发明中,熔炼合金锭的次数可以为3~5次,是为了保证化学成分为ZraAlbFec合金锭内部成分的均匀。

步骤三:铜模铸造法制备ZraAlbFec块体非晶合金试样

将步骤二制备得到的ZraAlbFec母合金放入快速凝固感应炉中;

调节感应炉的真空室的真空度2×10-3Pa~5×10-3Pa,然后充高纯氩气使真空 室的真空度至0.1×105Pa~0.8×105Pa;

在感应温度1300~1500K下熔炼时间1~3min后喷射入铜模中,并随铜模冷 却即制得ZraAlbFec块体非晶合金棒材。

将铜模铸造制得的ZraAlbFec块体非晶合金棒材截取其纵剖面,进行X射线衍射测 试;从铸态圆棒纵剖面截取少量样品,利用差示扫描量热仪(DSC)进行热分析;从圆 棒上截取至少5段规格为2mm(直径)×4mm(高度)的非晶合金棒材,利用万能 试验机测试其室温静态压缩力学性能(在本发明中,材料的压缩力学性能采用Instron 设备测试);采用电化学工作站测试非晶合金在模拟人体溶液中的阳极极化曲线。

实施例1:

采用铜模铸造法制备直径为1.5mm的Zr70Al12.5Fe17.5块体非晶合金

步骤一:配料

按所Zr70Al12.5Fe17.5的名义成分称取原料;

其中,锆(Zr)的质量百分比纯度为99.8%;铁(Fe)的质量百分比纯度为99.8%; 铝(Al)的质量百分比纯度为99.9%;

步骤二:熔炼制Zr70Al12.5Fe17.5母合金

将步骤一称得的原料放入真空熔炼炉中;

调节真空冶炼炉的真空室的真空度5×10-3Pa,然后充高纯氩气使真空室的真空 度至0.5×105Pa;

经电弧熔炼240s后,断弧形成第一合金锭;

翻转第一合金锭,经电弧熔炼240s后,断弧形成第二合金锭;

翻转第二合金锭,经电弧熔炼240s后,断弧形成第三合金锭;

翻转第三合金锭,经电弧熔炼240s后,断弧,随炉冷却,取出,制得Zr70Al12.5Fe17.5母合金;

步骤三:制备直径为1.5mm的Zr70Al12.5Fe17.5块体非晶合金

将步骤二制得的母合金放入快速凝固感应炉中;

调节感应炉的真空室的真空度5×10-3Pa,然后充高纯氩气使真空室的真空度至 0.5×105Pa;

在感应温度1500K下熔炼时间2min后喷射入铜模中,并随铜模冷却即制得直 径1.5mm的Zr70Al12.5Fe17.5块体非晶合金棒材。

步骤四:用X射线衍射法表征块体非晶的结构

将实施例1制得的Zr70Al12.5Fe17.5块体非晶合金棒材截取其其纵剖面,进行X射线 衍射测试,其X射线衍射图谱见图1。图中横坐标为2θ角度,纵坐标为衍射强度 (intensity);从衍射图谱中可以看出该样品没有明显的晶化峰,为非晶结构。

步骤五:利用差示扫描量热仪(DSC)进行热分析

将实施例1制得的Zr70Al12.5Fe17.5块体非晶合金棒材截取其心部小块区域,对其进 行热分析测试,获得热力学参数。其DSC曲线见图2,图中横坐标为温度(单位K); 纵坐标为热量,向下方向为放热(Exothermic),其玻璃转化温度(Tg)、晶化温度(TX)、 过冷液相区(ΔTX=TX-Tg)、熔化温度(Tm)、液相线温度(Tt)、约化玻璃转变温 度(Trg)等参数列于表1。

步骤六:采用力学性能试验机测试Zr70Al12.5Fe17.5块体非晶合金的室温压缩力学性 能,其压缩过程的应力应变曲线如图3所示。图中横坐标为工程应变(Engineering Strain),纵坐标为工程应力(Engineering Stress),可以看出该合金屈服强度为1700 MPa,弹性极限为2.0%,杨氏模量为82GPa,塑性变形量为60%。

步骤七:采用电化学工作站测试Zr70Al12.5Fe17.5块体非晶合金在模拟人体溶液中的 阳极极化曲线,如图4所示。图中横坐标为电位(Potential);纵坐标为电流密度 (Current Density),可以看出该合金在模拟人体溶液中的开路电位为-215mV,孔 蚀电位为500mV,钝化区电位为715mV,钝化电流密度为10-2A/m2数量级。所述 模拟人体溶液(溶剂为去离子水)由8g/L NaCl、0.2g/L KCl、1.15g/L Na2HPO4和0.2g/L KH2PO4组成。

采用实施例1的制备方法制得下表所列化学成分为ZraAlbFec块体非晶态合金的临 界尺寸、热力学参数:

实施例2:

该实施例采用铜模铸造法制备直径为1.5mm的Zr72.5Al10Fe17.5块体非晶合金。

步骤一:配料

按Zr72.5Al10Fe17.5的名义成分称取原料;

其中,锆(Zr)的质量百分比纯度为99.8%;铁(Fe)的质量百分比纯度为99.8%; 铝(Al)的质量百分比纯度为99.9%;

步骤二:熔炼制Zr72.5Al10Fe17.5母合金

将步骤一称得的原料放入真空熔炼炉中;

调节真空冶炼炉的真空室的真空度3×10-3Pa,然后充高纯氩气使真空室的真空 度至0.8×105Pa;

经电弧熔炼300s后,断弧形成第一合金锭;

翻转第一合金锭,经电弧熔炼120s后,断弧形成第二合金锭;

翻转第二合金锭,经电弧熔炼120s后,断弧,随炉冷却,取出,制得Zr72.5Al10Fe17.5母合金;

步骤三:制备直径为1.5mm的Zr72.5Al10Fe17.5块体非晶合金

将步骤二制得的母合金放入快速凝固感应炉中;

调节感应炉的真空室的真空度5×10-3Pa,然后充高纯氩气使真空室的真空度至 0.5×105Pa;

在感应温度1350K下熔炼时间3min后喷射入铜模中,并随铜模冷却即制得 Zr72.5Al10Fe17.5块体非晶合金棒材。

步骤四:用X射线衍射法表征块体非晶的结构

将实施例2制得的Zr72.5Al10Fe17.5块体非晶合金棒材截取其其纵剖面,进行X射线 衍射测试,其X射线衍射图谱见图1。从衍射图谱中可以看出该样品没有明显的晶化峰, 为非晶结构。

步骤五:利用差示扫描量热仪(DSC)进行热分析

将实施例2制得的Zr72.5Al10Fe17.5块体非晶合金棒材截取其心部小块区域,对其进 行热分析测试,获得热力学参数。其DSC曲线见图2,其玻璃转化温度(Tg)、晶化温 度(Tx)、过冷液相区(ΔTx)、熔化温度(Tm)、液相线温度(T1)、约化玻璃转变温度 (Trg)等参数列于表1。

步骤六:采用力学性能试验机测试Zr72.5Al10Fe17.5块体非晶合金的室温压缩力学性 能,其压缩过程的应力应变曲线如图3所示。可以看出该合金屈服强度为1510MPa, 弹性极限为2.0%,杨氏模量为75GPa,塑性变形量大于55%。

步骤七:采用电化学工作站测试Zr72.5Al10Fe17.5块体非晶合金在模拟人体溶液中的 阳极极化曲线。可以看出该合金在模拟人体溶液中的开路电位为-250mV,孔蚀电位 为470mV,钝化区电位为720mV,钝化电流密度为10-2A/m2数量级。所述模拟人 体溶液(溶剂为去离子水)由8g/L NaCl、0.2g/L KCl、1.15g/L Na2HP04和 0.2g/L KH2PO4组成。

实施例3:

该实施例采用铜模铸造法制备直径为1mm的Zr75Al7.5Fe17.5块体非晶合金。

步骤一:配料

按Zr75Al7.5Fe17.5的名义成分称取原料;

其中,锆(Zr)的质量百分比纯度为99.8%;铁(Fe)的质量百分比纯度为99.8%; 铝(Al)的质量百分比纯度为99.9%;

步骤二:熔炼制Zr75Al7.5Fe17.5母合金

将步骤一称得的原料放入真空熔炼炉中;

调节真空冶炼炉的真空室的真空度4×10-3Pa,然后充高纯氩气使真空室的真空 度至0.5×105Pa;

经电弧熔炼180s后,断弧形成第一合金锭;

翻转第一合金锭,经电弧熔炼180s后,断弧形成第二合金锭;

翻转第二合金锭,经电弧熔炼180s后,断弧,随炉冷却,取出,制得Zr75Al7.5Fe17.5母合金;

步骤三:制备直径为1mm的Zr75Al7.5Fe17.5块体非晶合金

将步骤二制得的母合金放入快速凝固感应炉中;

调节感应炉的真空室的真空度5×10-3Pa,然后充高纯氩气使真空室的真空度至 0.5×105Pa;

在感应温度1400K下熔炼时间2min后喷射入铜模中,并随铜模冷却即制得直 径1mm的Zr75Al7.5Fe17.5块体非晶合金棒材。

步骤四:用X射线衍射法表征块体非晶的结构

将实施例3制得的Zr75Al7.5Fe17.5块体非晶合金棒材截取其其纵剖面,进行X射线 衍射测试,其X射线衍射图谱见图1。从衍射图谱中可以看出该样品没有明显的晶化峰, 为非晶结构。

步骤五:利用差示扫描量热仪(DSC)进行热分析

将实施例3制得的Zr75Al7.5Fe17.5块体非晶合金棒材截取其心部小块区域,对其进 行热分析测试,获得热力学参数。其DSC曲线见图2,其玻璃转化温度(Tg)、晶化温 度(Tx)、过冷液相区(ΔTx)、熔化温度(Tm)、液相线温度(T1)、约化玻璃转变温度 (Trg)等参数列于表1。

步骤六:采用力学性能试验机测试Zr75Al7.5Fe17.5块体非晶合金的室温压缩力学性 能,其压缩过程的应力应变曲线如图3所示。可以看出该合金屈服强度为1390MPa, 弹性极限为2.0%,杨氏模量为70GPa,塑性变形量大于65%。

步骤七:采用电化学工作站测试Zr75Al7.5Fe17.5块体非晶合金在模拟人体溶液中的 阳极极化曲线。可以看出该合金在模拟人体溶液中的开路电位为-300mV,孔蚀电位 为450mV,钝化区电位为750mV,钝化电流密度为10-2A/m2数量级。所述模拟人 体溶液(溶剂为去离子水)由8g/L NaCl、0.2g/L KCl、1.15g/L Na2HPO4和 0.2g/L KH2PO4组成。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号