首页> 中国专利> 科氏质量流量计测量夹气液体流量的模型法

科氏质量流量计测量夹气液体流量的模型法

摘要

本发明公开了一种科氏质量流量计测量夹气液体流量的模型法。测量方法包括有如下三个基本步骤:1)测量数据:采集压力值、瞬时质量流量、介质密度和介质温度数据;2)建立模型:建立科氏质量流量计测得的密度与夹气液体流动密度的关系模型,建立科氏质量流量计响应模型,建立夹气液体漂移通量模型;3)测量流量:估算夹气液体流动密度、体积流量和含气率,应用漂移通量模型计算气体、液体的瞬时体积流量和质量流量。本发明具有结构简单,安装方便,实时性好,可靠,易于实现等优点。适用于夹气液体的测量。本发明可用于夹气液体流量的测量。在含气率小于8%时,液相流量最大相对误差为5%,气相流量最大相对误差为10%。

著录项

  • 公开/公告号CN102346058A

    专利类型发明专利

  • 公开/公告日2012-02-08

    原文格式PDF

  • 申请/专利权人 中国石油大学(华东);

    申请/专利号CN201010244309.7

  • 申请日2010-07-29

  • 分类号G01F1/86(20060101);

  • 代理机构

  • 代理人

  • 地址 257061 山东省东营市北二路271号

  • 入库时间 2023-12-18 04:17:16

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-09-21

    未缴年费专利权终止 IPC(主分类):G01F1/86 授权公告日:20140709 终止日期:20150729 申请日:20100729

    专利权的终止

  • 2014-12-31

    发明专利更正 卷:30 号:28 页码:扉页 更正项目:专利权人地址邮政编码 误:257061 正:266580 申请日:20100729

    发明专利更正

  • 2014-07-09

    授权

    授权

  • 2013-01-02

    实质审查的生效 IPC(主分类):G01F1/86 申请日:20100729

    实质审查的生效

  • 2012-12-19

    著录事项变更 IPC(主分类):G01F1/86 变更前: 变更后: 申请日:20100729

    著录事项变更

  • 2012-02-08

    公开

    公开

查看全部

说明书

技术领域

本发明属于流体测量技术领域,具体涉及到一种科氏质量流量计测量夹气液体流量的模 型法。

背景技术

夹气液体广泛存在于石油、化工、冶金、能源、动力、轻工等部门,其应用的普遍性及 重要性促使该领域研究工作的迅速发展。夹气液体是指管道内流体由于设计或流动工况导致 的液体和气体之间的转换或包含两种状态的介质。夹气液体的流量是气液两相流系统中具有 重要科学和工程意义的参数,对气液两相流应用系统的计量、控制、可靠性和效率等均具有 重大影响,长期以来,一直是两相流领域的重要研究方向。

流量是很多应用系统中具有重要科学和工程意义的参数,对应用系统的计量、控制、可 靠性和效率等均具有重大影响,长期以来,一直是应用系统领域的重要研究方向。国内外学 者对夹气液体流量测量方法进行了大量的研究,其中主要方法有单相流量计法、相关测量法、 节流式流量计法等。

单相流量计法是将单相流流量测量仪表应用到夹气液体流量测量中的方法,由于这些单 相流量计在理论研究和实际应用上都比较成熟,使得该方法在工业应用中更容易被接受。根 据单相流量计组合的不同,该方法可以分为两个单相流量计组合法、单相流量计与密度计组 合法和波动信号特征值法等。

相关测量法是以相关技术为基础构成的两相流流量测量方法。理论上该方法可用于测量 任何流体系统的流量,而且测量流速的范围很宽,因此相关流量计法为解决两相流量测量提 供了一种强有力的技术手段。该技术的优点是可以采用不同的传感器来获得流体流动信号, 再配以其他测量手段,可构成各种流体流量测量系统,实现非接触式测量。但相关流量测量 技术目前仍存在一些问题需要进一步探讨,例如相关速度的物理意义仍不甚明确,互相关函 数峰值较难确定,相关流量计标定仍有一定难度等。

应用节流法测量夹气液体流量时,主要是根据单相流基本测量模型,在两相流数理模型 上对密度进行修正。按照不同的假设条件,国内外研究者建立了均相流模型、分相流模型、 Murdock关系式、Chisholm关系式、林宗虎关系式等数理模型。利用这些数理模型,一般先 求出混合密度,由节流式流量计测出差压,有时需要由其他元件测出干度或空隙率等参数, 再求出夹气液体流量。其中,均相流模型中的混合密度由气相密度和液相密度按照干度加权 获得;分相流模型中的混合密度由气相密度和液相密度按照空隙率加权获得。均相流模型和 分相流模型比较简单,但测量精度较低。为了提高求解精度,付出的代价就是增加其复杂性。 Murdock关系式、Chisholm关系式、林宗虎关系式中的密度修正公式相对复杂,密度修正公 式中的系数主要通过实验数据确定,但当实验装置或者应用条件不同时,密度修正公式略有 不同,且这些系数的物理含义很难解释。节流法涉及到节流元件处的差压值。对于夹气液体, 此差压值不是一个稳定的值,影响测量精度。

科氏质量流量计最初开发用于化学工业,科氏质量流量计特点是能够直接测量出流体的 质量流量而无需测量流体的密度。科氏质量流量计测量精度较高,与其他流量计量仪表相比, 科氏质量流量计具有0.2%的高精度、好的重复性、可测困难流体及非牛顿流体等优点。科氏 质量流量计因其极高的测量精度、可靠性及非常低的维护费用而广泛地被推广和应用到石油 石化及其它工业生产领域。然而,在很多应用领域中都存在着大量的夹气液体(或称为气液 两相流)。因此,夹带气体的气、液两相流体的流量测量就变得尤为重要。夹气液体对科氏质 量流量计测量性能有影响。尽管科氏质量流量计比起其他流量仪表在充满挑战性的两相流体 流量测量领域有更好的测量结果,但是这样的测量结果还是不能很好的满足石油石化及其它 工业生产领域的要求。

科氏质量流量计工作时,管内流体以一定速度流动,流动时产生的科氏力大小与流体质 量流量成比例。如果液流中存在气体,那么气体会占据管道一定的空间。多数情况下,管道 中分离的各相以不同的速度流动,往往是密度较小的轻质相比重质相有更高的就地速度,于 是在夹气液体中,气体总呈现出比液体流得快的倾向,即气相与液相间存在一定的滑脱。这 种滑脱速度的存在影响科氏质量流量计的响应。

另外,夹气液体(也称气液两相流)随着工况与环境的变化,呈现多种流态(也称流型)。 流型是影响夹气液体流量测量的因素之一。夹气液体由于存在各相的界面效应及相对速度, 相界面在时间及空间上都是随机可变的,所以,其流动特性较单相流复杂得多。在模型建立 的时候,需要考虑因气体与液体两相含量不同、相间相互作用不同等因素而导致的流型的改 变,建立基于流型的预测模型。漂移通量模型通过考虑夹气液体流动截面上速度分布、浓度 分布、气液相间相对滑动而提出,本发明公开了结合科氏质量流量计测量结果和漂移通量模 型测量夹气液体流量的方法。

发明内容

本发明的目的是提供一种科氏质量流量计用于夹气液体流量测量的模型法。本发明提供 的方法检测参数多,实时性好,可靠,易于实现。适用于含气液体的测量。

为此,本发明采用如下的技术方案:

基于模型法的科氏质量流量计用于夹气液体流量测量的装置,包括计量管道(1)、压力 传感器(2)、科氏质量流量计(3)、A/D转换卡(4)、计算机(5),在计量管道(1)上依次 设有压力传感器(2)、科氏质量流量计(3),A/D转换卡(4)与压力传感器(2)、科氏质量 流量计(3)相连,计算机(5)与A/D转换卡(4)相连。

本发明科氏质量流量计用于夹气液体流量测量的模型法,包括有如下基本步骤:

(1)测量数据。应用压力传感器测量管道瞬时压力,应用科氏质量流量计测量夹气液体瞬 时质量流量、密度和温度。

(2)建立模型。建立科氏质量流量计测得的密度ρm与夹气液体流动密度ρn的关系模 型;根据科氏质量流量计测得的瞬时质量流量Mt和夹气液体流动密度ρn建立科 氏质量流量计响应模型,建立夹气液体漂移通量模型。

(3)测量流量。根据ρn=a1·ρm+b1计算夹气液体流动密度,式中,ρm为科氏 质量流量计测得的密度,a1、b1为流动密度计算式系数,通过实验数据和上述步 骤2)离线确定,存储于计算机中,ρn为夹气液体流动密度。根据计算夹气液体视体积流量,式中,Mt为科氏质量流量计测得的瞬时质量流量,为夹气液体视体积流量。根据计算夹气液体体积流量,式中, a2、b2为夹气液体体积流量计算式系数,通过实验数据和上述步骤2)离线确定, 存储于计算机中,Qt为夹气液体体积流量。根据Vm=Qt/A计算夹气液体混 合速度,式中,A为管道截面积,Vm为夹气液体混合速度。根据 计算气体密度,式中,P为介质压力,由压力传感 器测得,T为介质温度,由科氏质量流量计测得,ρg为气体密度。根据 计算夹气液体含气率,式中,ρl为液体密度,存储于计算机中, Yg为夹气液体含气率。根据Vsg=(a3·Vm+b3)×Yg计算气体折算速度, 式中,a3、b3为气体折算速度计算式系数,通过实验数据和上述步骤2)离线确 定,存储于计算机中,Vsg为气体折算速度。根据Vsl=Vm-Vsg计算液体折 算速度,式中,Vsl为液体折算速度。根据Ql=VslA计算液体体积流量,式中, Ql为液体体积流量。根据Qg=VsgA计算气体体积流量,式中,Qg为气体 体积流量。根据Ml=Qlρl计算液体质量流量,式中,Ml为液体质量流量。

根据Mg=Qgρg计算气体质量流量,式中,Mg为气体质量流量。

上述步骤2)中的模型参数存储于计算机中,在上述步骤3)测量流量时,这些模型参数 直接从计算机中获取用来在线测量流量。

上述步骤中所述的液体为水、不同物化参数的油等。

本发明的有益效果及优点是,无需采用高效气液分离器进行气液分离,采用流量测量模 型与科氏质量流量计组合测量夹气液体流量。流量测量模型包括科氏质量流量计测得密度与 两相流流动密度的关联模型,科氏质量流量计测量夹气液体的响应模型,反映两相流流动状 态对测量影响和气液间滑脱的漂移通量模型。

该方法检测参数多,实时性好,易于实现。适用于含气液体的测量。

附图说明

图1为基于科氏质量流量计应用模型法测量夹气液体流量的测量装置结构示意图;

图2为夹气水流量修正方法流程图;

图3为夹气油流量修正方法流程图;

图4为夹气液体流动密度与科氏质量流量计测得密度关系模型;

图5为夹气水流量漂移通量模型;

图6为夹气水流量修正结果。

具体实施方式

基于科氏质量流量计的夹气液体流量测量装置具有计量管道(1),在计量管道(1)上依 次设有压力传感器(2)、科氏质量流量计(3),A/D转换卡(4)与压力传感器(2)、科氏质 量流量计(3)相连,计算机(5)与A/D转换卡(4)相连。

本实施例对气体体积流量从0.29m3/h到0.905m3/h,水质量流量为170Kg/min的夹气液 体流量应用模型法进行测量。

1)测量数据

应用压力传感器测量管道瞬时压力P,应用科氏质量流量计测量夹气液体瞬时质量流 量Mt、密度ρm和温度T。

2)建立模型

建立科氏质量流量计测得的密度ρm与夹气液体流动密度ρn的关系模型;根据科氏质 量流量计测得的瞬时质量流量Mt和夹气液体流动密度ρn建立科氏质量流量计响应模型。

夹气液体流动密度ρn与科氏质量流量计测得密度ρm关系模型如下:

ρn=a1·ρm+b1          (1)

在本实施例中,a1=1.78,b1=-0.7902,ρm由科氏质量流量计测得。

科氏质量流量计测量夹气水流量的响应模型如下:

Qt*=Mt/ρn---(2)

Qt=a2·Qt*+b2---(3)

在本实施例中,a2=2.1792,b2=-12.267,Mt由科氏质量流量计测 得,ρn由关系式(1)计算得到。

3)流量测量

含气率测量模型如下:

Yg=ρl-ρnρl-ρg---(4)

ρg=3.7933P273+T---(5)

其中,ρl=1.000g/cm3为水的密度,P为介质压力,由压力传感器测得,T为 介质温度,由科氏质量流量计测得。

夹气水流量漂移通量模型如下:

Vsg=(a3·Vm+b3)×Yg         (6)

Vm=Qt/A               (7)

在本实施例中,a3=0.9955,b3=0.0328,A=πd 2/4为管道截面 积,d为管道直径,Yg由关系式(4)计算得到,Qt由关系式(3)计算得到。

漂移通量模型中的a3称为状态分布系数。该状态分布系数与夹气液体的速度分布和浓 度分布有关。如果流通截面上浓度均匀,则a3=1;如果中心处浓度超过管壁处浓度,则 a3>1;反之则a3<1。夹气液体在传感器内流动时,气泡和液体的真实速度并不相同, 漂移通量模型用平均偏差速度b3表示气泡与液体间的滑脱速度。平均偏差速度取决于特定 的条件,包括气泡或液滴的大小、各相密度等。

夹气水流量测量模型如下:

Vsl=Vm-Vsg           (8)

Ql=VslA              (9)

Qg=VsgA              (10)

Ml=Qlρl             (11)

Mg=Qgρg             (12)

其中,Vm和Vsg分别由关系式(7)和(6)得到。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号