首页> 中国专利> 一种掺铒光纤超荧光光源泵浦激光器的温度补偿方法及其装置

一种掺铒光纤超荧光光源泵浦激光器的温度补偿方法及其装置

摘要

本发明属于光纤传感领域,尤其是一种掺铒光纤超荧光(SFS)光源泵浦激光器的温度补偿方法及其装置,其不同之处在于:温度探测单元实时探测光源内部的温度Tc,将温度信息传递至驱动控制单元;所述驱动控制单元根据储存在其中的SFS光源泵浦激光器工作电流补偿量随光源温度的函数关系,计算出所测温度Tc所对应的泵浦激光器工作电流补偿量ΔI;所述驱动控制单元立即驱动泵浦激光器,使其调整工作电流为I=I0+ΔI。本发明没有额外引入光学、电路器件,光路结构简单,功耗较低,控制简单,降低制作成本。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-06-05

    授权

    授权

  • 2012-02-15

    实质审查的生效 IPC(主分类):H01S3/102 申请日:20110715

    实质审查的生效

  • 2011-12-28

    公开

    公开

说明书

技术领域

本发明属于光纤传感领域,尤其是一种掺铒光纤超荧光(SFS)光源泵浦激光器的温度补 偿方法及其装置。

背景技术

光纤陀螺仪由于具有全固态、寿命长、可靠性高、体积小、质量轻等优点而成为主流惯 性仪表,而基于萨格奈克效应的干涉型光纤陀螺需要使用相干长度短的宽谱光源以减小光纤 环中的背向瑞利散射、偏振耦合、克尔效应等引起的相干误差和噪声,提高光纤陀螺的旋转 灵敏度。

干涉型光纤陀螺的旋转测量精度取决于光学标度因数(scale factor)的稳定性,光学 标度因数将萨格奈克相移Фs与旋转速率Ω通过下式联系起来:

Φs=2πLDλcΩ

式中:D和L分别为光纤陀螺线圈的直径和光纤长度,c为真空中的光速,为光源的平均 波长,光纤陀螺系统产生的Sagnac相移Фs正比于旋转速率Ω,标度因数为光纤陀 螺仪的旋转测量精度是由标度因数决定的,而标度因数的稳定性取决于光源平均波长的稳定 性,所以光源平均波长稳定度越高,光纤陀螺仪的测量精度就相对地越高。

超发光二极管(SLED)的光谱宽度和输出功率虽然能满足要求,但是由于半导体材料带 隙能的温度敏感性,平均波长变化较大,所以只能在中、低精度的光纤陀螺中使用。

与传统的光纤陀螺仪相比,高精度光纤陀螺仪在光路设计上的突出特征是采用1550nm SFS光源,SFS光源最主要的特点就是掺铒光纤稀土能级比半导体能级稳定,实验表明SFS光源 平均波长的温度稳定性比SLED至少大一个数量级。对于光源平均波长小于1ppm/℃的温度稳定 性要求而言,SLED温控系统比SFS光源更复杂,所以使用SFS光源也降低了光纤陀螺仪温度控 制精度要求。

虽然SFS光源平均波长稳定性优于SLED,但是SFS光源中掺铒光纤的吸收截面和发射截面 谱随温度变化,所以吸收系数和增益系数也会做出相应的改变,引起输出光谱平均波长的变 化;同样SFS光源的泵浦激光器效率和工作波长也随光源温度的变化也会发生微小变化,泵浦 光偏振态、输出端光反馈和光无源器件的温度相关损耗都会造成输出光谱平均波长的改变。 平均波长随这些因素的变化不是线性关系,并且变化系数有正有负,所以需要对影响平均波 长稳定性的各项因素进行优化。

为补偿SFS光源平均波长的温度稳定性,在SFS光源光路结构中使用长周期光纤光栅、啁 啾光纤光栅、光子带隙光纤滤波器,利用它们的衰减谱随温度变化的特性,补偿SFS光源平均 波长随温度的变化,上述三种补偿方法一方面增加了光路的复杂性,另一方面增加了光源的 功耗,而光纤陀螺系统中对功耗有极高的要求。在美国专利US 7269190 B2、US 7764718 B2 中,线性拟合SFS光源平均波长与掺铒光纤温度的函数关系,专利中只是在很小的温度范围内 使用此函数对光源实测平均波长做校准,对于光纤陀螺仪的工作温度范围来说,全温度范围 内平均波长随掺铒光纤温度的变化不是简单的线性关系,并未提出确切的补偿方法。

发明内容

本发明提出一种SFS光源泵浦激光器的温度补偿方法以及装置,根据SFS光源平均波长随 泵浦激光器工作电流、光源温度变化的关系,自动调整泵浦激光器的工作电流补偿量,补偿 由掺铒光纤温度、泵浦激光器工作波长、泵浦光偏振态、输出端光反馈和无源器件的温度相 关损耗等因素所引起的SFS光源平均波长的变化,能有效改善SFS光源平均波长温度稳定性。

本发明所采用的技术方法是:

一种掺铒光纤超荧光光源泵浦激光器的温度补偿方法,其不同之处在于:温度探测单元 实时探测光源内部的温度Tc,将温度信息传递至驱动控制单元;所述驱动控制单元根据储存 在其中的SFS光源泵浦激光器工作电流补偿量随光源温度的函数关系,计算出所测温度Tc 所对应的泵浦激光器工作电流补偿量ΔI;所述驱动控制单元立即驱动泵浦激光器,使其调整 工作电流为I=I0+ΔI。

按以上方案,所述SFS光源泵浦激光器工作电流补偿量随光源温度的函数关系获得的 方法包括如下步骤:

a.泵浦激光器工作电流为I0时,调整工作温度,测试光源的平均波长采用拟合方式 获得平均波长和温度的关系为调整温度采用在-40~80℃范围内以取自0.1℃-0.5 ℃内的某一固定温度间隔为步长来进行调整;

b.固定工作温度点,调整泵浦激光器工作电流为ΔI0,测试光源的平均波长变化量

c.有间隔地采样不同工作温度点,重复b步骤,获得不同温度对应的泵浦激光器工作电 流变化量和光源平均波长变化量;

d.采用拟合方式获得光源平均波长变化量、工作电流变化量与温度的关系为

ΔλΔI0=f2(Tc);

e.将所述步骤a和步骤d的拟合式相除,获得泵浦激光器工作电流补偿量随光源温度的 函数关系:

按以上方案,所述第b步骤可以由下述步骤替代:固定工作温度点,调整泵浦激光器工 作电流为I1=I0+ΔI′,测试光源的平均波长调整泵浦激光器工作电流为I2=I0-ΔI′,测 试光源的平均波长泵浦激光器工作电流变化量ΔI0=I1-I2,光源平均波长变化量

Δλ=λ1-λ2;

按以上方案,所述步骤a、步骤d中拟合方式采用多项式曲线拟合。

按以上方案,实时监测光源内部温度采用温度采样芯片进行检测。

按以上方案,所述步骤a中的所述调整温度采用在-40~80℃范围内以0.5℃为间隔进行 调整。

按以上方案,所述步骤c中的所述有间隔采样不同工作温度点采用在-40~80℃范围内以 10℃为间隔进行采样。

一种掺铒光纤超荧光光源泵浦激光器的温度补偿装置,包括有法拉第旋转反射镜、掺铒 光纤、泵浦信号合波器、泵浦激光器、隔离器、分光耦合器、温度探测单元,其不同之处在 于:所述泵浦激光器连接驱动控制单元,所述驱动控制单元包含有用于确定SFS光源工作温 度对应的泵浦激光器工作电流补偿量、并且驱动泵浦激光器进行实时调整的控制模块。

按以上方案,所述温度探测单元为连接在驱动控制单元后端的温度采样芯片。

按以上方案,所述控制模块中对泵浦激光器工作电流进行温度补偿的温度探测精度为 0.1℃。

本发明所涉及的一种SFS光源泵浦激光器的温度补偿方法以及装置,具有如下优点:

与现有的光学滤波器温度控制方法相比,本方法没有额外引入光学、电路器件,光路结 构简单,功耗较低,控制简单,降低制作成本。

本发明的温度补偿方法的比较灵活,不需专门针对不同型号SFS光源设计光学滤波器,能 有效改善SFS光源平均波长温度稳定性,提高光纤陀螺旋转灵敏度。

附图说明

图1是SFS光源光路结构及泵浦激光器的温度补偿单元示意图;

图2是SFS光源泵浦激光器工作电流没有温度补偿时平均波长随光源温度变化曲线;

图3是SFS光源平均波长随泵浦激光器电流变化系数与光源温度变化曲线;

图4是SFS光源泵浦激光器工作电流经补偿后随光源温度变化曲线;

图5是SFS光源泵浦激光器工作电流经过温度补偿后平均波长随光源温度变化曲线。

其中:

1.法拉第旋转反射镜        2.掺铒光纤

3.泵浦信号合波器          4.泵浦激光器

5.双级隔离器              6.分光耦合器

7.光电探测器PIN           8.驱动控制单元

9.光源温度采样芯片

具体实施方式

下面结合实施例和附图对本发明SFS光源泵浦激光器的温度补偿方法以及装置做出详细 说明。

本发明的一种SFS光源的温度补偿方法的工作原理如下:泵浦激光器工作波长、功率、偏 振态,光源输出端光反馈和无源器件的温度相关损耗等因素都会随着光源温度的变化而变化, 以上因素的变化都会引起光源平均波长发生改变,而使光源平均波长变化的最大因素是掺铒 光纤随温度变化的增益系数和吸收系数。泵浦激光器工作波长随温度的变化是由于其管芯温 度及尾纤的光纤光栅特性决定,而泵浦光偏振态、光源输出端光反馈和无源器件的温度相关 损耗等因素对光源平均波长影响只能优化,不能消除。改变泵浦激光器工作功率可以使输出 光谱平均波长发生有规律的变化,本发明就是把这些引起光源平均波长变化的因素作为一个 整体,通过调整不同温度时的泵浦激光器工作功率来补偿,对于实际操作来说,只能通过调 整泵浦激光器电流使其功率发生相应的改变。

如图1所示,本发明所涉及的SFS光源光路结构及泵浦激光器的温度补偿单元,包括有法 拉第旋转反射镜1尾纤连接掺铒光纤2,泵浦信号合波器3公共端连接掺铒光纤2的另一端,泵 浦信号合波器3泵浦端连接泵浦激光器4尾纤,泵浦信号合波器3信号端连接双级隔离器5输入 端、双级隔离器5输出端连接分光耦合器6,分光耦合器6大端(D端)为SFS光源输出端,分光 耦合器6小端(G端)连接光电探测器PIN 7,泵浦激光器4的管脚连接驱动控制单元8,温度 采样芯片9连接泵浦激光器驱动控制单元8。光电探测器PIN 7探测SFS光源输出功率,监控输 出功率是否正常。温度采样芯片9检测光源内部的温度并传送给驱动控制单元8,驱动控制单 元8的电可擦可编程只读存储器(EEPROM)中存储有泵浦激光器电流温度补偿算法,此算法根 据检测光源内部温度计算出泵浦激光器工作电流的补偿量,调整不同温度时泵浦激光器的工 作电流补偿量,减小光源平均波长随温度的变化。

本发明所涉及的一种掺铒光纤超荧光SFS光源泵浦激光器的温度补偿方法的控制方法,其 实现方案是:在泵浦激光器工作电流为定值的情况下,测试出SFS光源平均波长随温度的变化 关系,并测试不同温度时SFS光源平均波长随泵浦激光器工作电流的变化系数,进而推导出不 同温度时泵浦激光器工作电流补偿量,泵浦激光器驱动控制单元对泵浦激光器工作电流做出 实时调整,减小光源平均波长随温度的变化量。具体由如下几个步骤实现:

在光源内部温度为-40~80℃范围,泵浦激光器工作电流为I0时,每隔一定温度间隔(可 选择0.1℃-0.5℃内的某一固定温度间隔)为步长来测试SFS光源的平均波长,使用多项式拟 合平均波长随光源温度函数关系:其中,为SFS光源平均波长,Tc为光源温度, SFS光源平均波长随光源温度变化关系曲线如图2所示。

在光源内部温度为-40~80℃范围,如步骤1的泵浦激光器恒定电流值I0的基础上,适当的 改变泵浦激光器工作电流ΔI0,每隔10℃,测试不同温度时调整泵浦激光器电流ΔI后平均波 长变化量计算出不同温度时平均波长随工作电流的变化系数并使用多项式拟 合平均波长随电流变化系数与光源温度的函数关系:其中为泵浦激光 器电流变化ΔI0时平均波长变化量,Tc为光源温度。

为了提高温度补偿的精度,本发明可以采用在工作电流为I0的基础上分两步分别加ΔI′、 减ΔI′,这不是简单的加ΔI′或者减ΔI′,而是为了适当的增加工作电流变化范围。具体过程如 下:在光源内部温度为-40~80℃范围,调整泵浦激光器工作电流为I1=I0+ΔI′,测试光源的 平均波长再调整泵浦激光器工作电流为I2=I0-ΔI′,测试光源的平均波长每隔10 ℃,重复上述的调整泵浦激光器工作过程。采样不同工作温度点后,泵浦激光器工作电流变 化量ΔI0=I1-I2,光源平均波长变化量采用拟合方式获得平均波长变化量、电 流变化量与温度的关系为其中为泵浦激光器电流变化ΔI0时平均波长变化 量,Tc为光源温度。

把步骤1拟合曲线f1(Tc)和步骤2拟合曲线f2(Tc)左右分别做相除得到SFS光源泵浦激光器 工作电流补偿量随光源温度的函数关系:其中,ΔI为SFS光源温度为Tc 的泵浦激光器工作电流补偿量,并存储在驱动控制单元8的EEPROM中,SFS光源泵浦激光器工 作电流补偿量随光源温度的函数关系曲线就是泵浦激光器电流温度补偿方法的核心。

步骤2中,采用每隔10℃调整泵浦激光器,由于SFS光源平均波长随泵浦激光器电流变化 系数与光源温度变化在-40℃-80℃变化范围不是太大,所以温度采样间隔采用10℃为间隔也 不影响补偿精度。

步骤3中,SFS光源泵浦激光器工作电流经过温度补偿后,泵浦激光器工作电流为 I=I0+ΔI,其中,I为补偿后的泵浦激光器工作电流,I0为没有补偿时泵浦激光器工作电 流,ΔI为光源温度为Tc的泵浦激光器工作电流补偿量。

SFS光源平均波长随泵浦激光器电流变化系数与光源温度变化曲线如图3所示。

结合图1对本发明所涉及的一种掺铒光纤超荧光光源的温度补偿工作过程进一步描述,具 体如下:泵浦激光器在设置工作电流为I0的状态下进行工作,当温度发生变化之时,温度探 测单元(具体可采用探测芯片9)可以检测到光源内部的温度Tc,并且传递至驱动控制单元8, 此时驱动控制单元8 EEPROM根据储存在其中的SFS光源泵浦激光器工作电流补偿量随光源温 度的函数关系,计算出温度Tc所对应的泵浦激光器工作电流补偿量ΔI。驱动控制单元8立即 驱动泵浦激光器,使其工作电流I0调整为I=I0+ΔI。泵浦激光器工作电流发生调整后,其 功率相应发生改变,功率改变引起掺铒光纤增益系数发生相应的变化,因此SFS光源平均波长 也会相应发生变化。综上所述,泵浦激光器工作电流补偿量可以随着温度探测芯片9检测到的 温度,实时做出泵浦激光器工作电流的调整,从而有效改善SFS光源平均波长温度稳定性。

采用本发明的一种SFS光源的温度补偿方法,所述控制模块中对泵浦激光器工作电流进行 温度补偿的温度探测精度可以达到0.1℃,即只要有0.1℃的温度变化控制模块便会对泵浦激光 器工作电流进行温度补偿。补偿后测试得出如图5所示稳定的平均波长随光源温度变化曲线, 与图1中没有经过温度补偿的实验数据相比较,-40~80℃范围内光源平均波长随温度变化稳定 性大幅提高,平均波长稳定度约12ppm。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说, 在不脱离发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明 的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号