首页> 中国专利> 包含压电应力材料的自旋力矩转移磁性随机存取存储器单元结构

包含压电应力材料的自旋力矩转移磁性随机存取存储器单元结构

摘要

本发明提供一种包括压电材料(102)的磁性存储器单元(104、106、108)和操作所述存储器单元的方法。所述存储器单元包括堆叠,且所述压电材料可形成为所述堆叠中的层或邻近于单元堆叠的若干层的层。所述压电材料可用以在所述存储器单元的编程期间引发瞬时应力以减小所述存储器单元的临界切换电流。

著录项

  • 公开/公告号CN102171766A

    专利类型发明专利

  • 公开/公告日2011-08-31

    原文格式PDF

  • 申请/专利权人 美光科技公司;

    申请/专利号CN200980138787.5

  • 申请日2009-09-15

  • 分类号G11C11/16(20060101);

  • 代理机构11287 北京律盟知识产权代理有限责任公司;

  • 代理人宋献涛

  • 地址 美国爱达荷州

  • 入库时间 2023-12-18 03:17:32

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-08-20

    授权

    授权

  • 2011-10-12

    实质审查的生效 IPC(主分类):G11C11/16 申请日:20090915

    实质审查的生效

  • 2011-08-31

    公开

    公开

说明书

技术领域

本发明大体上涉及磁性随机存取存储器,且更明确地说,涉及自旋力矩转移磁性随机存取存储器(STT-MRAM)。

背景技术

此部分意在向读者介绍在下文描述和/或主张的可与本发明的各种方面相关的技术的各种方面。相信此论述在向读者提供背景信息以促进对本发明的各种方面的较佳理解方面有所帮助。因此,应理解,将以此角度阅读这些陈述,且不承认其为现有技术。

磁性随机存取存储器(MRAM)是基于磁阻的非易失性计算机存储器技术。MRAM在若干方面不同于易失性随机存取存储器(RAM)。因为MRAM是非易失性的,所以MRAM可在存储器装置不被供电时维持存储器内容。虽然非易失性RAM通常比易失性RAM慢,但MRAM具有可与易失性RAM的读取和写入响应时间相当的读取和写入响应时间。与将数据存储为电荷的典型RAM技术不同,MRAM数据是由磁阻元件存储。通常,磁阻元件是由两个磁性层组成,所述磁性层中的每一者保持一磁化。一个层(“针扎层”)的磁化在其磁定向上是固定的,且另一层(“自由层”)的磁化可通过由编程电流产生的外部磁场来改变。因此,所述编程电流的磁场可致使两个磁性层的磁定向平行(提供跨越所述层的较低电阻(“0”状态))或反平行(提供跨越所述层的较高电阻(“1”状态))。自由层的磁定向的切换和跨越所述磁性层的所得高电阻状态或低电阻状态提供了典型MRAM单元的写入操作和读取操作。

虽然MRAM技术提供非易失性和较快的响应时间,但MRAM单元在可缩放性方面受限且易受写入干扰影响。用以在跨越MRAM磁性层的高电阻状态与低电阻状态之间切换的编程电流通常较高。因此,当在MRAM阵列中排列多个单元时,导引到一个存储器单元的编程电流可在邻近单元的自由层中引发场变化。可使用自旋力矩转移技术来解决写入干扰的此潜在可能(也称为“半选问题”)。

常规自旋力矩转移MRAM(STT-MRAM)单元包括磁性隧道结(MTJ),所述磁性隧穿结(MTJ)为磁阻数据存储元件,其包括两个磁性层(一个针扎层和一个自由层)和位于所述两个磁性层之间的绝缘层、一位线、一字线、一源极线和一存取晶体管。编程电流通常流经所述存取晶体管和所述MTJ。所述针扎层使编程电流的电子自旋极化,且当经自旋极化的电流穿过MTJ时产生力矩。经自旋极化的电子流通过对自由层施加力矩而与自由层相互作用。当穿过MTJ的经自旋极化的电子流的力矩大于临界切换电流密度(Jc)时,由经自旋极化的电子流施加的力矩足以切换自由层的磁化。因此,可使自由层的磁化对准而平行于针扎层或反平行于针扎层,且改变跨越MTJ的电阻状态。

STT-MRAM具有优于MRAM的有利特性,因为经自旋极化的电子流消除了对用以切换磁阻元件中的自由层的外部磁场的需要。另外,因为编程电流随单元大小减小而减小,所以可缩放性得以改进,且写入干扰和半选问题得以解决。另外,STT-MRAM技术允许较高的隧穿磁阻比,意味着在高电阻状态与低电阻状态之间存在较大比率,从而改进磁畴中的读取操作。

然而,穿过STT-MRAM单元的高编程电流密度仍造成问题,因为穿过磁性层的高电流密度增加了单元中的能量消耗和层中的热分布,从而影响单元的完整性和可靠性。穿过磁性层的高电流密度还可导致每一单元的较大占用面积(real estate)消耗。

附图说明

在以下详细描述中且参看图式来描述特定实施例,其中:

图1描绘根据本发明的技术的实施例的基于处理器的系统的框图;

图2描绘具有根据本发明实施例而制造的存储器单元的存储器阵列的一部分的示意图;

图3A和图3B,以及图4A和图4B描绘根据本发明实施例的具有内置式压电层的STT-MRAM单元堆叠;以及

图5描绘根据本发明实施例的包含压电间隔物的STT-MRAM单元堆叠;

图6描绘根据本发明实施例的包含绝缘压电材料的两个STT-MRAM单元堆叠;以及

图7描绘根据本发明实施例的在STT-MRAM单元中的压电材料的可能实施方案。

具体实施方式

如先前所论述,自旋力矩转移磁性随机存取存储器(STT-MRAM)单元是通过切换所述单元的磁性隧道结(MTJ)中的自由层的磁化来编程。切换在穿过存储器单元的电流密度大于临界切换电流密度时发生。因此,为了编程所述单元,编程电流密度仅需要略微高于临界切换电流密度。由于传递较大切换电流会增加MTJ中的能量消耗和热分布(其影响单元的完整性和可靠性),所以需要在不影响单元的热稳定性的情况下降低临界切换电流。降低临界切换电流将允许在编程所述单元时用较小电流来切换自由层。以下论述描述根据本发明的技术的实施例的系统和装置,以及所述系统和装置的操作。

图1描绘基于处理器的系统,其由参考标号10概括表示。如以下所阐释,系统10可包括根据本发明的技术的实施例而制造的各种电子装置。系统10可为例如计算机、寻呼机、蜂窝式电话、个人备忘记事本、控制电路等多种类型中的任一者。在典型的基于处理器的系统中,例如微处理器等一个或一个以上处理器12控制系统10中的系统功能和请求的处理。如以下所阐释,处理器12和系统10的其它子组件可包括根据本发明的技术的实施例而制造的电阻性存储器装置。

系统10通常包括电源14。举例来说,如果系统10为便携式系统,那么电源14可有利地包括燃料电池、电力收集(power scavenging)装置、永久电池、可替换电池和/或可再充电电池。举例来说,电源14还可包括AC适配器,因此系统10可插入到壁式插座中。举例来说,电源14还可包括DC适配器,使得系统10可插入到交通工具点烟器(vehicle cigarette lighter)中。

视系统10执行的功能而定,各种其它装置可耦合到处理器12。举例来说,用户接口16可耦合到处理器12。举例来说,用户接口16可包括按钮、开关、键盘、光笔、鼠标、数字转换器和触笔和/或语音辨识系统。显示器18还可耦合到处理器12。举例来说,显示器18可包括LCD、SED显示器、CRT显示器、DLP显示器、等离子体显示器、OLED显示器、LED和/或音频显示器。此外,RF子系统/基带处理器20也可耦合到处理器12。RF子系统/基带处理器20可包括耦合到RF接收器且耦合到RF发射器(未图示)的天线。一个或一个以上通信端口22也可耦合到处理器12。举例来说,通信端口22可适于耦合到一个或一个以上外围装置24(例如,调制解调器、打印机、计算机)或耦合到网络(例如,局域网、远程域网络(remote area network)、企业内部网络或因特网)。

处理器12通常通过实施存储于存储器中的软件程序来控制系统10。举例来说,所述软件程序可包括操作系统、数据库软件、绘图软件、文字处理软件,和/或视频、相片或声音编辑软件。存储器以可操作方式耦合到处理器12以存储各种程序和促进各种程序的执行。举例来说,处理器12可耦合到系统存储器26,所述系统存储器26可包括自旋力矩转移磁性随机存取存储器(STT-MRAM)、磁性随机存取存储器(MRAM)、动态随机存取存储器(DRAM)和/或静态随机存取存储器(SRAM)。系统存储器26可包括易失性存储器、非易失性存储器或其组合。系统存储器26通常较大,使得其可存储动态加载的应用程序和数据。在一些实施例中,系统存储器26可包括STT-MRAM装置,例如下文进一步论述的装置。

处理器12还可耦合到非易失性存储器28,这并不暗示系统存储器26必定为易失性的。非易失性存储器28可包括STT-MRAM、MRAM、只读存储器(ROM)(例如EPROM、电阻性只读存储器(RROM)),和/或结合系统存储器26使用的快闪存储器。ROM的大小通常被选择为恰好足够大以便存储任何必要的操作系统、应用程序和固定数据。另外,例如,非易失性存储器28可包括高容量存储器,例如磁带或磁盘驱动器存储器,例如包括电阻性存储器的混合驱动器,或其它类型的非易失性固态存储器。如下文更详细地阐释,非易失性存储器28可包括根据本发明的技术的实施例而制造的STT-MRAM装置。

图2说明STT-MRAM单元50,视系统要求和制造技术而定,其可被制造为形成呈包括若干行和列的栅格图案或呈各种其它布置的存储器单元阵列。可在图1中所描绘的系统存储器26或易失性存储器28中实施存储器单元的布置。

STT-MRAM单元50包括堆叠52、存取晶体管54、位线56、字线58、源极线60、读取/写入电路62、位线参考64和读出放大器66。堆叠52可包括磁性隧道结(MTJ),所述磁性隧道结(MTJ)包括自由层和针扎层。如下文将特定参看图3A、图3B、图4A、图4B和图5到图7而进一步描述,堆叠52可进一步包括压电材料和根据本发明的技术的实施例的非磁性层。在下文所描述的各种实施例中,堆叠52中的压电材料可为安置于堆叠52的MTJ上或下方的压电层(图3A、图3B、图4A和图4B),或所述压电材料可邻近于堆叠52的MTJ而形成,作为间隔物(图5)或邻近单元之间的隔离材料(图6)。

如本文中所使用,STT-MRAM单元50通常包括“磁性单元结构”。如上文所论述,如果堆叠52的自由层与针扎层之间的非磁性层为绝缘的,那么所述磁性单元结构可为MTJ。或者,如果自由层与针扎层之间的非磁性层为导电的,那么所述磁性单元结构可为自旋阀(spin valve)。如本说明书中所使用,术语“堆叠”可指代存储器单元堆叠、磁性单元堆叠、STT-MRAM单元堆叠,或根据本发明的技术的实施例的可包括层和材料的存储器单元的任何组件。另外,当压电材料形成于MTJ上方或下方、平行于MTJ的层时,所述材料被称作“层”。当压电材料与MTJ的一部分形成于同一平面中时,所述压电材料被称作“邻近于”MTJ。当压电材料在MTJ的任一侧上形成间隔物时(在横截面方向观看时),或当将压电材料用作邻近单元之间的隔离材料时,压电材料可邻近于MTJ。所属领域的技术人员将了解压电材料形成为层或形成为邻近于MTJ之间的区别,且应记住此区别而阅读本申请案的所附权利要求书。

也如本文中所使用,应理解,当将一层称作“形成于”另一层“上”或“安置于”另一层“上”时,可能存在形成于或安置于所述层之间的介入层。类似地,如果将材料称作“邻近于”其它材料,那么可能存在位于所述材料之间的介入材料。相反,如果将一层或材料称作“直接形成于…上”、“直接安置于…上”或形成/安置为“直接邻近于…”或“直接接触…”,那么所述材料或层之间不包括介入材料或层。

当选择STT-MRAM单元50待编程时,将编程电流施加到所述单元,且所述电流由针扎层自旋极化且将力矩施加于自由层上,所述力矩切换自由层的磁化以“写入到”所述单元或“编程”所述单元。在STT-MRAM单元50的读取操作中,使用电流来检测存储器单元堆叠52的电阻状态。如将进一步论述,将压电层并入堆叠52中可降低切换自由层的磁化所需的临界切换电流,因此允许使用较小的编程电流来写入STT-MRAM单元50。

如先前所论述,针对STT-MRAM单元50的写入操作而施加编程电流。为了起始编程电流,读取/写入电路62可产生到位线56和源极线60的写入电流。位线56与源极线60之间的电压的极性决定堆叠52中的自由层的磁化的切换。一旦自由层根据编程电流的自旋极性而磁化,就将编程状态写入到STT-MRAM单元50。

为了读取STT-MRAM单元50,读取/写入电路62产生经由堆叠52和晶体管54到位线56和源极线60的读取电流。STT-MRAM单元50的编程状态视跨越堆叠52的电阻而定,所述电阻可由位线56与源极线60之间的电压差决定。在一些实施例中,可将所述电压差与参考64进行比较,且通过读出放大器66来放大。

在图3A中说明本发明的一个实施例,其将压电材料并入到STT-MRAM单元中,其中压电层102包括于STT-MRAM单元的存储器单元堆叠100中以降低临界切换电流。下文在各图中说明和描述的堆叠中的每一者可并入到图2中所描述的STT-MRAM单元50中。在图3A的所说明实施例中,压电层102安置于自由层104之上。自由层104和针扎层106借助非磁性层108而分离,借此视非磁性层108导电还是不导电而定形成MTJ或自旋阀。

可通过切换存储器单元堆叠100中的自由层104的磁化来编程存储器单元,且可通过确定跨越自由层104和针扎层106的电阻来读取所述单元。举例来说,层104和106可包含铁磁性材料(例如Co、Fe、Ni或其合金,NiFe、CoFe、CoNiFe,或经掺杂合金CoX、CoFeX、CoNiFeX(X=B、Cu、Re、Ru、Rh、Hf、Pd、Pt、C))或其它半金属铁磁性材料(例如Fe3O4、CrO2、NiMnSb和PtMnSb,以及BiFeO)。如此命名针扎层106是因为其具有有固定或针扎的优选定向的固定磁化,且这是通过针扎层106中所说明的单向箭头表示。可将额外的反铁磁性材料层沉积在针扎层106下方,以经由交换耦合(exchange coupling)而实现针扎。自由层104中所说明的双向箭头表示自由层104可在平行于针扎层106的方向上磁化(其提供低电阻)或在反平行于针扎层106的方向上磁化(其提供高电阻)。堆叠100还可包括位于自由层104与针扎层106之间以充当所述两个层104和106之间的绝缘体的非磁性层108。非磁性层108可包含AlxOy、MgO、AlN、SiN、CaOx、NiOx、HfxOy、TaxOy、ZrxOy、NiMnOx、MgxFy、SiC、SiO2、SiOxNy,或以上材料的任何组合。

当穿过存储器单元的电流密度大于临界切换电流密度时,发生自由层104的切换。在一个实施例中,在堆叠100中,压电层102直接并入于自由层104之上。压电层102通过产生影响自由层104中的有效磁场的瞬时应力来影响自由层的磁性反转,因此减小临界切换电流密度且允许使用较小的电流来切换自由层和编程所述单元。更具体地说,如果选择存储器单元待编程,那么可将电压施加于存储器单元堆叠100上。当将电压施加于堆叠100上时,压电层102可在自由层104中产生瞬时应力以促进切换。所述瞬时应力经由磁致弹性效应而影响磁性各向异性场Hk以降低磁性反转的能量势垒。

以下等式表示临界切换电流密度Jc,其中α表示阻尼常数,Ms表示磁化,tF表示自由层的厚度,且Hk表示自由层的磁性各向异性场:

临界切换电流密度取决于自由层的厚度tF和磁性各向异性场Hk。当将压电层102并入到堆叠100中时,自由层104中产生瞬时引发应力,其通过引入等效磁场分量Hσ而影响自由层104的磁性各向异性场且减小临界切换电流,其中σ为瞬时引发应力。以下等式表示瞬时引发应力σ与磁场分量Hσ之间的关系:

Hσ=3/2σ(dM)T

由压电层102产生的瞬时引发应力可降低磁性各向异性场Hk,使得临界切换电流密度Jc降低且因此能量势垒降低。另外,所述瞬时应力还可改变自由层104中的特定铁磁性材料中的自旋向上次能带和自旋向下次能带的对准,以调整其磁化Ms且进一步减小临界切换电流。

除了降低能量势垒且需要较小的电流密度来切换存储器单元的自由层104之外,所述瞬时应力效应可保留数据保存所需要的热稳定性。由压电层102产生的应力是瞬时的,因为将仅在存储器单元正被编程时施加电压和引发应力。当存储器单元不在被编程时,将不引发应力。因为所施加的应力是瞬时的,所以在切换之后,所述单元可更稳定。

在一些实施例中,压电层102可由导电压电材料组成,例如(TaSe4)2I、多层AlxGa1-xAs/GaAs、BaTiO3/VGCF/CPE复合物,或其它压电/导电材料复合物。在其它实施例中,压电层102可为绝缘材料(例如块磷铝矿(AlPO4)、石英、正磷酸镓(GaPO4)或兰克赛(langasite)(La3Ga5SiO14))、具有钙钛矿或钨青铜结构的陶瓷(例如钛酸钡(BaTiO3)、SrTiO3、亚铁酸铋(BiFeO3)、锆钛酸铅(Pb[ZrxTi1-x]O30<x<1)、Pb2KNb5O15、钛酸铅(PbTiO3)、钽酸锂(LiTaO3)、钨酸钠(NaxWO3)、铌酸钾(KNbO3)、铌酸锂(LiNbO3)或Ba2NaNb5O5),以及其它材料(例如ZnO、AlN、聚偏二氟乙烯(PVDF)、硅酸镓镧、酒石酸钠钾或铌酸钾钠(KNN))。压电材料102的厚度可较薄(例如,在约5A到约20A的范围内)以允许电流隧穿经过所述层。另外,非磁性层108可导电或不导电。导电的非磁性层108可包含Cu、Au、Ta、Ag、CuPt、CuMn或其它非磁性过渡金属,或以上非磁性导电材料的任何组合。不导电的非磁性层可包含AlxOy、MgO、AlN、SiN、CaOx、NiOx、HfxOy、TaxOy、ZrxOy、NiMnOx、MgxFy、SiC、SiO2、SiOxNy或以上非磁性不导电材料的任何组合。

图3B说明另一实施例,其中STT-MRAM单元中的堆叠150包括压电层102、自由层104、针扎层106、非磁性层108和位于压电层102与自由层104之间的额外非磁性层110,所述额外非磁性层110可充当缓冲层且允许应力从压电层102转移到自由层104而无直接物理接触。非磁性层110可消除界面效应,且还可解决在用于压电材料102的材料与用于自由层104中的材料不相容(这将抑制压电层102的作用)的情况下制造存储器单元的难题。非磁性层110可为导电层或不导电层。导电的非磁性层110可包含Cu、Au、Ta、Ag、CuPt、CuMn或其它非磁性过渡金属,或以上非磁性导电材料的任何组合。不导电的非磁性层110可包含AlxOy、MgO、AlN、SiN、CaOx、NiOx、HfxOy、TaxOy、ZrxOy、NiMnOx、MgxFy、SiC、SiO2、SiOxNy,或以上非磁性不导电材料的任何组合。

图4A中说明并入有压电层的堆叠的另一实施例。在此实施例中,STT-MRAM单元包含具有压电层210和额外MTJ组件222的存储器单元堆叠200,所述额外MTJ组件222具有静磁耦合的自由感测层202。可通过切换存储器单元的堆叠200中的编程自由层214的磁化来对存储器单元进行编程。针扎层218具有固定磁化,且此由针扎层218中所说明的单向箭头来表示。编程自由层214中所说明的双向箭头表示编程自由层214可在平行于针扎层218的方向上磁化(其提供低电阻)或在反平行于针扎层218的方向上磁化(其提供高电阻)。堆叠200还可包含位于编程自由层214与针扎层218之间充当所述两个层214和218之间的绝缘体的非磁性层216。将压电层210并入到堆叠200中,且在一些实施例中,非磁性层212可使压电层210与编程自由层214分离,如先前所描述。非磁性层212可消除界面效应,且还可解决在用于压电材料210的材料与用于编程自由层214中的材料不兼容(这将抑制压电层210的作用)的情况下制造存储器单元的难题。

如先前所阐释,压电层210可产生瞬时应力以降低能量势垒,因此允许使用较小的电流密度来切换存储器单元的编程自由层214且保留数据保存所需要的热稳定性。可将反铁磁性层220添加到堆叠200以帮助针扎针扎层218和维持针扎层218的磁化并保留单元稳定性。

另外,在本实施例中,堆叠200可包含包括感测自由层202和针扎层206的额外MTJ组件222。此额外组件静磁地耦合到原始堆叠组件224(先前参看图3A和图3B而描述),使得改变编程自由层214的磁化将改变感测自由层202的磁化。额外MTJ组件222的感测自由层202静磁地耦合到编程自由层214以便在磁化上反平行,因此改进感测裕度和两个编程状态之间的电阻比。感测自由层202与针扎层206之间的非磁性势垒层204也可改进电阻比。另外,非磁性层208可使额外MTJ组件222与原始堆叠组件224分离。

图4B说明另一实施例,其中存储器单元的堆叠250包含压电层260和额外MTJ组件256,所述额外MTJ组件256具有静磁地耦合到原始堆叠组件258中的编程自由层254的感测自由层252。在此实施例中,将感测自由层252放置成较靠近编程自由层254,且自由层252和254均受由压电层260产生的瞬时应力效应的影响。

现转向图5,说明本发明的另一实施例,其中STT-MRAM单元包括堆叠,所述堆叠具有安置成邻近于存储器单元堆叠中的层的压电材料。具体地说,压电间隔物310可位于邻近自由层302处。可通过切换存储器单元的堆叠300中的自由层302的磁化来编程所述存储器单元。针扎层306具有固定磁化,且这由针扎层306中所说明的单向箭头来表示。自由层302中所说明的双向箭头表示自由层302可在平行于或反平行于针扎层306的方向上磁化。堆叠300还可包含位于自由层302与针扎层306之间的非磁性层304。另外,可将反铁磁性层308添加到堆叠300以帮助针扎所述针扎层306和维持针扎层306的磁化并加强单元中的稳定性。

当选择一单元待编程时,可将电压施加到所述单元。电压跨越所述选定单元和邻近未选定单元而降低,以从施加到选定单元的电压产生寄生电场。这使得可激活选定单元上的压电间隔物310,且在自由层302上引发瞬时应力以促进其切换。如先前所论述,所述瞬时应力减小临界切换电流密度,降低用于切换自由层302和编程所述存储器单元的能量势垒。当不施加电压时,压电间隔物310不施加应力,且存储器单元保持其热稳定性。另外,由于电流不必经过压电层来引发热应力效应(如在上文所描述的实施例中),所以如图6中将进一步描述,在其它实施例中,压电间隔物310可含有绝缘材料。可通过绝缘间隔物312使压电间隔物310与堆叠300隔离,使得压电间隔物310不直接接触所述堆叠。

图6中说明本发明的又一实施例,其中描绘两个邻近STT-MRAM单元的存储器单元堆叠,且邻近于磁性单元堆叠且在磁性单元堆叠之间形成压电材料。为了阐释编程选定单元的过程,描绘选定单元堆叠400和邻近来选定单元堆叠450。在此实施例中,绝缘压电材料410可代替压电间隔物用作两个邻近单元400和450之间的隔离材料。在STT-MRAM的制造中绝缘压电材料410有时可为有利的,因为不需要形成间隔物。如先前所论述,当选择一单元待编程时,可将电压施加到选定单元400。电压接着跨越选定单元400和邻近未选定单元450而降低,以从施加到选定单元400的电压产生寄生电场。这使得可激活绝缘压电材料410且在选定单元400的自由层402上引发瞬时应力以促进其切换。由绝缘压电材料410产生的瞬时应力减小临界切换电流密度,降低用于切换自由层402和编程所述存储器单元的能量势垒。当不施加电压时,绝缘压电材料410不施加应力,且存储器单元保持其热稳定性。另外,可将反铁磁性层408添加到单元堆叠400和450中的每一者以帮助针扎所述针扎层406和维持针扎层406的磁化并加强单元中的稳定性。在一些实施例中,可通过绝缘间隔物412使绝缘压电材料410与两个邻近单元400和450隔离,使得绝缘压电材料410不直接接触所述堆叠。另外,电介质材料414可与两个邻近单元400和450之间的绝缘压电材料410耦合,使得仅自由层402受压电材料410的作用影响,且单元的剩余部分被绝缘。

在所有所描述的实施例中,且在替代实施例中,并入于STT-MRAM单元中的压电组件可为连续的(压电材料遍及所述层、间隔物或隔离材料),或所述压电组件可包括压电材料和非磁性材料的某一组合。可包括非磁性材料以提供增强的导电性或提供改进的电子隧穿。图7中描绘STT-MRAM单元中的压电组件的不同实施方案的实例。举例来说,压电材料可为圆形或椭圆形,且可包含大体上压电材料、围绕非磁性材料芯的压电材料环,或围绕压电材料芯的非磁性材料环,或压电材料和非磁性材料的任何其它组合。圆形或椭圆形横截面500中描绘所描述组合的实例,其中阴影部分表示压电材料,且非阴影部分表示非磁性材料。另外,压电材料可构造成各种其它形状,包括正方形或矩形层,且可包含大体上压电材料、压电材料和非磁性材料的交替带、由非磁性材料环绕的压电材料、由压电材料环绕的非磁性材料,或压电材料和非磁性材料的任何其它组合。正方形或矩形横截面502中描绘所描述组合的实例,其中阴影部分表示压电材料,且非阴影部分表示非磁性材料。

虽然本发明可易具有各种修改和替代形式,但在图式中已借助于实例而展示且本文中已详细地描述了特定实施例。然而,应理解,本发明无意被限定于所揭示的特定形式。相反,本发明将涵盖属于如所附权利要求书所界定的本发明的精神和范围内的所有修改、等效物和替代物。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号