首页> 中国专利> 具有直流电压中间电路和自换向变流器的高压直流输电设备的调节方法

具有直流电压中间电路和自换向变流器的高压直流输电设备的调节方法

摘要

为了提供一种用于在能量传输和/或分配领域调节至少两个变流器(1)的方法,其中,这些变流器作为整流器或逆变器可调并经过直流电压连接(4)相连,在该方法中,对每个变流器(1)分别测量一个测量直流电压(Udc_r1,…Udc_rr;Udc_i1,…Udc_ii)和一个测量直流电流(Idc_r1,…Idc_rr;Idc_i1,…Idc_ii),并且传输给用于调节各整流器的整流器调节装置(7_rr)或用于调节各对应的逆变器的逆变器调节装置(8_ii),其中每个整流器调节装置(7_rr)和每个逆变器调节装置(8_ii)分别形成在预先给出的标称电压(Udco)和各个接收的测量直流电压(Udc_r1,…Udc_rr,Udc_i1,…Udc_ii)之间的差值,以获得差值直流电压(du),并且此外还形成在标称电流(Idco_r1,…,Idco_rr,Idco_i1,…Idco_ii)和各个接收的测量直流电流(Idc_r1,…,Idc_rr,Idc_i1,…Idc_ii)之间的差值,以获得差值直流电流(di),其中测量直流电流、测量直流电压、标称直流电流和标称直流电压标准化地呈现,利用该方法可以对具有可关断功率半导体并且通过直流电压中间电路互相连接的变流器进行调节,其中同时可以规定等于零的标称电流,本发明提出,每个变流器是具有可关断的功率半导体的自换向变流器(1)并且所述整流器调节装置(7_rr)这样调节各个对应的变流器(1),使得差值直流电压(du)和在各个对应的整流器上的标称直流电流的绝对值(|Idco_r|)的乘积与差值直流电流(di)的和被最小化(du*|Idco_r|+di→Min),并且所述逆变器调节装置(8_ii)这样调节各个对应的变流器(1),使得在差值直流电压(du)和差值直流电流(di)之间的和被最小化(du+di→Min)。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-07-07

    未缴年费专利权终止 IPC(主分类):H02J 3/36 专利号:ZL2008801299047 申请日:20080617 授权公告日:20130731

    专利权的终止

  • 2013-07-31

    授权

    授权

  • 2011-07-20

    实质审查的生效 IPC(主分类):H02J3/36 申请日:20080617

    实质审查的生效

  • 2011-05-18

    公开

    公开

说明书

技术领域

本发明涉及一种用于在能量传输和/或分配领域调节至少两个变流器的方法,其中,这些变流器作为整流器或逆变器可调并经过直流电压连接互相连接,其中:对每个变流器分别测量一个测量直流电压(Udc_r1,…Udc_rr;Udc_i1,…Udc_ii)和一个测量直流电流(Idc_r1,…Idc_rr;Idc_i1,…Idc_ii),并且传输给用于调节各整流器的整流器调节装置或用于调节各对应的逆变器的逆变器调节装置,其中每个整流器调节装置和每个逆变器调节装置(12)分别形成在预先给出的标称电压(Udco)和各个接收的测量直流电压(Udc_r1,…Udc_rr,Udc_i1,…Udc_ii)之间的差值,以获得差值直流电压(du),并且此外还形成在标称电流(Idco_r1,…,Idco_rr,Idco_i1,…Idco_ii)和各个接收的测量直流电流(Idc_r1,…,Idc_rr,Idc_i1,…Idc_ii)之间的差值,以获得差值直流电流(di),其中测量直流电流、测量直流电压、标称直流电流和标称直流电压标准化地呈现。

背景技术

这样的方法例如由WO 2007/033620A1已经公知。那里描述了高压直流传输系统的调节方法,其中在交流电网之间的电功率通过直流电路传输。为功率传输采用的高压直流传输()设备由整流器和逆变器组成,它们通过直流连接相连。为将变流器与各个对应的交流电网耦合设置了变压器。在整流器或逆变器的调节中,在整流器上以及在逆变器上分别采集各一个测量直流电压Udc_r或Udc_i和各一个测量直流电流Idc_r或Idc_i,并且传输到各个调节装置。从要传输的预先给出的功率,借助函数发生器确定标称直流电压Udco以及标称直流电流Idco。然后从标称直流电压Udco和测量直流电压Udc_r、Udc_i之间的差计算差值直流电压du。相应地,从标称直流电流Idco和各个确定的测量直流电流Idc_r和Idc_i的差计算差值直流电流di。在此,所有的值标准化地呈现,其中,例如关于额定直流电压和额定直流电流或者关于标称直流电流和标称直流电压标准化。整流器调节装置此时以以下的方式调节整流器:使得差值直流电压du和差值直流电流di的和被最小化。相反,逆变器调节装置如下地调节逆变器:使得在差值直流电流di和差值直流电压du之间的差被最小化。然而,公知的方法仅适合于所谓的外部转换的(fremdgeführte)变流器,在该变流器中例如采用不能借助触发信号关断的晶闸管。这样的变流器允许直流电路中仅一个方向上的电流。功率通量的反向只能通过在各个变流器上降落的电压的极性转换来进行。此外,在这个在以下被称为经典的中由于电流标称值中需要避免间歇电流,工作电流必须大于0.05p.u.。这允许在标称值上的所谓标准化。

由于在功率电子领域中的不断进步,变得可能的是,在能量传输领域并且特别是在中对于变流器还采用可关断的功率半导体,例如IGBT或GTO。也称为电压源转换器(Voltage Source Converter,VSC)的这样的变流器通过直流电压中间电路与另一个VSC相连。变流器的每个可关断的功率半导体并联了一个续流二极管。功率通量的反向不再通过在各个VSC上降落的电压的极性转换、而是通过在各个VSC流过的电流的反向进行。此外在各个VSC上可以使用等于零的直流标称值。因此,这种方法不可能应用于控制设备的VSC。

从WO 2007/033619A1中公知一种用于具有多个变流器的直流传输的调节方法,其中同样采用了上面提到的方法。此处、特别是在整流器上,也需要超过0.05p.u.的标称电流以避免间歇电流。

发明内容

本发明要解决的技术问题是,提供一种本文开头提到种类的方法,利用该方法可以对变流器进行调节,所述变流器具有可关断的功率半导体并且通过直流电压中间电路互相连接,其中同时可以规定等于零的标称电流。

本发明通过如下解决上述技术问题:每个变流器是具有可关断的功率半导体的自换向变流器(1)并且整流器调节装置这样调节各个对应的变流器,使得差值直流电压(du)和在各个对应的整流器上的标称直流电流的绝对值(|Idco_r|)的乘积,与差值直流电流(di)的和被最小化(du*|Idco_r|+di→Min),并且逆变器调节装置这样调节各个对应的变流器,使得在差值直流电压(du)和差值直流电流(di)之间的和被最小化(du+di→Min)。

本发明将经典的中公知的调节方法转换到采用VSC和直流电压中间电路的设备。由于直流电压中间电路,在这些所谓的电压源转换器(VSC)中可以不再进行电压的极性转换,通过这点在经典的中导致功率通量的反向。在这些变流器(VSC)中通过电流通量的反向来进行功率通量的反向。在按照本发明的调节方法中考虑这些物理的区别。按照本发明的方法此外还允许规定值为零的标称电流。在公知的用于经典的的调节方法中,这是不可能的。由此,按照本发明的方法提供了对通过直流电压连接相连的两个或多个VSC的简单和灵活的调节。

直流电压连接具有如下极性,该极性在本发明的范围内在设备的运行期间即使在功率通量反向时也不改变。在此,直流电压连接例如是两极的直流电压连接,其在两个变流器之间延伸。按照该变形,待调节的设备由整流器组成,该整流器通过电感、例如变压器,与提供能量的交流电网相连。通过两极的直流电压连接与所述整流器相连的逆变器同样通过电感、例如变压器,与第二交流电网相连,该第二交流电网例如具有待供电的负载。然而与此不同的是,还可以按照本发明方法调节多个变流器,其中整流器或者在这种情况下VSC通过直流电压连接以任意拓扑结构互相连接。按照本发明的方法完全独立于直流电压连接的拓扑结构。

合适地,每个整流器调节装置的标称直流电压Udco和每个逆变器调节装置的标称直流电压Udco是相同的。由此在本发明的范围内,利用用于将各个标称直流电压通知其它站的快速和可靠的电信通信,复杂地定义在每个变流器站的标称直流电压,变得多余了。

合适地,变流器互相距离至少1千米。从该合适的扩展,排除了所有设备的所谓的背对背配置,在该配置中逆变器和变流器在空间上并排设置并且仅用于不同的交流电网的可调节的耦合。由此,按照该优选扩展的方法为其构造的装置用于远距离传输电能。

优选地,将每个测量直流电压Udc_rr或Udc_ii和标称直流电压Udco关于标称直流电压Udco标准化。这使得特别是在小的待传输的功率的情况下得到稳定的调节。然而在本发明的该实施例的范围内,已经由经典的公知的该标准化仅结合各个测量和标称直流电压进行。相反,对标称直流电流不进行标准化,以便在本发明的该合适的扩展中使得也可以使用等于零的标称直流电流。

优选地设置两个变流器,其中一个作为整流器另一个作为逆变器运行,其中在该整流器和逆变器之间延伸一个直流电压中间电路。按照该构造,对于具有VSC和无分支的直流电压中间电路的设备采用该方法。直流电压中间电路例如构造为单极的,其中将地作为回线使用。与此不同的是,直流电压连接是两极的,其中直流电压连接的正极和负极以电缆导体的形式实现。

按照与此不同的构造,对于至少三个变流器采用按照本发明的方法,在这些变流器之间延伸一个直流电网。该直流电网可以具有任意的拓扑结构。

按照与此相关的合适扩展,对于每个整流器调节装置和对于每个逆变器调节装置分别确定一个对应的整流器标称直流功率(Pdco_r1…Pdco_rr)或逆变器标称直流功率Pdco_i1…Pdco_ii),其中,所有整流器标称直流功率与所有逆变器标称直流功率的和等于零。各个标称直流功率例如由中央的控制台确定并且从那里被传输到各个变流器调节装置。为了传输,不需要能导电的通信连接,如在经典的情况下那样。在本发明的范围内,将各个标称直流功率通过英特网或任意其它简单和由此低成本的电信通信传输到各个调节装置,就足够了。

合适地,在每个变流器上从与其对应的标称直流功率和共同的标称直流电压确定各个对应于变流器的标称直流电流。按照该优选的扩展,简单并清楚地构造按照本发明的方法。

合适地,在整流器的或逆变器的共同的工作区域上,既根据各个对应的整流器差值直流电流(di_r1…di_rr),也根据整流器差值直流电压(du_r1…du_rr)或根据各个对应的逆变器差值直流电流(di_r1…di_rr)也根据对应的逆变器差值直流电压(du_i1…du_ii),进行每个整流器的和每个逆变器的调节。

优选地,在每个变流器上分别测量一个测量直流电压(Udc_r1…Udc_rr;Udc_i1…Udc_ii)和分别一个测量直流电流(Idc_r1…Idc_rr;Idc_i1…Idc_ii)并且传输到整流器调节装置或逆变器调节装置。

按照与此相关的合适扩展,这样调节多个变流器,使得通过在直流电压连接中设置的隔离开关流过的直流电流变为零。按照该优选扩展,在直流电压连接中可以采用简单的隔离开关,因为切换总是可以无电流地进行。通过开关对电流施加过零点,从而消除在切换时产生的电弧的复杂的振荡电路,在本发明的该优选构造中同样变得多余。

按照与此相关的修改,至少一个变流器将分别在其上采集的测量直流电流调节为零,并且然后断开至少一个在直流电压连接中设置的隔离开关。借助等于零的标称直流电流的使用,进行零电流调节。按照该扩展的一种优选构造,将利用直流电压连接相连的所有的变流器调节为零。换言之,在每个调节装置上,使用为零的标称直流电流。

按照与此相关的合适扩展,设置断开时刻(Ausschaltzeitpunkt)并且传输到各个涉及的调节单元,其中所述调节单元在到达断开时刻的情况下将与其对应的测量直流电流调节为零。按照该合适扩展,所有的调节单元具有时间信号发生器,例如精确的钟,其对于所有的调节提供一个共同的或基本上共同的时间信号。将该时间信号与设置的和传输的输出时刻比较。如果在输出时刻与测量的时间之间的差低于一个预先设置的阈值,也就是在达到输出时刻的情况下,为各个调节单元规定一个为零的标称直流电流,使得测量直流电流被调节为零。按照该构造,确保了,例如由中央控制台本身选择的所有涉及的调节装置,或者所有调节装置被同时地转换到零电流调节。

按照与此相关的合适扩展,通过每个涉及的变流器在零电流持续时间上将测量直流电流调节到零,然后,即,在零电流持续时间过去之后,又重新开始通常的调节方法。在例如位于几个毫秒范围内的零电流持续时间内,此时进行在直流电压连接中的期望的隔离开关的断开。以这种方式,可以简单地、有针对地从具有任意拓扑结构的直流电网中断开一个区域或变流器,而不会同样中断通过没有断开的连接或变流器的功率传输。而是在本发明的范围内可以,通过直流电压电流的快速的向下调节(Herunterregeln)从直流电网中有针对地断开直流电压连接的一个片段或变流器。然后又开始设备的通常调节。按照本发明的调节方法自动地并且无需直流电压连接的新的拓扑结构的知识,到达调节的为此所需的工作点。在本发明的范围内无需复杂的数据传输、计算等。

附图说明

本发明的其它合适的构造和优点是以下结合附图对本发明的实施例的描述的内容,其中相同的附图标记指相同作用的组件,其中,

图1示出了具有通过直流电网互相连接的多个电压源转换器的设备,

图2示出了按照本发明的调节方法的一个实施例所使用的参数和调节量值,

图3示出了用于通过直流电网互相连接的多个VSC的按照本发明的方法的一种实施例,

图4示出了按照本发明的方法的一种实施例,其中借助一个简单的隔离开关从直流电网中断开直流电压连接的确定的片段。

具体实施方式

图1示意性示出了具有多个变流器1的设备,其分别通过变压器2与交流电网3相连。每个变流器1是一个所谓的电压源转换器(VSC),具有可关断的功率半导体,如IGBT或GTO,其分别反并联一个续流二极管。在此,每个变流器1与可以具有任意拓扑结构的直流电网4作为直流电压连接相连。此外,每个VSC 1与一个平滑扼流圈5相关联。VSC 1、变压器2、平滑扼流圈5是整流器站或逆变器站的部分,视各个VSC通过未图形示出的调节单元或调节装置如何被控制而定。在图1中具有作为整流器运行的VSC的那些整流器站,用r1,r2,r3…rr表示,其中具有作为逆变器运行的VSC的逆变器站用i1,i2,i3…ii表示。在图1中还可以看出,每个整流器站rr和每个逆变器站ii具有用于采集在该站上降落的测量直流电压Udc_rr以及在VSC 1上流过的直流电流Idc_rr或Idc_ii的传感器。如同样从图1中可以看出的,各个交流电网3也通过交流电压连接6互相连接。交流电流连接6不影响用于调节VSC的按照本发明的方法。

在图2示出的图中,在横坐标上标出了标准化的直流电流并且在纵坐标上示出了标准化的直流电压。在此假定,与图1的图相反,仅一个整流器通过直流电压中间电路与一个作为逆变器工作的VSC相连。

在该图中,整流器的参数和调节量值在该图的左边的象限中并且逆变器的相应的量值在右边的象限中示出。在整流器(其测量和标称值用_r表示)方面,在测量点X_r处标出测量直流电流和测量直流电压。由此,测量直流电压Udc_r大于标称直流电压Udco或Udco_r。如果形成差值直流电压du_r并且关于标称直流电压Udco标准化,则得到

du_r=1-Udc_rUdco_r.

为了将功率传输到逆变器,该值必须小于零。

整流器的标称直流电流Idco_r按照定义是负的,从而得到Idco_r=-Idco。然后由di_r=-Idco_r+Idc_r得到从标称和测量直流电流之间的差形成的差值直流电流di。不进行关于标称直流电流Idco_r的标准化,以便在该调节中允许为零的标称直流电流。此时这样进行该调节,使得整流器调节偏差de_r=du_r*|Idco_r|+di_r被最小化,即为零。由此得到,左边示出的直线是用虚线表示的双曲线的切线,其表示不变的标称直流功率Pdco_r=-Pdco。通过在调节偏差de_r的计算中将差值直流电压du_r与标称直流电流|Idco_r|的绝对值相乘,提供了稳定和快速采用的整流器调节特性,因为在小的标称直流电流的情况下电压调节被抑制。只有在较高的标称直流电流Idco_r的情况下才基本上相同地并列出现电压调节和电流调节。

在逆变器方面,在工作点X_i处标出了测量直流电流Idc_i和测量直流电压Udc_i。如在整流器方面那样,计算差值直流电压du_i和差值直流电流di_i,其中差值直流电压du_i又被关于标称直流电压Udco标准化。在期望的功率传输中,必须有,du_i大于零。此处也不进行关于标称直流电流的标准化,以形成差值直流电流di_i。由此也可以规定等于零的标称直流电流Idco_i。对于期望的功率传输,差值直流电流di_i小于零。从差值直流电压du_i和差值直流电流di_i的和形成调节偏差de_i。此时该调节试图要将调节偏差de_i最小化为零。在图2所示的图中以这种方式得到一条直线,其在点W_i处与不变的直流功率Pdco_i的双曲线相交。直线de_i使人联想到欧姆电阻的特性,从而逆变器调节也可为电阻调节。

图3示意性示出了对于按照图1的设备的按照本发明的方法的一种实施例,其中,对于整流器站r_1的整流器调节装置7_r1以及对于逆变器站i1的逆变器调节装置8_i1,采用按照图2的参数和量值。未图形示出的整流器调节装置7_rr以及未示出的逆变器调节装置8_ii是相同构造的。

从图3可以看出,整流器调节装置7_r1和由此每个整流器调节装置接收分配给它的标称直流功率Pdco_r1。对于逆变器调节装置8_i1相应地适用,其中,各个对应的标称直流功率从中央的控制台通过未示出的通信连接,例如简单的无线电连接,被传输到各个站。在此,所有标称直流功率的和等于零:∑Pdco_rr+∑Pdco_ii=0。如在经典的中那样的复杂、快速和可靠的传输,在本发明的范围内变得多余。

接收的标称直流功率Pdco_r1和Pdco_i1分别被传输到一个除法器9,在后者的第二输入端上施加了对于所有站都相同的标称直流电压Udco。标称直流功率例如同样从中央站被传输。除法器9从各个标称直流功率Pdco和标称直流电压Udco中形成一个商以获得标称直流电流Idco_r1或Idco_i1,其中,各个标称直流电流被传输到限制器(Begrenzer)10,其将标称直流电流Idco_r1或Idco_i1限制到最小标称直流电流Imin_r1,Imin_i1和最大标称直流电流Imax_r1,Imax_i1。然后标称直流电流Idco_r1或Idco_i1被传输到加法器11,该加法器分别从标称直流电流Idco_r1或Idco_i1和测量直流电流Idc_r1或Idc_i1形成差。这样获得的差值直流电流di_r1然后被传输到另一个加法器11。从测量电压和标称电压中导出在该所说的加法器11的第二输入端上的值。为此,在除法器12中分别确定测量直流电压Udc_r1或Udc_i1和标称直流电压Udco的商。然后,从1中减去以这种方式标准化的测量直流电压Udc_r1或Udc_i1,以获得各个差值直流电压du_r1或du_i1。在逆变器调节装置8_i1中将这样获得的差值直流电压du_i1如上所述传输到加法器11的第二输入端,其通过其输入端的相加计算逆变器调节偏差de_i,该逆变器调节偏差然后被传输到调节装置13。

与逆变器调节装置8_i1不同,在整流器调节装置7_i1中,将差值直流电压du_i1与标称直流电流的绝对值|Idco_r1|相乘。为了从Idco_r1形成绝对值|Idco_r1|,设置绝对值形成器23,其中借助乘法器24形成乘积|Idco_r1|*du_r1。在整流器调节装置7_i1的情况下借助加法器11将差值直流电流di_r1加到du_r1和|Idco_r1|的乘积以获得整流器的调节偏差de_r。整流器的调节偏差de_r1然后被传输到调节器13并且最后被传输到模块管理系统(Modul-Management-System)14,其在此进行各个VSC的功率半导体的控制。

图3示出的VSC是所谓的多级VSC(Multilevel VSC),其如所有的VSC那样由整流管(Stromventil)的桥接电路组成。然而在多级VSC中每个整流管由两极的子模块的串联电路形成,这些子模块分别具有一个储能器和与储能器并联的功率半导体电路,从而在储能器上降落的电压或零电压取决于功率半导体的控制而降落到各个子模块上。在整流管上总共降落的电压由子模块的输出电压相加而形成并且由此可以被按照级别地改变。

为了控制子模块的功率半导体,调节器13的输出端与所谓的模块管理系统的输入端相连,对该模块管理系统的详细的构造这里在本发明的范围内将不讨论,因为这对本发明来说是不重要的。模块管理系统相应于调节器13的输出端控制子模块的功率半导体。然而在本发明的范围内还可以,在调节器13后不是连接模块管理系统而是连接脉宽调制器,其构造为用于控制两级的或三级的电压源转换器。

图4同样示出了设备以解释按照本发明的方法的实施例。同样在此又是多个整流器站r1,r2,…rr和多个逆变器站i1,i2…ii通过任意拓扑结构的直流电网4互相连接。在按照图3和1的图的扩展中,每个整流器站rr和每个逆变器站ii除了包括整流器调节装置7_rr或逆变器调节装置8_ii之外还包括保护单元15,其与各个整流器调节装置7_rr或逆变器调节装置8_ii相连。此外,各个整流器调节装置7_rr或逆变器调节装置8_ii分别与断路器17的保护设备16相连,其中断路器17被设置在交流电网3以及变压器2之间。在故障情况下,例如在高的短路电流情况下,可以借助交流电压侧的多极的开关17,其例如是用于断开高的短路电流的断路器,将各个VSC从各个交流电网3退耦。在此,该保护触发通过保护单元15进行,其促使各个调节单元7以将触发命令输出到保护设备16。触发命令的结果是,保护设备16断开断路器17。

为了也能够在直流电压连接4内部断开或隔离直流电压片段18,在直流电压连接中设置了直流电压开关19。直流电压保护单元20用于触发直流电压开关19,该直流电压保护单元20与直流电压电流传感器21的输出端相连,该直流电压电流传感器提供直流电流值Idc_b1或Idc_b2,该直流电流值相应于通过各个开关19流过的直流电流。直流电压保护单元20又与直流电压开关19的保护设备16相连。

在图4中通过画出的箭头22表示接地电流,从而在直流电压片段18中流过高的短路电流。如果传输到各个直流电压保护单元20的直流电流值Idc_b1或Idc_b2超过事先确定的阈值或者其它标准,则各个直流电压保护单元20确定一个处于不久之后的断开时刻taus并且将该断开时刻taus传输到各个整流器调节装置7_r1,7_r2,7_rr以及逆变器调节装置8_i1,8_i2,8_ii。这些调节装置与定时器相连,从而所有调节器可以大约同时地确定断开时刻的到达。此后,保护单元15这样控制各个调节单元,使得其在零电流持续时间上将各个标称直流电流Idco_r1,Idco_r2,Idco_rr以及Idco_i1,Idco_i2和Idco_ii分别置为零,使得各个测量直流电流被调节到零。由此,通过直流电流开关19流过的直流电流Idc_b1或Idc_b2等于零。此后可以无电流地断开开关19。由直流电压保护单元20同样通过时间比较来识别断开时刻的到达。在保持一个小于零电流持续时间的安全时间间隔之后,进行直流电压开关19的无电流的断开并且由此进行直流电压片段18的断开。在零电流持续时间过去之后,重新开始正常的调节方法。在本发明的范围内不必将直流电压连接4的改变的拓扑结构告知各个调节装置。该调节自动地变换到稳定的调节点而无其它附加的效应。以这种方式可以实现在直流电网4内部的低开销的切换。按照现有技术在直流电压开关中采用的并联谐振电路,在本发明的范围内变得多余。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号